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ABSTRACT

Atmospheric conditions, such as thunderstorms, are
significant factors that influence human activity. Harsh
weather may severely impact both daily life and pro-
fessional activities. Severe thunderstorms are a con-
siderable hazard – they can generate heavy rainfall,
high winds, large hail and tornadoes. Tracking of thun-
derstorms is necessary to gain situational awareness -
knowledge of present and future storm-related threats
and their corresponding significances. Thunderstorms
are weather phenomena associated with cumulonimbus
clouds. Those clouds are formed in deep, moist con-
vection and are composed of liquid and solid water
particles. Weather radars can detect those particles.
Cumulonimbus-related particle concentration areas are
represented in weather radar data as convective cells,
making that measurement technique useful for storm-
tracking applications. This paper proposes a new algo-
rithm for storm data tracking in the data fusion pro-
cess. The algorithm has been tested with real data from
the POLRAD weather radar network and upper-air ob-
servations. The efficiency of the proposed algorithm has
been justified in the empirical analysis. The algorithm
projections can help generate weather warnings due to
accurate forecasts of storm movement.

I. INTRODUCTION

A thunderstorm is a phenomenon related to a cumu-
lonimbus cloud. Cumulonimbus is a dense, vertically
developed cloud of water droplets and ice crystals. In
most cases, they also produce rain, snow and hail pre-
cipitation. All of these solid and liquid forms of water
particles can be detected by weather radar. As Cu-
mulonimbuses are very dense, they are represented in
weather radar data as high-concentration areas - con-
vective cells. Convective cells are very distinguishable.
Thus, they can be easily extracted as blobs. Current
thunderstorms’ positions can be estimated from blobs
set and then used for target tracking applications [13].

Thunderstorms are one of the major weather-related
hazards in Europe[12]. During the stormy days, proper,
timely and complete assessments of storm positions,
threats they pose, and threats–related significance are

defined as Situational Awareness (S-A) conditions. Ob-
ject tracking is locating and monitoring specific ob-
jects and their behaviour in sequential images. This
paradigm is used successfully in biology and medicine
[cell].

This paper uses this paradigm to define a new Con-
vective Cells (CC) tracking algorithm for storm track-
ing. Our CC algorithm is a class of data fusion meth-
ods designed to solve storm tracking problems under
S-A conditions[5].

The data for such monitoring is gathered from the
observation (in our case, upper-air observations) and
several instruments, such as weather radars. Usually,
a weather radar covers a vast area. Thus, multiple
convective cells can be detected, and the Multi-Target
Tracking (MTT) technique can be applied to identify
each cell and timely associate its position [10].

At least two timely separated measures are required
to assess convective cell movement and different posi-
tions, namely movement model and initial motion vec-
tors. Initial motion vectors can be generated in the
sounding process, i.e. upper-air observations performed
by radiosondes. Radiosondes measure pressure, height,
temperature, dew point, wind direction and velocity.
Such measurement is performed by a radiosonde con-
nected by a string to a weather balloon and then re-
leased into the air. The instrument gathers data char-
acterizing the vertical profile of the Earth’s atmosphere
during its ascent.

The rest of the paper is organized as follows. Sec. II
defines the thunderstorm tracking problem and briefly
surveys the possible methods described for solving such
a problem. We define the connective cells tracking al-
gorithm in Sec. III. The algorithm has been empirically
evaluated in Sec. IV. We concluded the paper in Sec. V.

II. THUNDERSTORM TRACKING
PROBLEM

Thunderstorms are organized disturbances in the
Earth’s atmosphere produced by cumulonimbus clouds
that are always accompanied by lightning and thun-
der[9]. Cumulonimbus clouds are composed of both
solid and liquid water particles. Moreover, they are
very dense and vertically developed. Cumulonimbuses
are formed during deep, moist convection in unstable
atmospheres[3]. They can cause hazards such as ex-
cessive precipitation, large hail, severe wind gusts and
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occasionally tornadoes. To avoid the negative ravages
of such hazards, there is a need to gain proper situa-
tional awareness [11].

Situational awareness (S–A) is ”the perception of en-
tities in the environment, comprehension of their mean-
ing, and projection of their status in the near future”.
In this paper, we define S–A as the state of properly
understanding thunderstorms, their relationships, their
present and future threats and their significance. Nu-
merical Weather Prediction (NWP) models can predict
thunderstorms and related hazards. However, NWP
models encounter significant difficulties in predicting
both the correct location and expected intensity of
thunderstorms as they depend on small-scale factors
(mesoscale or smaller). Theoretically, NWP models of
the denser grids and smaller scales could be used to
acquire higher-quality results. Still, they are vulnera-
ble to micro-physics schemes, grid resolution and initial
conditions [4].

Another approach, storm nowcasting, could over-
come these problems [14]. Nowcasting is a forecasting
technique based on a very short period of up to 6 hours.
This method utilizes the latest data measured by many
sensors, and it is more suitable for small-scale event
forecasting with reasonable accuracy. Cumulonimbus
clouds, as they are very dense and vertically devel-
oped, are also composed of solid and liquid water parti-
cles. Thus, they can be represented in radar imagery as
convective cells[1]. Storm nowcasting techniques often
are based on treating a time series of historical radar
images as the input and prediction of the radar im-
age as the output because convection cells can be ex-
tracted from that data [6]. Extrapolation techniques
commonly translate (meteorologically: advect) convec-
tion cells to predict their positions and properly asso-
ciate after prediction. Generally, extrapolation tech-
niques are connected with the storm tracking process -
a nowcasting technique of storm’s track assignment and
prediction. A storm track is a time series of storm’s
positions. Storm tracking techniques can answer the
question of where and when the storm will move in the
future. Thus it can facilitate the gaining of proper sit-
uational awareness leading to avoidance of some of the
negative consequences of the storm’s presence.

A. RELATED WORK

In [8], authors proposed The Storm Cell Identifica-
tion and Tracking Algorithm designed for WSR-88D
Radar. The algorithm uses 3D-volumetric data. The
default motion vector is defined either as user input
or either as an average of motion vectors delivered by
the previous scan. Latter is used as an initial motion
vector if no average storm motion vectors are delivered
from the previous scan. Authors suggested that mean
wind between 0-6km above the ground layer should be
used to deliver the initial SMV. Time association is the
match with the smallest distance to the previous detec-
tion. The match distance has to have a value within
a specific threshold. The updated storm motion vec-
tor is calculated as using a linear least squares fit that

incorporates the current position and up to the 10 pre-
vious scans. The method has disadvantages: time as-
sociation flexibility is limited by the threshold. The
algorithm does not use automatic wind velocity and
direction data gathering and thus requires user input
to set accurate initial motion vectors. Moreover, the
calculation of updated SMV’s does not take into ac-
count acceleration.
TITAN algorithm [2] utilizes the Hungarian method
for the solution of optimal assignment problems. TI-
TAN is based on the following assumptions: the correct
set of matches incorporates shorter paths rather than
longer, the characters of the matched cells are simi-
lar, and the upper bound of distance is defined rela-
tive to the maximum expected velocity. The match-
ing rule is based on overlapping consecutive entity ar-
eas. The authors also discussed the problem of merg-
ing and splitting the complex storm’s systems. The
idea of solving the merging/splitting problem is based
on track extension/termination. TITAN does not accu-
rately track fast-moving storm systems. Single thresh-
old identification scheme limit tracking of small-scale
thunderstorms. In [7], authors proposed another ap-
proach. THOR uses the gating function incorporating
a dynamic search radius, which depends on storm speed
and length. THOR is designed as an offline algorithm
and is unsuitable for nowcasting.
TITAN and SCIT were designed for single radar ap-
plications. THOR utilize multi-sensor data. However
offline nature of the algorithm makes it unsuitable for
real-time processing. To overcome the limitations of the
aforementioned solutions new approach is necessary.

III. CONNECTIVE CELLS TRACKING
ALGORITHM

Weather radar data is available online, and remote
repositories distribute it. Usually, data is available as
images showing a horizontal cross-section of a three-
dimensional radar field of view in a standard Cartesian
coordinate system. The image usually has a timestamp
to identify when the data was gathered. Each pixel
of the radar image has a colour corresponding to the
reflectivity value. An example radar scan bitmap is
shown in Fig. 1.

Information about colour and corresponding reflec-
tivity values is usually available as a radar scale. To
perform the tracking process, the bitmap must be
transformed into a reflectivity matrix using a scale, and
all non-convective pixels’ reflectivity values must be set
to 0. Non-convective pixels can be identified by corre-
sponding reflectivity lower than threshold τ < 44dBz.
For given radar image taken at time ti of width w
and height h, a Reflectivity Matrix Rti with values
rtiyx

≥ 44dbZ x ∈ {1, . . . , w}, y ∈ {1, . . . , h} is gener-
ated as follows:



Fig. 1. Column max composite image taken at 18:00 UTC of
July 14th, 2021

Rti =


rti,11 rti,12 . . . rti,1w
rti,21 rti,22 . . . rti,2w
rti,31 rti,32 . . . rti,3w
...

...
. . .

...
rti,h1 rti,h2 . . . rti,hw

 (1)

The matrix Rti defined by Eq.1 is then used for the
definition of a set Bti of ni blobs in the following way:

Bti = {bti,1, . . . , bti,ni
} (2)

Let us define Blobs in the set Bti as image regions
with approximate constant properties, such as bright-
ness, colour, contrast etc. In most cases, convective
cells are depicted as well-defined, continuous areas of
relatively high reflectivity (≥ 44dBz) surrounded by
weak ones. Therefore, the blob bti,k k = {1, . . . , ni},
which is a set ofmk adjacent non-zero reflectivity values
indexes pairs, can be formally defined in the following
way:

bti,k = {(xti,k,1, yti,k,1), (xti,k,2, yti,k,2), . . . ,
(xti,k,mk

, yti,k,mk
)}, (3)

where: k ∈ 1, . . . , ni

We defined Adjacency rule for ensuring the conti-
nuity of the considered regions. We say that a pair
u = (xu, yu) is adjacent ∼ to pair v = (xv, yv), if the

following condition holds:

u ∼ v ⇔


xu = xv − 1 ∧ yu = yv
xu = xv + 1 ∧ yu = yv
xu = xv ∧ yu = yv − 1
xu = xv ∧ yu = yv + 1

(4)

All blobs with less than 7 pairs are removed from the
set Bti . From uti remaining blobs in the set set Bti , a
new set of uti Measurements Mti = {mti,1, . . . ,mti,uti

}
is created. A Measurement mti,v v ∈ {1, . . . , uti} is
defined as follows:

mti,v = {(µxti,v
, σxti,v

), (µyti,v
, σyti,v

)} (5)

µxti,v
=

1

mv
Σmv

q=1xti,v,q, (6)

σxti,v
=

√
1

mv
Σmv

q=1(xti,v,q − µxti,v
)2, (7)

µyti,v
=

1

mv
Σmv

q=1yti,v,q, (8)

and

σyti,v
=

√
1

mv
Σmv

q=1(yti,v,q − µyti,v
)2. (9)

Eti = {e1, . . . , eqti} is a multi-set of qti entities
tracked at time ti. Each entity ep : p ∈ {1, . . . , qti}
is a set of lti previously associated measures and their
timestamps (prior to time ti):

ep = ((mp,1, tp,1), . . . , (mp,l, tp,lti )) (10)

For measurement set Mti :

Mti = {mti,1, . . . ,mti,u} (11)

If Eti = ∅:

Eti+1
= {((mti,1, ti)), . . . , ((mti,u, ti))} (12)

As each entity, ep is a set of measures and times-
tamps associated before time ti predicted motion vector
vp,ti = [vxp,ti

,vyp,ti
] for time ti is delivered by motion

model function:

vp,ti = smv(ep, ti) (13)

The predicted entity ep position is defined as:

lp,ti = [µxtp,lti
,p, µytp,lti

,p] + smv(ep, ti) (14)

where [µxtp,lti
,p, µytp,lti

,p] is last known entity ep posi-

tion prior to ti. To simplify now we consider lp,ti from
eq. 14 as:

lp,ti = [µxp,ti
, µyp,ti

] (15)

The predicted position has corresponding x and y de-
viations:

σxp,ti
= σxtp,lti

,p (16)



σyp,ti
= σytp,lti

,p (17)

Thus predicted positions distributions can be described
as normal distributions:

Nxp,ti
(µxp,ti

, σxp,ti
) (18)

Nyp,ti
(µyp,ti

, σyp,ti
) (19)

where N(µ, σ) denotes normal distribution with mean
µ and standard deviation σ. For each of that distribu-
tions, the entity ep at time ti, a marginal probability
density function is delivered:

gxp,ti
(x) =

1

σxp,ti

√
(2π)

exp

(−(x− µxp,ti
)2

2σxp,ti

2

)
(20)

gyp,ti
(y) =

1

σyp,ti

√
(2π)

exp

(−(y − µyp,ti
)2

2σyp,ti

2

)
(21)

The entity ep joint probability density function at time
ti is defined:

gp,ti(x, y) = gxp,ti
(x) · gyp,ti

(y) (22)

To perform association for each entity ep :

gp,ti(µxti,v
, µyti,v

) (23)

has to be calculated for each measurement mtiv. An
association set Ati of j = uti × qti i delivered:

Ati = {ati,1, . . . , ati,j} (24)

Each association ati,o i ∈ {1, . . . , j} is a triple:

ati,o = (ep,mti,v, gp,ti(µxti,v
, µyti,v

)) (25)

All elements ati,o with gp,ti(µxti,v
, µyti,v

) < 0.05 are
removed. Then Ati is sorted in descending order of
gp,ti(µxti,v

, µyti,v
).

As the first step of calculating global marginal prob-
ability density, a set of all associations with the entity
of the first association is created.

Bti = {bti,1, . . . , bti,w} : (26)

For each chosen association bti,q : q ∈ {1, . . . , w}
of Bti a separate set of associations without both entity
and measurement of chosen association Cti,q is created
and organized:

Cti,q = {cti,q,1, . . . , cti,q,1} (27)

Then recursively, the first step of calculating global
marginal probability density is repeated for each Cti,q

assumed as Ati . At point when |Cti,q| = 1 returned
value is gp,ti(µxti,v

, µyti,v
) of remaining in Cti,q associ-

ation. At any shallower step of recursion |Cti,q| > 1
returned value is maximum of gp,ti(µxti,v

, µyti,v
) of en-

tities of associations in current Bti multiplied by return
from deeper step. The algorithm computes all possible
joint probabilities association combinations. The global
maximum corresponds to the final global association.
All measurements without globally chosen associations
are assigned to new entities. Measurements with the
globally chosen association are given to their selected
entities.

A. STORM MOTION VECTOR

As each entity ep : p ∈ {1, . . . , qti} is a set of lti
previously associated measures and their timestamps
(prior to time ti):

ep = ((mp,1, tp,1), . . . , (mp,l, tp,lti )) (28)

For k ∈ {1, . . . , lti} k-th measurement of entity ep can
be denoted as:

mp,k = {(µxp,k
, σxp,k

), (µyp,k
, σyp,k

)} (29)

Time at which measurement was taken respectively as
tp,k. As velocity can be understood as a distance trav-
elled over time, instantaneous entity ep velocity compo-
nents at time tpk

can be denoted as difference quotients:

µxp,k
− µxp,k−1

tp,k − tp,k−1
(30)

µyp,k
− µyp,k−1

tp,k − tp,k−1
(31)

∀k ∈ {2, . . . , lti}. We use the mean of velocity quotients
to assess predicted storm motion smv(ep, ti) to pre-
serve the stability of the track. Similarly, we calculate
accelerations (as difference quotients of velocity) to in-
clude changes in the trajectory of convection cells. The
mean velocity vector is multiplied by the time difference
between the prediction time and the last measurement
timestamp. Moreover, to maintain efficiency maximum
history parameter is introduced to motion calculation
to limit the number of required measurements.
For initial vectors (when lti = 1), we used mean wind

measures gathered by radiosondes during upper-air ob-
servations. Mean vectors are calculated for each upper-
air station and then interpolated by inverse distance
weighting for given (µxp,k

, µyp,k
).

B. LIGHTNING DETECTION

Thunderstorm-related convection cells are accompa-
nied by lightning; thus, we use lightning detection data
to distinguish thunderstorm cells. Lightning detection
data are available as coordinates couples. They can be
associated in the same way as measurements. When
at least one lightning is associated with entity ep, the
entity ep is marked as a thunderstorm.

IV. EXPERIMENTS

In the empirical evaluation of the proposed algo-
rithm, we used real data gathered by the POLRAD
weather radar network1, real soundings available at the
Wyoming University repository 2 and real detection
data from the Blitzortung lightning detection network3.
Radar data was in the form of a COLUMNMAX reflec-
tivity product. Three memorable severe weather situ-
ations were selected to evaluate our algorithm:
• 24.06.2021 – Two tornadic supercells:

1https://pl.wikipedia.org/wiki/POLRAD
2https://weather.uwyo.edu/upperair/sounding.html
3https://www.blitzortung.org/pl/live_lightning_maps.

php



1. in Hodonin, Czech Republic,
2. near Nowy Sacz, Poland,
3. record breaking hail of 13.5 cm in diameter
recorded in Tomaszow Mazowiecki),
• 14.07.2021 – severe wind gusts generated by a su-
percell near Chrzanow, Poland),
• 20.08.2022 –flash flood near Czarny Dunajec,
Poland.
42 representative entities were selected as the test set

to cover a variety of kinematic characteristics of the at-
mosphere (wind direction and speed distribution). The
longest track in the set, shown in Fig. 2, comprises 28
associations representing the 4,5 hours motion of long-
lived severe supercell. The average length of the track
was 6.7, corresponding to one hour lifetime. Duplicates
of track lengths are caused by the analysis of multiple
scenarios in which similar track lengths can generate
different errors. This error variety is caused by storm
shape and movement and strongly depends on the syn-
optic situation (wind dynamics, storms’ rapid growth
and decay caused by thermodynamic conditions). Di-
rect visual comparison between predicted and actual
movement based on examples may be difficult. Visual
representation, in that case, is illegible.

Fig. 2. Longest track (white) at 19:50 UTC recorded on July
14th, 2021. The track was associated with a supercell thunder-
storm that produced severe wind gusts in Chrzanow, Poland

The mean error of the predicted storm position was
equal to 2.58. The maximum error recorded was 7.31.
The error was defined as the difference between the pre-
dicted storm position and the associated measurement
at the next time point. The relation between track
length and mean error is shown in Fig. 3.

Preliminary results show that mean error depends on
track length. The longer track has more associations.
Thus, blob merging/splitting occurrence influencing er-
ror is more likely. Fig. 3 also shows that a mean error
can vary for relatively equal track length. Individual
track analysis shows that error is more significant in
situations with many convective cells in a small general
area. The error also depends on the quality of initial
motion vectors delivered from soundings. Additional
research, including the involvement of upper air pro-

Fig. 3. Mean error versus track length with trend line

files from classical NWP models to produce initial mo-
tion vectors, is advisable to lower errors. The tracking
process is very dependent on the quality of the blob
extraction algorithm. More accurate blob extraction
algorithms can be utilized to improve tracking results.
Individual track analysis shows that High-quality re-
sults were delivered for isolated cells. Two fascinating
examples are shown below. On 24.06.2021, a severe su-
percell produced a tornado near Breclav and Hodonin
cities in the Czech Republic. The tornado intensity was
estimated at F3/F4 on the Fujita scale, killing 6 peo-
ple and injuring 200. The algorithm produced a very
accurate projection of the storm movement 40 minutes
before the tornado entered Hodonin. The prediction is
shown in Fig. 4.

Fig. 4. Track of Hodonin supercell at 16:50 UTC. Continuous
thick lines show past movement. Dashed lines depict predicted
movement. The red point shows the current position. The clus-
ter in the upper left corner is a new cell; thus, it has no past
movement.

The second example is a supercell near Chrzanow,
Poland, on July 14th, 2021. An isolated storm cell was
born around 14:20 UTC on the Slovakian side of the



Slovakian-Polish border. At 14:50 UTC, the algorithm
projected that the storm cell (now organized as a super-
cell) would impact Chrzanow, Poland. At 15:10 UTC
local fire department was informed about massive de-
struction related to severe wind gusts. The supercell
storm track is shown in Figure 5

Fig. 5. Track of Chrzanow supercell at 14:50 UTC. Continuous
thick lines show past movement. Dashed lines depict predicted
movement. The red point shows the current position.

In the situations mentioned above, the algorithm ac-
curately assessed storm motion. That assessment could
issue a proper warning for people in the influenced area.
Another conclusion is related to initial storm motion
vector definitions from the literature. Tracking experi-
ments during our research showed that the upper height
limit for mean wind SMV should depend on thermody-
namic equilibrium height as the 0-6km definition is not
suitable for winter/early spring storms. In that case,
storm tops are located at lower altitudes.

V. CONCLUSIONS

The main topic of this work was the definition and
preliminary analysis of the effectiveness of the connec-
tive cells algorithm for storm tracking based on obser-
vation and measurement data using weather radioson-
des. The algorithm belongs to the class of data fusion
methods and conventions.
The empirical results of a simple experimental anal-

ysis indicate that the proposed approach is promising.
The algorithm produced good results, especially for
well-defined, severe thunderstorms. The algorithm pro-
jections can help deliver severe weather warnings due
to accurate predictions of storm movement. Further
research will incorporate classical NWP model results
to provide accurate initial motion vectors and test ad-
ditional blob extraction methods.
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