
Anomaly Detection in TCP/IP Networks
Joanna Ko lodziej

Department of Computer Science
Cracow University of Technology

ul. Warszawska 24, 31-155 Kraków, Poland
Email: joanna.kolodziej@pk.edu.pl

Mateusz Krzysztoń
Research and Academic Computer Network

ul. Kolska 12, 01-045 Warsaw, Poland
Email: mateuszkr@nask.pl

Pawe l Szynkiewicz
Research and Academic Computer Network

ul. Kolska 12, 01-045 Warsaw, Poland
Email: pawel.szynkiewicz@nask.pl

ABSTRACT

Intrusion Detection Systems (IDS) should be capa-
ble of quickly detecting attacks and network traffic
anomalies to reduce the damage to the network com-
ponents. They may efficiently detect threats based on
prior knowledge of attack characteristics and the po-
tential threat impact (’known attacks’). However, IDS
cannot recognise threats, and attacks (’unknown at-
tacks’) usually occur when using brand-new technolo-
gies for system damage.

This paper presents two security services – Net
Anomaly Detector (NAD) and a signature-based PGA
Filter for detecting attacks and anomalies in TCP/IP
networks. Both services are modules of the cloud-based
GUARD platform developed in the H2020 GUARD
project. Such a platform was the main component of
the simulation environment in the work presented in
this paper. The provided experiments show that both
modules achieved satisfactory results in detecting an
unknown type of DoS attacks and signatures of DDoS
attacks.

KEYWORDS

Anomaly Detection; Machine Learning; Cybersecu-
rity; TCP/IP

I. Introduction

The rapid development of research, technology and
information tools for communication and control sys-
tems, sensor networks and the processing of enormous
data sets has contributed to a real revolution in IT
support to manage real-life engineering and smart sys-
tems. Despite the benefits of implementing numerous
Internet-based models to support engineering systems,
such systems must usually cope with the secure process-
ing of streaming time-series data induced by connected
real-time data sources. Examples of streaming data
sources include sensors in transportation systems, e-
health systems, smart infrastructures, intelligent cars,
monitoring systems, and many others. The collected
data can be processed locally using the resources and IT
infrastructure of the institution (customer) directly re-
sponsible for local data management. The data, meta-
data, and initial analysis results are often sent to ex-

ternal systems (e.g., cloud computing) that can ana-
lyze the data more closely and send alerts on potential
threats and anomalies.

This paper focuses on the attacks, threats and
anomaly detection in the TCP/IP networks. We
present the main concept of two security-service com-
ponents of the GUARD platform developed in the
H2020 GUARD project 1, namely Net Anomaly De-
tector (NAD) and PGA-Filter. GUARD platform was
used as a core of the simulation environment used in the
research presented in the paper. The overall GUARD
architecture is a typical structure of the Security Events
and Information Management (SIEM) system2. It was
designed in a service-oriented way and takes into ac-
count the presence of heterogeneous technical and ad-
ministrative domains.

Successful signature-based detection of DDoS attacks
requires a source of high-quality, up-to-date network
traffic signatures. We developed the Packet Gener-
ation Algorithm (PGA) Filter. PGA is deployed as
an agent in the GUARD environment at the edge of
the protected network, and it translates provided sig-
natures into packet filtering rules. The rules are then
applied to the client’s network configuration concerning
incoming traffic and hardening the network ingress se-
curity infrastructure. The signatures can be regularly
updated based on the information obtained from the
signature generator through the signature share service.
We used PGA Filter as a supporting agent in detecting
the DDoS signatures in the simulated TCP/IP traffic.

Detection of unknown attacks is challenging due to
the lack of exemplary attack vectors. However, un-
known attacks are a significant danger for systems due
to a lack of tools for protecting systems against them.
The most widely used approach for malicious behaviour
of the monitored system is detecting anomalies. The
developed NAD module records regular traffic in the
system and creates a set of models of regular traffic
using Machine Learning (ML) algorithms. NAD se-
lects the optimal model from that set based on the
given criteria or combines models with one of the pro-
posed strategies (i.e. ensemble model). Such an op-

1https://guard-project.eu/
2https://www.ibm.com/topics/siem

Communications of the ECMS, Volume 37, Issue 1,
Proceedings, ©ECMS Enrico Vicario, Romeo Bandinelli,
Virginia Fani, Michele Mastroianni (Editors) 2023
ISBN: 978-3-937436-80-7/978-3-937436-79-1 (CD) ISSN 2522-2414

timal model is then used to detect anomalies in the
simulated network traffic. NAD achieved satisfactory
results in detecting an unknown type of DoS attack.
The experiments were carried out on the CIC-IDS2017
dataset3.

The rest of the paper is organized as follows. In
Sec. II, the backgrounds of known and unknown at-
tacks and anomalies are presented. GUARD project
and platform are briefly presented in Sec. III. Sec. IV
and Sec. V present the concepts of two GUARD mod-
ules: NAD and PGA Filter, which were experimen-
tally evaluated in Sec. VI. The paper is summarized in
Sec. VII.

II. Detection of anomalies in ICT systems

These days, it’s hard to imagine an intelligent system
without IT support. However, the use of such support
carries the risk of numerous anomalies. The implemen-
tation of IT tools is exposed to hacking attacks, which
can result in great difficulties in managing the intelli-
gent system and be dangerous for its users.

Anomalies in ICT systems are monitored by dedi-
cated software and can have various causes. They can
result from failures, overloading or ineffective manage-
ment of the specific infrastructure associated with these
systems. The occurrence of anomalies can be the re-
sult of external attacks on networks and information
systems.

The classification of threats (attacks) is usually based
on the classification of the threat techniques, recogni-
tion of the attack’s type (known - recognized or un-
known), and threat impact [13]. This paper focuses
on the two attack categories: ’known’ and ’unknown’
attacks.

A. Signature-based detection methods of ’known’ at-
tacks

Most methodologies for detecting known threats are
signature-based (SB) techniques. Such methods mainly
aim to compare suspicious payloads with signatures of
specific known attacks. These signatures can corre-
spond to data types, such as byte sequences in network
traffic, known malicious instruction sequences used by
malware, etc. Signature schemes assume that patterns
can define malware.

Despite the popularity of signature-based methods,
there are several significant drawbacks to this approach:

• Vulnerability to evasion – signature patterns
(bytes) from known attacks are – as the name implies –
universally known. The use of obfuscation techniques
or polymorphic methods [14], popular in malware, al-
lows known signatures to be dropped. In the case
of network attacks or exploits, bugs or vulnerabilities
found in software are exploited. Specific application
protocols generally limit the scope of such attacks.
• Zero–day attacks – signature analysis-based attack
detection methods cannot effectively detect polymor-
phic malware. This means that SD does not provide

3https://www.unb.ca/cic/datasets/ids-2017.html

zero-day protection. Signature-based detectors use dif-
ferent signatures for each malware variant. As a result,
the volume of the signature database is generally very
large, and when new signature variants are generated
– it grows exponentially.

Signatures can be generated manually by experts. In
this case, the experts must analyze the attack and iden-
tify the invariant fragments in the involved flows, us-
ing their knowledge of the attacked application and the
exploited vulnerability. They also construct a signa-
ture that fully identifies the threat thanks to their de-
tailed knowledge. Such signature generation is a time-
consuming process. Several provided experiments indi-
cate that during signature generation, more than 90%
vulnerable systems can be infected at that time. In
current anomaly detection systems, signatures are gen-
erated automatically using dedicated IT tools. These
methods search for common features of suspicious flows
not seen in regular, benign traffic. Several systems for
automatic generation of signatures of zero–day poly-
morphic worms have been developed: Autograph [6],
Polygraph [11], Nebula [20], Hamsa [22], Lisabeth [5].
Most of them use relatively simple (computationally
inexpensive) heuristic approaches. Another method is
defined in [15], where the generation of multi-set signa-
tures is formulated as an optimization problem. A spe-
cialized version of the genetic algorithm (GA) is used
to solve it.

B. Detection methods of unknown threats and attacks

Unknown threats and attacks are not recognized
by signature-based methods based on the accumulated
knowledge of attacks. One possible reason is that the
attacker may use new methods or technologies. ’Un-
known threats’ are referred to as anomalies. The fol-
lowing types of anomalies can indicate malicious system
behaviour [21]:

• Point anomaly is the simplest form of anomaly and
denotes an anomalous single event (outlier). It can be
caused by defining a strange (unexpected) login vari-
able or IP address.
• Contextual anomaly is an event anomalous in a
certain context but may be normal in another. Such
an anomaly occurs, for example, when an employee logs
into the system outside of working hours. Such an event
would not be classified as an anomaly during normal
working hours.
• Collective/frequency anomaly is usually charac-
terized by the anomalous frequency of single normal
events. This can be a database dump in computer net-
works, which SQL can cause–injection.
• Sequential anomaly represents an anomalous se-
quence of events classified as normal. An anomalous
sequence can be caused in a data communications net-
work, for example, by violating the access chain.

The anomaly detection problem in distributed ICT
systems can be solved through the analysis of data and
information flow monitoring results in these systems.
Anomaly detection methods must adapt to system ar-
chitecture and configuration changes and analyze large

amounts of data and information transmitted and gen-
erated by devices integrated with the computer system.

Machine Learning (ML) techniques successfully de-
tect unknown threats, attacks and anomalies. The fol-
lowing popular ML and statistical methods are com-
monly used in intelligent anomaly detection systems:
Artificial Neural Networks (ANN) [10], Bayesian Net-
works [7], Decision Trees [16], Hidden Markov Models
(HMM) [12] and Support Vector Machines (SVM) [9].

III. GUARD platform

The main goal of the GUARD project was to de-
velop and implement a programmable platform that
could mediate between monitoring and inspection tasks
in digital services and algorithms for detecting anoma-
lies in those systems.

The GUARD framework is conceived as a new
paradigm for implementing detection and analytics pro-
cesses for digital service chains4. Such chain can be
composed of the following components:
• a platform that orchestrates security capabilities by
discovering, configuring and connecting them into se-
curity analytic pipelines (SAPs);
• a set of digital services implemented using multi-
agent systems;
• detection and analytics services for discovering at-
tacks and anomalies throughout the service chain.

Fig. 1 presents the GUARD software architectural
model. We used this platform as a core of the simula-
tion environment in the research presented in this pa-
per. We developed two security service modules, Net
Anomaly Detector and PGA Filter. The prototypes
of those modules are presented as Algo1 and Security
Agent1 components in the GUARD model presented in
Fig. 1.

Kafka

LogstashElastic

Search

API #1

Time

Series

Context Broker

Manager

GUARD Platform Digital Resource

Kubernetes

API #1

Algo

#1

Security

Agent

#1

Security

Agent

#12

Security

Agent

#n

Algo

#2

Algo

#n

...

...

API #2

API #2Security

Controller
Policies Models

API #3

GUARD

Dashboard
Pipelines

API #3

(control)

(context)

S
e

c
u

ri
ty

 C
a

p
a

b
ili

ti
e

s

Fig. 1. GUARD software architecture model.

IV. Net Anomaly Detector (NAD)

Net Anomaly Detector (NAD) was designed as a
highly modular security service component of the
GUARD platform. The architectural model of NAD
is presented in Fig. 2.

The core component of NAD is the Model Generator
(MG). The input data for MG are feature vectors of
observed network traffic represented numeric vectors.
Examples of such samples are the flow in TCP/IP or
characteristic of the traffic recorded in a time window.
The MG module automatically generates the anoma-
lies detector, based on the observed, benign traffic and

4https://jitcomputing.wordpress.com/
digital-service-chains/

Fig. 2. The NAD modular architecture. Two types of networks:
LoRa [4] and TCP/IP are specified, but the approach is easily
extendable for other types of traffic.

emulation techniques. In the MG a library, the Feature
Selection (FS) and One-Class Classification (OCC) al-
gorithms are available. For each possible combination
of FS and OCC, an optimal model for anomaly de-
tection is built with automatic hyperparameters opti-
mization (e.g. using Tree-structured Parzen Estimator
strategy [2]) and model selection techniques. The re-
sult is several anomaly detectors. Finally, the ensem-
ble strategies submodule combines multiple models into
one to increase detection reliability.

The optimal model generated by the MG module
analyses traffic in the monitored network after process-
ing the traffic data by the Feature Extractor, respon-
sible for generating features describing network traf-
fic. Feature extractor in NAD is based on versatile
method [23]. The main idea of that method is to gen-
erate as many features as possible using simple statis-
tical measures as aggregation functions. The following
aggregation functions are implemented in NAD:

• mean, minimal and maximal values,
• range (difference between the maximal and minimal
values),
• sum of squared values (mean power),
• standard deviation,
• skewness,
• kurtosis,
• the 5th central moment,
• maximal difference between two consecutive mea-

surements,
• autocorrelation,
• count of the given value (e.g. TCP in the case pro-
tocol field).

Each type of network can describe each message by sev-
eral attributes. For example, in the LoRa network, each
message has attributes such as RSSI (Received Signal
Strength Indication), SNR (Signal-to-Noise Ratio) or
payload length. The values of these attributes can be
aggregated with the above functions for all messages
within a given time window to create a feature vector
related to that window.

The easiest verification method of the effectiveness
of NAD is to run it on normal traffic data and data
infected by the Attack emulator embedded in NAD.
Such an emulator contains a library of attacks specific
to the given type of network. Each attack with different
parameters (configurations) is saved in the library as its
new element. In this way, the library can be constantly
enriched with new data and expand the capabilities of
the emulator. Extending the attack list increases the
genericity of the verification data set. Thus the quality
of the detection model in the unknown attack detection
task.

V. PGA Filter Module

PGA Filter, developed as one of GUARD’s secu-
rity modules, is a self-contained intrusion detection
system (IDS) that employs botnet fingerprinting tech-
niques [1] to target distributed denial-of-service attacks
(DDoS). It is a novel approach to signature-based de-
tection of botnet-originating cyberattacks based on au-
tomated packet spoofing with packet generation algo-
rithms (PGA) [8].

Our contribution is a complete ecosystem, which in-
cludes the definition of a new signature paradigm, the
development of a signature generation process, and the
implementation of software able to translate signatures
into packet filtering rules to apply them to network
traffic in a scalable manner.

PGA signatures describe patterns observed in the
headers of packets generated by automated tools or
scripts that are a part of botnet software. The pro-
cedure behind packet generation, also known as the
packet generation algorithm (PGA), has distinct char-
acteristics that can be observed in the packet header.
Because PGAs are attack-specific and typically botnet-
specific, they can be used to identify attacks and attack-
ers (fingerprinting). As such, botnet attacks generated
with PGA usually include fixed patterns in their mali-
cious packets. Patterns can be identified by analysing
single or multiple bytes of particular protocol fields in
the packet header (e.g. TCP sequence number or IP
destination address) that are deterministically depen-
dent. A simple example of a pattern is the equality of
the destination IP address and TCP sequence number.
The pattern is often observed during a port scanning
attack, where the value of the IP destination address is
reused to speed up the packet creation process.

Extracting PGA signatures involves reverse engineer-

ing of the packet generation algorithm, which requires
many suspicious traffic data. In our case, the data is
provided by NASK’s Network Telescope5 (also a black
hole, Internet sink, darkspace, darknet), which is an un-
used space of IP addresses used exclusively for passive
monitoring [3]. Unused IP addresses should receive no
legitimate network traffic. Therefore, all arriving unso-
licited and anomalous traffic is, by definition, classified
as suspicious. Network Telescope provides a view of
a wide range of events taking place in a global net-
work, including backscatter from denial-of-service at-
tacks. Backscatter is an accumulation of victims’ re-
sponses to DoS packets with a spoofed source IP ad-
dress, which falls within the Network Telescope address
space. Closely examining backscatter packets can re-
veal certain characteristics and similarities between the
header values.

To obtain PGA signatures, packets sharing the same
source and close arrival times are grouped together.
Next, the possible fields of the original DoS attack pack-
age are partially recreated. This can involve multiple
potential scenarios, depending on the attack type as-
sumed. In case of a TCP SYN Flood attack the source
and destination values for IP address and TCP port
are swapped, and the TCP sequence number is set to
the decremented TCP acknowledgement number of a
backscatter packet. Finally, after all the previous steps,
the most challenging aspect of this process is deter-
mining whether recreated packets share dependencies
between protocol field values that follow the same pat-
tern. Indeed, if applying a set of specific bitwise oper-
ations to packet headers reveals sequences of repeating
bits, it gives the premise that packets were created with
the same packet generation algorithm (PGA). More de-
tailed descriptions of the process can be found in pub-
lications [19, 18]. An example PGA signature in a de-
scriptive format is presented below.

“The first two bytes (0, 1) of the Source IP Address
are equal to the first two bytes of TCP Sequence

Number and the last two bytes (2, 3) of Destination
IP Address are equal to the last two bytes of TCP

Sequence Number.”

Alternative representation in a less verbose, proposed
PGA syntax:

ip-src:0:1 is tcp-seq:0:1 and

ip-dst:2:3 is tcp-seq:2:3

Implementing mechanisms to interpret PGA signa-
tures and translate them into system-compatible rules
that could be deployed in clients’ network security
infrastructure proved challenging. Well-known signa-
ture IDS/IPS solutions (Snort6, Suricata7, etc.) fo-
cus on analyzing patterns in the payload data rather
than the dependencies between values in protocol head-
ers. Hence a custom solution was required. A stan-
dard application that analyzes network traffic in user

5https://sissden.eu/blog/darknet-report
6https://www.snort.org/
7https://suricata.io/

Kernel space

Build chain

User space

NIC

XDP

BPF bytecode

TC

BPF_PUBLIC_TABLE

Stdout

Kafka

pgafilter.py

rules.yml

config.yml

Fig. 3. Architecture of the PGA Filter module.

space would not meet the performance requirements.
In this regard, the proposed implementation of PGA
Filter leverages eBPF8 (extended Berkeley Packet Fil-
ter). This virtual machine-like construct extends the
standard kernel in Unix-like systems with custom func-
tionality. Furthermore, using the XDP (eXpress Data
Path) framework, which allows for high-speed packet
processing within BPF applications, PGA signatures
are applied even before kernel network stack allocation.

The architecture of the PGA Filter is presented in
Fig. 3. The implementation resides in pgafilrer.py

Python script responsible for parsing configuration,
generating and loading BPF code, and gathering and
sending results. The management is split into two
files: rules.yml and config.yml. The first contains
the declaration of available PGA signatures and gen-
eral runtime configuration. PGA signatures are trans-
lated into valid BPF code and loaded directly into the
kernel. BPF application inspects every packet arriv-
ing at the chosen network interface. Matched pack-
ets can be blocked, redirected or allowed through, de-
pending on the configuration. The signature set can be
changed anytime. Thus a new BPF code is generated
and swapped in one atomic operation. The inspection
of network packets is performed continuously and with-
out delay throughout the process.

VI. Experimental evaluation

In this section, we present the results of the empirical
evaluation of both developed modules – NAD and PGA
Filter – in a GUARD platform. The network traffic was
simulated by using the popular benchmarks presented
below.

A. Unknown attack detection in TCP/IP network

The Intrusion Detection Evaluation Dataset [17]
(CIC-IDS2017) was used to experiment. The experi-
ment aimed to verify the quality of the NAD compo-
nent in the task of an unknown type of DoS attack de-
tection. The training dataset comprised benign traffic
(40,815 TCP/IP flows). In the hyperparameters tuning
and model selection phase, the validation set included
benign flows and flows tagged with one of DoS slow
loris, DoS Slowhttptest and DoS GoldenEye (10,203
benign and 10,203 malicious flows), while the test set
consisted of the same number of benign flows and DoS

8https://ebpf.io/

Hulk (10,293 each). The following combinations of FS
and OCC algorithms were tested:
• Autoencoder (no FS)
• Variational Autoencoder (no FS)
• PCA + LOF
• PCA + One Class SVM
• Simple Measures + One Class SVM
The accuracy metric was used in the optimisation pro-
cess. In the described scenario, the best quality was
achieved by a model built with PCA with Once Class
SVM with the following values of tuned hyperparame-
ters: kernel = rbf , ν=0.01, γ = scale, max − iter =
10000. The detailed results of this model on both vali-
dation and test set are compared in Table. I.

TABLE I: The results of a model built with PCA with Once

Class SVM algorithms for feature selection and model building.

validation dataset test dataset
f1 0.78 0.57

f0.5 0.89 0.75
f2 0.69 0.46

accuracy 0.82 0.69
precision 0.98 0.95

npv 0.74 0.62
recall 0.64 0.41

specificity 0.99 0.98

The model achieves worse results on the task of un-
known attack detection, which is expected as the model
was tuned for validation set (known attacks) character-
istics. However, the high value of precision (0.98 and
0.95) and specificity (0.99 and 0.98) is noteworthy —
the typical anomaly detection system’s high rate of false
positive errors is not the case for the model (for balance
datasets). Despite the degradation of the model qual-
ity for the test set, the results are still relatively high
for detecting unknown attacks.

B. Known attack detection and mitigation in TCP/IP
network

Effective signature-based detection of DDoS attacks
relies entirely on the availability of specialized, high-
quality, and current network traffic signatures. Since
PGA Filter detects attacks purely deterministically,
measuring its success rate is redundant. The process of
PGA signature generation is semi-automatic and still
under development. As for the quality of PGA signa-
tures, due to their unique nature and lack of reference
solutions, it is difficult to assess. To truly determine
the effectiveness and usability of our solution, long-term
tests on real-life data are required, but since this is still
a prototype phase, they are yet to be performed.

However, in the case of signature-based solutions,
performance plays no less of a role than detection qual-
ity. During a DDoS attacks, IDS must be able to pro-
cess high traffic volumes so as not to be a bottleneck
for the whole security system. Thus, a simulation en-
vironment was prepared to measure possible through-
put in a simplified scenario of a volumetric DDoS at-
tack. A testing network traffic was prepared. Roughly

Fig. 4. DDoS filtering throughput.

50% of the network packets were generated as mali-
cious (DDoS attack), each of them matching one of 10
possible TCP/IP PGA signatures. Also, a simple user
space application was developed as a reference solu-
tion to compare results. It leverages standard TCP/IP
sockets, and is capable of applying PGA signatures to
filter the incoming traffic. Both PGA filter and ref-
erence solution were deployed on a bare metal server
with a 100 Gb/s NIC and Intel Xeon E5-1650v4 6 core,
4GHz CPU. Testing traffic was replayed to reach the
maximum bandwidth. Statistics were gathered to get
an average throughput in packets per second. To de-
termine the scalability, tests for each solution were per-
formed with the limitations on available CPU cores. As
shown in Fig. 4 results of PGA Filter leveraging eBPF
and XDP are better than the naive reference solution.
Also, our solution scales well with the number of cores.

VII. Conclusions

In this paper, we presented the NAD Security Ser-
vice module and PGA Filter component in the GUARD
software architectural model. We focused on detecting
unknown DoS attacks and DDoS signatures as known
attacks in TCP/IP traffic.

In signature-based DDoS detection, we focused on
the traffic originating from botnets or other mali-
cious software employing PGA (Packet Generation
Algorithm) mechanisms. We defined a novel PGA
signature paradigm and developed the new custom
signature-based Intrusion Detection System employing
SotA Linux Kernel technologies (eBPF + XDP). Our
method is easily deployable on any Linux-based sys-
tem. It offers support for network card drivers or NIC
offloading for better performance. The platform’s op-
eration can also be freely extended beyond its DDoS
detection capabilities by using provided signature lan-
guage syntax.

Net Anomaly Detector can be easily modified by
adding (or removing) the detection algorithms. The
component’s performance was validated on a widely
used TCP/IP traffic dataset with several types of DoS
attacks. The repeatability of the NAD component in
the given scenario was high. We showed that identi-

fying malicious TCP/IP flows is good enough to de-
tect attack occurrences in the monitored network. The
detector can also mitigate the attack by dropping ma-
licious connections (although with some detriment to
some regular users). More diverse datasets should be
tested in the future.

REFERENCES

References

[1] Piotr Bazyd lo, Krzysztof Lasota, and Adam
Kozakiewicz. “Botnet Fingerprinting: Anomaly
Detection in SMTP Conversations”. In: IEEE Se-
curity Privacy 15.6 (2017), pp. 25–32 (cit. on
p. 4).

[2] James Bergstra et al. “Algorithms for hyper-
parameter optimization”. In: Advances in neural
information processing systems 24 (2011) (cit. on
p. 3).

[3] Nevil Brownlee. “One-Way Traffic Monitoring
with iatmon”. In: Passive and Active Measure-
ment. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 179–188 (cit. on p. 4).

[4] Anders Carlsson et al. “Measuring a LoRa
network: Performance, possibilities and limita-
tions”. In: Internet of Things, Smart Spaces,
and Next Generation Networks and Systems: 18th
International Conference, NEW2AN 2018, and
11th Conference, ruSMART 2018, St. Peters-
burg, Russia, August 27–29, 2018, Proceedings
18. Springer. 2018, pp. 116–128 (cit. on p. 3).

[5] L. Cavallaro et al. “Lisabeth: Automated
content–based signature generator for zero–day
polymorphic worms”. In: Proc. of the 4th Inter-
national Workshop on Software engineering for
secure systems SESS’08. 2008, pp. 41–48 (cit. on
p. 2).

[6] Kim H.A. and Karp B. “Autograph: To-
ward Automated, Distributed Worm Signature
Detection”. In: Proc. of the 13th conference
on USENIX Security Symposium, (SSYM’04).
USENIX Association, Berkeley, CA, USA, 2004
(cit. on p. 2).

[7] D. Hackermann and et.al. “A tutorial on learning
with Bayesian networks”. In: NATO ASI Series
D Behavioural And Social Sciences 89 (1998),
pp. 301–354 (cit. on p. 3).

[8] Nazrul Hoque, Dhruba K. Bhattacharyya, and
Jugal K. Kalita. “Botnet in DDoS Attacks:
Trends and Challenges”. In: IEEE Communica-
tions Surveys Tutorials 17.4 (2015) (cit. on p. 4).

[9] Steinwart I. and Christmann A. Support vector
machines. Springer Science & Business Media,
2009 (cit. on p. 3).

[10] Cannady J. “Artificial neural networks for misuse
detection, In: National information systems secu-
rity conference”. In: Proc. of National informa-
tion systems security conference. 1998, pp. 368–
381 (cit. on p. 3).

[11] Newsome J., Karp B., and Song D. “Polygraph:
Automatically Generating Signatures for Poly-

morphic Worms”. In: Proc. of the IEEE Sympo-
sium on Security and Privacy (S&P’05). IEEE
Computer Society: Los Alamitos, US., 2005,
pp. 226–241 (cit. on p. 2).

[12] Baum L.E. and Eagon J.A. “An inequality with
applications to statistical estimation for proba-
bilistic functions of Markov processes and to a
model for ecology”. In: Bulletin of the American
Mathematical Society 73(3) (1967), pp. 360–363
(cit. on p. 3).

[13] Pawar M. and Anuradha J. “Network Secu-
rity and Types of Attacks in Network”. In:
Proc. of the International Conference on Com-
puter, Communication and Convergence (ICCC
2015). Vol. 48. Procedia Computer Science, 2015,
pp. 503–506 (cit. on p. 2).

[14] Sounak P. and Mishra B. K. “Survey of polymor-
phic worm signatures”. In: International Journal
of u- and e- Service. Science and Technology 7
(2014), pp. 129–150 (cit. on p. 2).

[15] Szynkiewicz P. and Kozakiewicz A. “Design and
Evaluation of a System for Network Threat Sig-
natures Generation”. In: Journal of Computa-
tional Science 22 (2017), pp. 187–197 (cit. on
p. 2).

[16] Safavian S.R. and Landgrebe D. “A survey of
decision tree classifier methodology”. In: IEEE
transactions on systems, man, and cybernetics
21(3) (1991), pp. 660–674 (cit. on p. 3).

[17] Iman Sharafaldin, Arash Habibi Lashkari, and Ali
A Ghorbani. “Toward generating a new intrusion
detection dataset and intrusion traffic characteri-
zation.” In: ICISSp 1 (2018), pp. 108–116 (cit. on
p. 5).

[18] SISSDEN. Deliverable D2.7: Final Dissemina-
tion Report. https://sissden.eu/download/
SISSDEN-D2.7-Final_Dissemination_Report.

pdf. [Online; accessed 13–March-2023]. 2019 (cit.
on p. 4).

[19] Pawe l Szynkiewicz. “Signature-Based Detection
of Botnet DDoS Attacks”. In: Cybersecurity of
Digital Service Chains: Challenges, Methodolo-
gies, and Tools. Springer International Publish-
ing, 2022, pp. 120–135 (cit. on p. 4).

[20] Werner T. et al. “Nebula – Generating Syntac-
tical Network Intrusion Signatures”. In: Proc.
of the 4th International Conference on Ma-
licious and Unwanted Software (MALWARE).
2009, pp. 31–38 (cit. on p. 2).

[21] Chandola V., Arindam B., and Vipin K.
“Anomaly detection: A survey”. In: ACM com-
puting surveys (CSUR) 41.3 (2009), p. 15 (cit.
on p. 2).

[22] Li Z. et al. “Hamsa: Fast Signature Generation
for Zero–Day Polymorphic Worms with Provable
Attack Resilience”. In: Proc. of the IEEE Sym-
posium on Security and Privacy (S&P’06). 2006
(cit. on p. 2).

[23] Adam Zagorecki. “A versatile approach to clas-
sification of multivariate time series data”. In:

2015 Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS). IEEE.
2015, pp. 407–410 (cit. on p. 3).

BIOGRAPHIES

JOANNA KO LODZIEJ is the
Professor of Computer Science at
the Research and Academic Com-
puter Network (NASK) Institute
in Warsaw. Prof. Kolodziej is
the President of the Polish Chap-
ter of the IEEE Computational In-
telligence Society. She participated
in several international and national
projects and is a member of the EU

Blockchain Partnership Society. Her research is fo-
cused on machine learning and Big Data, security as-
pects and energy awareness in resource management
and data scheduling in clouds, cloud and edge comput-
ing, cybersecurity aspects in ICT systems and recently
– blockchain technologies.

MATEUSZ KRZYSZTOŃ is
an assistant professor at the Re-
search Academic Computer Net-
work (NASK). He received a PhD
in technical information technol-
ogy and telecommunications at the
Warsaw University of Technology in
2020. He is Head of Distributed
System Group, which researches the
Internet of Things, machine learn-

ing and cybersecurity.

PAWE L SZYNKIEWICZ is a
cybersecurity systems architect at
the Research Academic Computer
Network (NASK). He works at the
Network Security Systems Depart-
ment, tasked with developing and
maintaining systems for national se-
curity and the private sector.

