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ABSTRACT

Several approaches exist to generate synthetic data
centre traces for various purposes: from augmenting op-
erational traces for data centre simulators and digital
twins to forecasting incoming workload to improve data
centre behaviour. The evaluation of the quality of syn-
thetically generated multivariate time-series datasets,
such as those related to data-centre traces, is not a
trivial task, since complex patterns and correlation be-
tween variables may be present.

This paper proposes a new multivariate time-series
evaluation framework that computes a set of metrics
and figures that can be used to measure the quality
of synthetically generated data-centre traces. We then
employ the proposed tool to compare two synthetic
data centre traces with the original trace and assess
their quality. These synthetic traces have been gen-
erated by means of Generative Adversarial Networks
(GAN). In this work, we employ TimeGAN, a GAN
model focused on the generation of multivariate time
series traces.

We finally show how the proposed framework pro-
vides us with a set of metrics consistent with the ob-
servable behaviour and numerical insights on the qual-
ity of the generated data centre traces, which are hard
to acquire otherwise.

I. Introduction

Some data centre trace datasets were published by
various data centre operators, such as Alibaba [1] [6],
Microsoft Azure [2] [4], and Google [8]. These datasets
are useful for a better understanding of the operation
and behaviour of real hyperscale data centres.

Data centre traces are considered multivariate time
series datasets, as they include a series of time-defined
events. These events are typically divided into at least
two datasets:

• Dataset of job / task events, which includes informa-
tion about arrival time, status change, and deployment
information.

• Machine usage dataset, composed of periodic monitor-
ing events that summarise the utilisation of every ma-
chine at a given time. The monitored parameters usu-
ally include CPU, memory, disk, and network usage.
The research community has been using these traces

for various purposes, including the simulation of data
centre operation to enhance several aspects, especially
resource management and job scheduling. It is worth
noting that job scheduling is critical for data-centre op-
erating performance. In addition, some simulators can
also apply various energy efficiency policies to reduce
the energy consumption of the data centre.
Real data-centre traces have been proven to be cru-

cial for the evaluation of such policies in realistic indus-
try scenarios, but such traces fall short for many pur-
poses, including machine learning models, which need
very large datasets. Data augmentation is a technique
that uses algorithms to artificially increase the size of
a dataset by generating modified versions of existing
data points. This can be useful in machine learning
tasks where the amount of data available is limited, as
it helps prevent overfitting and generalisation.
Note that when data augmentation techniques are

applied to time series data, preserving the temporal re-
lationship and patterns in the data set is important.
The selection of the appropriate data-augmentation
techniques, as well as ensuring that the resulting aug-
mented data still represent the original data, can help
optimise the performance of machine learning mod-
els on tasks related to problems where time series are
present.
To ensure that the resulting data still represent the

original data and preserve both the relationships be-
tween the properties and the time-related patterns, in
this paper, we propose a multivariate time-series eval-
uation framework that computes a set of metrics and
figures that can be used to measure the quality of syn-
thetically generated data-centre traces. We then em-
ploy the proposed tool to compare two synthetic data
centre traces with the original trace and assess their
quality. These synthetic traces have been generated by
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means of Generative Adversarial Networks (GAN). In
this work, we employ TimeGAN [10], a GAN model
focused on the generation of multivariate time series
traces, trained with the Alibaba cluster trace dataset
[1].

This article is organised as follows. Section II of this
paper covers the metrics and measurements specifically
orientated to the evaluation of time series. In Section
III we present some figures that support visual analysis
for the comparison of multivariate time series. This is
followed by Section IV, which includes: a) dataset de-
scription; b) a summary of Generative Adversarial Net-
works and TimeGAN; c) and which experiments were
performed, including their parameterisation. Finally,
in Section V we present and discuss the results for the
use case, and conclusions are drawn in Section VI

II. Metrics and measurements for the
evaluation of multivariate synthetic time

series

In this section, we present the most popular metrics
and measurements found in the literature that are used
to evaluate time-series datasets.

Kullback–Leibler divergence

The Kullback-Leibler divergence (also known as KL
divergence or relative entropy) is a measure of the dif-
ference between two probability distributions. Often
used in machine learning and statistics to compare the
similarity of two distributions or to compare the model
fit to datasets.

The KL divergence can be a useful tool for evalu-
ating the similarity of two time series. However, it is
important to remember that it is sensitive to the spe-
cific probability distributions that are used to represent
them.

Jensen–Shannon divergence

The Jensen-Shannon divergence (JS) is a measure
of similarity between two probability distributions. It
is a symmetric version of the Kullback-Leibler diver-
gence (KL divergence) and is defined as the average
of KL divergences between the distribution a and the
distribution b, and between the distribution b and the
distribution a.

The JS divergence is a useful tool to compare the
similarity of two time series. As it is symmetric, the
order of the two distributions under evaluation does
not have any influence on the results.

Like the KL divergence, the JS divergence is sensitive
to the specific probability distributions that are used to
represent time series.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test is a statistical
test used to compare cumulative distribution functions
(CDF) between two samples. It is often used to test
whether two samples come from the same distribution
or to compare the fit of a theoretical distribution to a
sample.

In the context of time series analysis, the KS test
can be used to compare the similarity of two time se-
ries. Both time series must be transformed into a set of
feature vectors that represent the distributions. Then,
we computed the KS test over the extracted featured
vectors of each time series to compute the maximum
difference between the CDFs of the two samples.

The KS test is sensitive to specific feature functions
that are used to represent time series.

In summary, the KL divergence, the KS test, and
the JS divergence can be used to compare the simi-
larity of two time series, but they are sensitive to the
specific methods used to represent the time series as
probability distributions or feature vectors. Choosing
the appropriate methods to represent the time series
can be important for an accurate comparison of their
similarity.

Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a kernel-
based statistical test used to determine whether two
given distributions are the same, which is proposed in
[5].

In the context of time series analysis, MMD can be
used to compare the similarity of two time series. The
MMD is calculated as the maximum difference between
the mean of the feature vectors in one distribution and
the mean of the feature vectors in the other distribu-
tion, taken over all possible feature functions.

Like the KS test, MMD is sensitive to the specific
feature functions that are used to represent the time
series.

Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm that
is used to compare time series by aligning them in a
way that minimises the distance between them. It is
often used in speech recognition and pattern recogni-
tion tasks because it enables the comparison of time
series that may have different lengths or that may be
shifted in time.

DTW is not a metric in the strict mathematical sense
of the term. A metric is a function that satisfies cer-
tain properties, such as being non-negative, symmetric,
and satisfying the triangle inequality. DTW does not
satisfy these properties, so it is not a metric in the
traditional sense. However, it is often referred to as a
”distance measure” or a ”similarity measure” because
it quantifies the distance between two time series.

In this work, we use the proposal for multidimen-
sional DTW of [7]

Difference of covariances

The difference of covariances can be used to assess
how different the relationships between variables are
between two time series. It is computed as the aver-
age of the row-wise Frobenius norm for the covariance
difference matrix.



Difference of correlations

In the same way, the difference in Pearson’s corre-
lation can be used to assess how similar the relation-
ships between variables are between two time series. It
is computed as the average of the row-wise Frobenius
norm for the Pearson correlation difference matrix.

Difference of histograms

Finally, the difference of histograms can determine
how far the ranges of values are between two time series.

Synthesis

Whether each row is new or matches an original row
of the real data is checked and calculated from 0.0 to
1.0 (all rows are new) using [3].

Coverage

Whether the synthetic data cover the full range of
values of the real data is checked and calculated from
0.0 to 1.0 (full coverage) [3].

Boundaries

Whether the synthetic data respect the boundaries
of the real data is checked and calculated from 0.0 to
1.0 (all data respect the boundaries) [3].

III. Figures

We also present other visual measurements that can
be helpful in comparing and visually representing the
similarity between two time series. Notice that the fig-
ures presented are some examples that were generated
from some experiments to show the usefulness of these
techniques to make a visual comparison between mul-
tivariate time series.

T-distributed Stochastic Neighbour Embedding (t-SNE)

T-SNE is a tool for visualising high-dimensional data
sets in a 2D or 3D graphical representation proposed by
[9], allowing the creation of a single map that reveals
the structure of the data at many different scales. T-
SNE is a non-linear technique that aims to preserve the
local structure of the data.

An example of a generated t-SNE representation is
shown in 1.

Figure 1 shows noticeable differences between the
synthetic and original data.

Principal component analysis (PCA)

PCA is a linear dimensionality reduction technique
that aims to find the principal components of a data set
by computing the linear combinations of the original
characteristics that explain the most variance in the
data.

Therefore, PCA is better suited for datasets with
linear structure, whereas t-SNE is better suited for
datasets with nonlinear structure.

An example of a generated PCA representation is
shown in 2.

Figure 2 shows noticeable differences between the
synthetic and original data.

Fig. 1: Example t-SNE between synthetic and real data

Fig. 2: Example PCA computed by the framework

Dynamic Time Warping path

In addition to the numerical similarity measure, the
graphical representation of the DTW path of each col-
umn can be useful to better analyse the similarities or
differences between the original and synthetic columns.
Notice that there is no multivariate representation of
DTW paths, only column representations, as shown in
Figure 3.
Figure 3 shows that the patterns found in the syn-

thetic data (lower half) are quite similar to those pre-
sented in the original data (upper half).

Time Series plotting

We can use the proposed framework to directly plot
the ordinary graphical representation of the time series
in a 2D figure with the time represented on the x axis
and the data values on the y-axis for a) the complete
multivariate time series; and b) a per column plot.
Each generated figure plots both the original and the

synthetically generated data to easily obtain key in-
sights into the similarities or differences between them.
Figure 4 shows an example of a graphical represen-
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Fig. 3: Example DTW path between synthetic and real data

tation for the comparison of various columns between
the synthetic and original data (dotted). To this end,
the original and synthetic data are overlapped in the
same plot.
Figure 4 helps show that there is a very good fit of

netinand

Finally, we can compute and plot the differences be-
tween the values of each column grouped by periods of
time. For instance, the differences between the cpu us-
age every 5 minutes or every 30 minutes. These deltas
can be used as a means of comparison between synthetic
dataset samples and real data samples.
Figure 5 shows an example of the graphical represen-

tation of deltas of a synthetically generated sample and
five real data samples.

IV. Experiment design

A. Dataset

In this article we use the Alibaba 2018 machine us-
age trace, which contains records produced by a server
monitoring system of a production data centre for an
operation period of 8 days. Each monitoring record con-
tains the following information: a) timestamp; b) ma-
chine id; c) percentage of CPU usage for that ma-
chine; d) percentage of memory usage for that machine;
e) percentage of input network flow; f) percentage of
output network flow; and g) percentage of disk usage
for that machine. The monitoring system generates a
record every 10 seconds. As a pre-processing stage, we
grouped and averaged all the values by machine id. This
dataset can be obtained in 1.

B. Generative Adversarial Networks

Generative adversarial networks (GAN) can be used
to augment the data by training a generator that creates
new data similar to the original. These samples can be
added to the original data to increase the size of the
data set, so that we can reduce overfitting and increase
the diversity of the original data.

TimeGAN

In this article, we use TimeGAN [10], a GAN
model focused on the generation of time series datasets.
TimeGAN combines the unsupervised paradigm with
the control afforded by supervised training. The novel-
ties of TimeGAN include the proposal of an embedded

1https://github.com/alejandrofdez-us/
DataCenter-Traces-Datasets

TABLE I: Parameterisation of the two TimeGAN mod-
els employed.

Model RNN L H
Good GRU 3 8
Bad LSTM 4 16

space in which learning, generation, and discrimination
are performed. Thus, the original data is transformed
to the embedded space, and the generated data is trans-
formed (recovered) to the original space.

To this end, TimeGAN performs three steps: 1. Em-
bedder training, 2. Supervised training, 3. Joint GAN
training.

It is important to note that the effectiveness of GAN
models, such as TimeGAN, depends largely on the pa-
rameterisation of the model. As in many unsupervised
generative models, empirically evaluating the impact of
such parameters on complex multivariate time series is
not trivial. This use case is a perfect fit for the proposed
evaluation framework.

C. Parameterisation

In this work, we propose a multivariate time se-
ries evaluation framework as a tool to determine the
goodness of synthetically generated datasets. We use
TimeGAN trained with the Alibaba 2018 machine us-
age dataset to generate the synthetic datasets. In or-
der to illustrate how the proposed evaluation framework
helps in the analysis and comparison of the ability of
unsupervised ML models to produce realistic results, in
this Section we will compare two TimeGAN models as
an example. The aim is to check whether the proposed
evaluation framework can provide us with significant in-
formation to discriminate between good and bad results.
The hyperparameters of TimeGAN include:

• Batch size, fixed as 100 in both models;
• Training iterations, fixed as 1500 in both models;
• Sequence length, fixed as 8640 for both models. This
means that we will produce synthetic traces that repre-
sent one day of operating time;

• Type of RNN model employed RNN ;
• Number of layers L;
• Hidden dimensions H;

The Adam optimiser with a learning rate of 0.001
is employed for both models. The parameterisation of
each model is shown in Table I

https://github.com/alejandrofdez-us/DataCenter-Traces-Datasets
https://github.com/alejandrofdez-us/DataCenter-Traces-Datasets
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Fig. 4: A time series plot that overlaps synthetic data with real data.

Fig. 5: Figure that overlaps the 30-minute period deltas for synthetic data with five different real data samples to
check their similarity.

V. Results

We used the proposed framework to compare the
datasets produced by the models presented in Section
IV-C with the original Alibaba dataset and gather qual-
ity metrics.
The proposed tool provides the following set of results

for the most significant metrics presented in Section II:
a) one set of results for the multivariate analysis of

the time-series dataset; and b) one set of results for the
univariate analysis for each column in the dataset.
For the seek of clarity, in this section we present

an analysis of the results provided for the multivariate
analysis and only two of the columns of the dataset,
even though the results are available for all of the
columns. The selected results of this analysis are pre-
sented in Table II.
Regarding the multivariate analysis, the framework

provides insights about which model performed bet-
ter: the maximum mean discrepancy, Jensen-Shannon,
Kullback-Leiber and the Kolmogorov-Smirnov metrics
are much lower for the Good model.
According to the single-variable results for memory

usage, the results are clear: the Good model strongly
outperforms the Bad model. We can check that the
results are consistent with the behaviour presented in
Figure 6.
However, it can be noticed that other metrics, such as

the difference of covariances and Pearson correlation,
as well as the Dynamic Time Warping do not show good
results. Due to this, a key insight can be obtained: even
though the Good model outperforms the Bad model, the
patterns of the traces produced by the Good model don’t
fit well to the original dataset, not in a single-variable
analysis, but as a whole, so it may indicate the model is
not able to reproduce correlation between the different

variables in the trace.

Short- and long-term behaviour can also be anal-
ysed using the period deltas provided by the evaluation
framework. Figure 7 shows the short-term (five min-
utes) deltas for memory usage, as well as the long-term
deltas for disk usage. In this figure, it becomes evident
that the results provided by the metrics presented in Ta-
ble II are consistent with the patterns produced for both
good and bad models.

TABLE II: Results of the proposed time series evalu-
ation framework for the comparison of two synthetic
traces with the original trace.

Trace MMD DTW JS KL KS CC CP HI
Multivariate analysis results

Good 0.06 549.27 8.29 10.47 0.23 7866 1.16 1119
Bad 0.97 392.91 nan 15.32 0.64 7524 0.79 8139

Single variable analysis results: Memory usage
Good 0.01 237.92 0.08 0.05 0.09 N/A N/A 912
Bad 0.68 183.82 6.04 7.53 0.63 N/A N/A 7432

Single variable analysis results: Disk usage
Good 0.02 463.85 0.45 0.13 0.17 N/A N/A 1832
Bad 0.90 342.73 5.84 6.59 0.63 N/A N/A 8532

VI. Conclusions

In this paper, we presented a framework for the eval-
uation of multivariate time series which allowed us
to compare synthetically generated data centre traces
with the original traces and get valuable insights about
the behaviour of unsupervised ML models, such as
TimeGAN.

The analysis of the behaviour of complex multivariate
time series and the related patterns is not trivial, and
there is no single metric that can show the fitness of the
generated traces.



(a) Memory usage of good model

(b) Memory usage of bad model

Fig. 6: Comparison of memory usage between good and bad models.

To overcome such a limitation, the evaluation frame-
work provides a set of metrics that represent different
facets of the behaviour of the time series patterns. In
most of the cases, we propose that the tuple composed of
Dynamic Time Warping and Jensen-Shannon should be
used as the main metrics for the evaluation of patterns
and distances between time-series traces.
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(a) Short-term delta of memory usage in Good model.

(b) Short-term delta of memory usage in Bad model.

(c) Long-term delta of disk usage in Good model.

(d) Long-term delta of disk usage in Bad model.

Fig. 7: Comparison of short-term and long-term memory and disk usage between good and bad models.
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