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ABSTRACT

Sleep disorders are continuously growing in the pop-
ulation and can have a significant negative impact on
everyday life. Economic and non-invasive systems able
to support the diagnosis procedure will be more and
more adopted in the next years. The aim of this work is
to investigate the classification performance of a convo-
lutional neural network, based on a VGG structure, to
identify obstructive sleep apnea events. A recently de-
veloped dataset containing audio signals recorded from
high-quality contact microphones placed on the trachea
of the subjects under study has been adopted to per-
form transfer learning over a pre-trained VGGish net-
work. Spectrogram images have been extracted from
the audio signals to serve as inputs for the classification
process. The importance of the time window selection
has been also investigated and comparisons with other
recent methods proposed in the literature are reported.

INTRODUCTION

Humans spend a third of their life sleeping, so sleep
plays an important role in staying healthy [1]. Unfortu-
nately, the quality of life of several people is affected by
a hidden sleep pathology denoted as Obstructive Sleep
Apnea-Hypopnea Syndrome (OSAHS) [2][3].
OSAHS is generated by the narrowing of the upper

airway, at multiple levels. During awake time the in-
creased muscle tone prevents the upper airways from
collapsing. Reversely, during sleep, the combination
of the extraluminal pressure exerted from surrounding
soft tissue structures and negative intraluminal pres-
sure of the upper airway during inspiration, this can
result in upper airway collapse. Obese subjects can
be affected by a further reduction of the upper airway
caliber causing more severe clinical consequences.
Subjects affected by sleep apnea can decrease their

sleep quality, resulting in drowsiness during the day,
poor memory, an increased risk of accidents owing to
extreme sleepiness and, in general, low productivity. In
more serious cases, in adult subjects, OSAHS can cause
hypertension, coronary heart disease, stroke, arrhyth-
mia, and other diseases while, in infants, it can cause
behavioral disorders and even sudden death [4]. Adults

affected by this pathology have an increased probability
to cause traffic accidents, they usually are affected by
mood swings and depression and, accordingly, OSAHS
has also a not negligible financial and social impact [5].
Nowadays, approximately 6%− 13% of the world pop-
ulation suffer from this disease [6] but 80% of apnea
patients remain undiagnosed [7]. The apnea/ hypop-
nea index (AHI) is used to determine the severity of
OSAHS. The index counts the number of apnea and
hypopnea per hour of sleep. A single apnea is defined
by a drop in the peak respiratory airflow by≥ 90% from
the baseline and the duration of the event lasts at least
10 seconds [8]. OSAHS will be classified as mild if AHI
is in the range [5− 15], moderate if AHI is in the range
[16− 30] and severe if AHI is greater than 30. In order
to evaluate the AHI, patients must undergo a clinical
examination named Polysomnography (PSG), which is
usually conducted in hospitals. PSG records several
bio-signals such as respiratory, heart-beat, movement,
snoring, oxygen saturation, pharyngeal movement, and
others. To obtain all these signals the patients have to
wear a device capable of synchronously recording sig-
nals from several sensors, usually linked to the recorder
device in a wired way. All these cables, sensors and
devices cause discomfort for the patients, typically in
a non-homecare unfriendly experience [9]. As a con-
sequence, not detected wrong OSAHS diagnosis fre-
quently occurs and a high number of OSAHS-affected
patients are untreated [10]. Accordingly, it’s important
to promote the development of equipment and or tech-
nologies able to support the diagnosis of OSAHS in a
more comfortable way [11]. In this work, we investi-
gated the classification performance of a deep convolu-
tional neural network (CNN) based on a Visual Geome-
try Group (VGG) architecture, whose goal is to identify
Obstructive Sleep Apnea Syndrome (OSAS) events by
means of features extracted from a unique audio signal,
recorded during sleep time.

The remaining of the paper is organized as fol-
lows: Section ”RELATED WORKS” introduces re-
lated works; the proposed methodology for apnea event
classification is described in Section ”PROPOSED
METHODOLOGY”, the analysis of the simulation re-
sults is provided in Section ”RESULTS” and finally, the
conclusions are drawn in Section ”CONCLUSIONS”.

Communications of the ECMS, Volume 37, Issue 1, 
Proceedings, ©ECMS Enrico Vicario, Romeo Bandinelli, 
Virginia Fani, Michele Mastroianni (Editors)  2023 
ISBN: 978-3-937436-80-7/978-3-937436-79-1 (CD) ISSN 2522-2414 



RELATED WORKS

Recently, several researchers focused on sound-based
OSAHS identification. In one of the first works tack-
ling this issue, the authors proposed a classifier of snore
sounds based on spectrogram image analysis performed
by CNNs [12]. They use the Munich-Passau Snore
Sound Corpus as a dataset; it contains 828 snore sam-
ples from four classes which reflect the place of obstruc-
tion causing the snore: Velum, Oropharyngeal, Tongue,
and Epiglottis. Although the snore can be a marker for
OSAHS, the dataset was not annotated accordingly to
the occurrence of apnea episodes.

In [13], the authors proposed a system to identify
OSAHS based on the recording of video and audio of a
patient. Specifically, from the audio signal, the authors
extract three different kinds of features: a mixed set
of features with acoustic and prosodic parameters; fea-
tures obtained by applying WPT to the spectrogram
of the signal and features obtained by applying Non-
negative Matrix Factorization (NMF) to the spectro-
gram of the signal. The overall audio signal recorded
for each patient (16kHz, 16 bit per sample) is divided
into 10 s length segments with an overlap of 5 s. From
each segment of audio sub-segments with a time length
of 5 s and a step interval of 0.5 s were extracted.
The spectrogram of each sub-segment was obtained by
means of a Short Time Fourier Transform (STFT) eval-
uated with 25 ms STFT-window and 12.5 ms incre-
ments. For their experiments and performance evalu-
ation, authors used a proprietary dataset made up of
the recordings of 4 patients on two different nights each
lasting about 480 minutes. Recordings of video and au-
dio were performed synchronized with the signals of a
PSG and, subsequently, they were manually marked
according to 4 different classes: i) central apnea, ii)
obstructive or mixed apnea, iii) hypopnea, and iv) all
the other events that are available from the ground
truth labels. They used as classifiers both Support Vec-
tor Machines (SVM) and Neural Networks (NN). Us-
ing only the audio component, the best performance in
terms of accuracy (99.17%) was obtained using a SVM
as a classifier and NMF features. An inverse 5-fold
cross-validation (CV) (using 1-fold for training and the
remaining 4-folds for testing) was used to obtain the
above-mentioned result.

An OSAHS recognition algorithm based on CNN was
proposed in [14]. The authors use Mel Frequency Cep-
stral Coefficients (MFFCs) as audio features. MFFCs
were extracted using a time window of 40 ms. Three
different architectures of CNNs were considered: VG-
GNet [15], Inception (GoogLeNet) and [16], ResNet
[17]. Performance results, in terms of accuracy on
the same dataset used in [12], were compared with a
baseline algorithm based on a Gaussian Mixture Model
(GMM) classifier. Both the proposed CNN architec-
tures and baselines show very low performance in OS-
AHS classification (always lower than 50%) and, more-
over, it appears not clear how the snore-based dataset
in [12] was annotated according to apnea events.

Authors of [18] and [19] propose a wearable system to

recognize human contexts such as breathing, heartbeat
pattern, and swallowing using audio sensors. Specif-
ically, the proposed device contains two different mi-
crophones: the first one is an open-air mic and the
second one is a contact mic; both mics are housed on
the same body and record audio signals synchronously.
A specific dataset was built to perform an evaluation of
the best positioning of the device and to evaluate the
classification accuracy of five possible audio events cor-
responding to breathing, swallowing, movement, oral
sound and others. The dataset contains the record-
ings of seven healthy people which mimic typical move-
ments and sounds of a sleeping person. From the audio
signal (sampled at 44100Hz) a vector of 28 MFCCs-
based parameters was extracted together with a vector
of 14 parameters built of 10 FFT peaks and 4 statistical
and time-domain features from windows of 1, 2 and 3s
with a step of 0.25s. Vectors were used to train mod-
els based on SVM and Random Forest (RF). A time
frame of 4 minutes of the overall recording length of
5 minutes for each actor was used to train the models
and the remaining 1 minutes was used for tests. Per-
formance results and comparisons were presented both
using data from single microphones and using data ag-
gregation. Although the work shows the potential of
the proposed wearable device and its better position-
ing on the patient body in order to increase the record-
ing quality, classification results performed on a small
mimed dataset and without a suitable OSAHS annota-
tion, constitute two major drawbacks in order to prove
the goodness of this approach for the OSAHS classifi-
cation topic.

In 2021, an open and freely available dataset, com-
prising 212 polysomnograms along with synchronized
high-quality tracheal and ambient microphone record-
ings was released [20]. The whole dataset was manually
annotated by medical experts according to “respira-
tory” episodes, which include among others all apnea-
related episodes of a specific type: “Obstructive Ap-
nea”, “Central Apnea”, “Mixed Apnea” and “Hypop-
nea”. Accordingly, this dataset represents an impor-
tant milestone to evaluate and compare the perfor-
mance of OSAHS classifiers, and, specifically, OSAHS
classifiers based on audio signals recordings.

In this paper, we exploited this dataset in order
to propose an OSAHS classification approach based
on CNNs. Specifically, we used a pre-trained net-
work based on a VGGish model which is often adopted
in sound classification tasks. We evaluated perfor-
mance comparing results obtained by our approach ver-
sus already proposed techniques in literature, which
are based on different features and classifiers. Con-
sequently, the main novelties of this work consist in:

• the use of a pre-trained CNN based on a VGGish
model adopting as inputs the mel-spectrograms ex-
tracted from audio signals to perform OSAHS classi-
fication;
• the use of a freely available dataset, recently devel-
oped, specifically and independently marked for OS-
AHS, for performing training, validation and test and



performance comparisons of the considered classifica-
tion approaches;
• the impact of the time window length selected for the
input data on the classification performance.

PROPOSED METHODOLOGY

Deep neural networks for audio processing

In the last years the drastic progress in terms of com-
putational power, mostly related to the introduction of
massively multi-core GPUs, pushed towards the use of
deep learning techniques to develop classification and
regression networks applied in many different domains
[21]. Machine learning approaches were widely applied
both in the fields of signal processing and telecommu-
nications networks [22][23][24][25][26][27]. Sound clas-
sification and recognition are one of the investigated
research fields including applications to music classifi-
cation [28][29][30][31], speech recognition [32], predic-
tion maintenance and others.

In this work, among the different solutions available
in the literature, a convolutional network based on the
VGG family introduced by Google was considered. it
was introduced in 2014 as an evolution of Alexnet. The
peculiar characteristics consist of the presence of the
ReLU activation function and the use of small recep-
tive fields in the convolutional filters (i.e., 3×3). This
model was originally adopted for image processing and
subsequently used by Google in 2017 on audio signals.
The training was performed on a large YouTube dataset
[33].

The pre-trained network contains 24 layers among
which nine layers present learnable weights: six convo-
lutional and three fully connected layers. The input
provided to the VGGish consists of a series of mel-
spectrograms obtained by decomposing the audio sig-
nals in a series of overlapped time frames. Due to the
availability of small datasets related to the applica-
tion in exam, it is not possible to train a CNN from
the scratch, instead, a transfer learning approach can
be adopted. The pre-trained VGG is then considered.
In particular, this network provides in output a 128-
element feature vector for each input pattern that can
be extracted from the last fully connected layer. Intro-
ducing a final fully connected layer followed by softmax
and classification layers on top of the network, it is pos-
sible to develop a classifier to distinguish the presence
of apnea events from the audio signals. Following the
transfer learning methodology, the network needs to be
fine-tuned on the available dataset, specific to the case
of study considered. This process was performed by
increasing the learning rate factor for the newly added
learnable layers by a factor of ten, to guarantee that
the learning process is faster in the new layers than in
the transferred ones that are only fine-tuned.

The block scheme of the proposed architecture is de-
picted in Fig. 1.

The first block identifies the dataset used to train,
test and validate the proposed system. It is built start-
ing from the sound data and, specifically, collecting and
splitting the audio excerpts into training, validation

and testing subset. The pre-processing block permits
to obtain the inputs of the subsequent classification sys-
tem. It splits the audio excerpts in overlapping frames
of a specific time-length and evaluates the mel spec-
trogram for each frame; moreover, the audio excerpts
are arranged in overlapping windows of a specific time-
length and the Mel-based spectrogram is evaluated in
each window. Each spectrogram contains the time-
frequency representation of a short-time audio window
and it is stored as a matrix of specific dimension. Ac-
cording to the length of the audio excerpts and to the
time step with which each window is extracted, a spe-
cific number of matrices is obtained. The last block
consists of two sub-blocks: the first one contains the
original layer of the pre-trained VGGish CNN; the sec-
ond one contains the output layer introduced in order
to classify the input matrices according to the OSAHS
outcomes. Both the sub-blocks are used in training and
validation/testing steps in a different way. During the
training step the parameters of the VGGish pretrained
network are tuned in order to identify features in the
matrices which higlight the differences between those
obtained from sounds captured when the patients are
affected by obstuctive apnea and those obtained from
sounds captured during no apnea conditions. At the
same way, at this step, the parameters of the classifi-
cation layer are tuned to maximize an index of perfor-
mance of the classification goodness of the feature vec-
tors coming from the last layer of the VGGish CNN ac-
cording to the two output classes. In validation/testing
step these two sub-blocks are simply used in order to
obtain the outcome of the classification using the tuned
parameters in the training step.

To evaluate the performance of the proposed archi-
tecture, we analyzed the confusion matrices consider-
ing positive samples corresponding to apnea events and
negative others. Following this definition, we can iden-
tify, comparing the true and the predicted classes, the
true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) outcomes that are used
to calculate the performance indexes as follow:

• Precision: the ability to properly identify positive
samples P = TP

TP+TN ;
• Recall: the fraction of positive samples correctly
classified R = TP

TP+FN ;
• Specificity: the fraction of negative samples cor-
rectly classified S = TN

TN+FP ;
• Accuracy: the fraction of predictions correctly clas-
sified A = TP+FP

TP+FP+FN+TN ;
• F1 score: the harmonic mean between precision and
recall F1 = 2× P×R

P+R .

OSAHS Dataset

As described in [20], data were collected from 212 in-
dividuals, who visited the Sleep Study Unit of the Sis-
manoglio – Amalia Fleming General Hospital of Athens
for SAS diagnosis. Audio signals were acquired and
stored by means of a dual-channel portable multitrack
recorder (Tascam DR-680 MK II) and synchronized
with PSG. One of the channels was connected to a con-



Fig. 1. Block scheme of the proposed method

tact microphone (Clockaudio CTH100) placed on the
trachea of the patient. The second channel was con-
nected to an ultra-linear measurement condenser mi-
crophone (Behringer ECM8000) placed approximately
1 m above the patient’s bed, over the head position.
Both sound signals are sampled at 48 kHz and orig-
inally stored using 24-bit per sample. In order to
store audio signals synchronized with other PSG sig-
nals in European Data Format (EDF), the number of
bits per sample was reduced to 16. PSG data consists
of 16 channel including Electroencephalogram, Elec-
troculogram, Leg movement signal, Electrocardiogram
(ECG), RR interval in the ECG, pulse rate extracted
by the ECG, thoracic volume changes, abdomen vol-
ume changes, nasal/oral flow pressure, the position of
the body, oxygen level (oxygen saturation) of the blood.
PSG study is performed by the health specialists of the
Sleep Study Unit of the Sismanoglio – Amalia Flem-
ing General Hospital of Athens. For each patient, sleep
stages and apnea events are scored by two specialists:
a certified technician performs first-level scoring and a
30-year-experienced and certified doctor performs final
scoring, with verification of the true positive annotated
events and addition of missed events.

Specifically, in our experiments, we only used the
audio signals recorded from the high-quality contact
microphone placed on the trachea of the first 25 pa-
tients. “Respiratory” type annotations were used as
a reference and, in particular, they were grouped in
a unique class named “Apnea” including “Obstructive
Apnea”, “Central Apnea” and “Mixed Apnea”, “Hy-
popnea” events were excluded due to their nature of
respiration frequency reduction. We extracted 15 s of
audio starting from the position addressed by each “ap-
nea” annotation from each recording of the considered
patients. We obtained globally 430 excerpts of au-
dio. In order to build a balanced dataset we collected
for each excerpt annotated as “apnea” a correspond-
ing piece of audio (extracted from the same recording),
lasting 15 s, which, in reverse, does not contain annota-
tions belonging to the “apnea” class. Globally, the con-
sidered dataset contains 860 non-overlapped excerpts of
audio. Accordingly to the format of input required by

VGGish, we extracted mel-spectrograms from each ex-
cerpt of audio each representing 1 s of audio and with
a step of 0.25 ms. Each spectrogram was evaluated as
a matrix of 96x64 values: 96 is the number of 25 ms
frames in each mel-spectrogram and 64 represents the
number of mel bands spanning from 125 Hz to 7.5 kHz.
A performance comparison of our approach was con-
ducted versus [13]. In current research literature, ana-
lyzed in section “RELATED WORKS”, and to the best
of our knowledge, [13] seems to be the most promis-
ing approach about OSAHS classification. Accordingly,
from the same excerpts of audio, we extracted features
obtained applying NMF to the spectrogram of the sig-
nal, as described in [13], since the authors have shown
that this set of parameters guarantees the best results
among those proposed.

RESULTS

A 5-fold cross-validation approach was used to train
and test the performance of the proposed approach.
After a preliminary optimization of the hyperparame-
ters, we finally trained the VGGish networks using the
Adam optimizer, a mini-batch size equal to 512 and a
maximum number of epochs equal to 5. To determine
the output class for the sequence of time windows be-
having to the same audio block, every single prediction
was combined using a majority-rule decision. Fig. 2
shows the confusion matrix chart with column (class-
wise precision) and row (class-wise recall) summaries
obtained over the 5 folds. The obtained performance is
balanced in terms of precision and recall and exceeds
the 95% of accuracy.
In order to compare and evaluate performance re-

sults, we trained two different binary SVM classifiers as
a baseline. The former (SVM1) was trained and tested
using a unique vector obtained as proposed in [13]. The
latter (SVM2) was trained using vectors obtained by
each sub-segment lasting 5 s with 0.5 s increments as
inputs and, subsequently, we applied a majority-rule
decision to classify the entire excerpts. We show the
confusion matrix chart for both baseline approaches in
figs. 3-4.
Table I compares all performance indexes for the con-



Fig. 2. A confusion matrix chart was obtained for the proposed
VGGish-based approach.

Fig. 3. A confusion matrix chart obtained adopting the SVM1
baseline approaches

sidered approaches. The proposed VGGish classifier
outperforms SVMs for every considered parameter and,
moreover, the modified version of the SVM approach
(row SVM2) gives better results than the original one
proposed in [13] (row SVM1). This result indicates that
the classification of single time frames is preferable in-
stead of a unique feature vector even in the presence of
simple consensus methods.

We also analyzed the classification performance vary-
ing the size of the excerpts in a range of [5− 15] s. As
can be noticed by analyzing Fig. 5, both VGGish and
SVM2 show an increase of the F1 parameter until the
excerpt sizes reach values around 10 s. Exceeding this
threshold the F1 parameter maintains almost constant
or, in VGGish case, decreases. The range of variations
appears very small overall range for both approaches.
This result demonstrates that the proposed method
shows a limited reduction of performance (lower than

Fig. 4. A confusion matrix chart obtained adopting the SVM2
baseline approaches

1.5%) if a 5s time window is considered whereas the
SVM-based approach presents a degradation of about
5%.

Fig. 5. Trend of the F1 index when the size of the excerpts used
to perform classification changes within the range of [5− 15] s.

CONCLUSIONS AND FUTURE WORKS

The obstructive sleep apnea identification through
audio signal processing was investigated by comparing
the state-of-the-art methods based on the SVM classi-
fier with the proposed CNN-based solutions developed
using a transfer learning strategy on a VGGish network
pre-trained using a large general-purpose audio dataset.
The proposed network, receiving in input the audio
spectrogram of recorded audio signals from a recently
collected dataset, extracts 128 features that are used
to classify apnea events. Several performance indexes
were reported to compare the VGGish network with
other solutions showing that the classification of single
time frames with a majority-based consensus method is
preferable if compared to the processing of a unique ag-
gregated feature vector. Moreover, the degradation of
performance when changing the analyzed time window
was investigated showing that the VGGish solution is
more resilient at shorter time intervals, up to 5 s than
the other approaches compared.

As future work we planned: 1) to investigate per-
formance of others CNN-based classifier on the same
dataset (like the pre-trained YAMNet neural network);
2) to extend the dataset used both for training and
testing the classifiers adding new patients; 3) to train
and test classifiers which are capable to operate with
the sounds captured by the environmental microphone
of the dataset. If the performance of this latter system
will be acceptable, the development of a prototype of a
simple system capable to support a preliminary diag-
nosis of OSAHS can start. This kind of system can, for
example, run as an application on patient smartphone,
capturing environmental sound during the night, and it
can permit the preliminary diagnosis of OSAHS with-
out the need of complex and annoying PSG recording
systems.
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