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ABSTRACT

Cloud platforms offer not only the capacity to fa-
cilitate effective and scalable services for third-party
applications and business solutions, but also present
an opportunity to implement intricate disaster recov-
ery strategies. For instance, a Chief Technical Officer
may opt to maintain operations on private systems in
order to effectively manage costs, privacy, and secu-
rity, while leveraging at the same time the cloud as an
autonomous and immediate disaster recovery support.
This objective can be achieved by building a second leg
of the IT system that functions as an online cold or hot
spare, manages workload peaks, or handles a portion of
the workload under normal conditions. To assess the
cost-effectiveness of such solutions, appropriate models
are essential to examine the trade-offs and explore the
parameter space of possible alternatives.

The contribution of this paper is twofold. Firstly,
it defines a multiformalism model for the design and
evaluation of cloud-based recovery setups; secondly, it
studies the time and the effects of transient manage-
ment on costs, including losses due to a decreased ca-
pacity to serve requests.

INTRODUCTION

The utilization of information systems composes the
cornerstone of operations for a significant proportion
of enterprises, ranging from those of a modest scale
to those of a much larger scale. Ensuring the conti-
nuity of business operations represents a primary con-
cern for system administrators and Chief Technical Of-
ficers, given that any service outage may result in losses
and additional costs arising from associated damages.
Consequently, disaster recovery strategies need to be
devised and implemented, encompassing the requisite
hardware, appropriate software, and skilled personnel.
Notably, the cloud has emerged as a promising alter-
native, offering disaster recovery services that are pro-

vided by third-party entities in an ”as-a-service” for-
mat.

Various commercial offers are available that encom-
pass different tiers of service levels, ranging from all-
inclusive solutions in which the responsibility for plan-
ning, managing, implementing, maintaining, and ad-
ministering disaster recovery is assumed entirely by the
cloud vendor, to solutions in which complete control
and decision-making power are retained by the enter-
prise, thereby providing maximum flexibility. Between
these two extremes, a diverse range of degrees of the
delegation is accessible. The selection of an appropri-
ate solution is contingent on various factors, including
the specific requirements of the business, internal ex-
pertise, the desired level of investment in IT technol-
ogy, performance requirements, management approach,
and scale.

Cloud-based disaster recovery involves the replica-
tion or partial execution of certain components of the
in-house IT architecture in the cloud. At a minimum,
this entails the replication of data, while at the other
end of the spectrum, a comprehensive replica that can
be invoked in the event of a main system failure repre-
sents a maximal choice. Intermediate options include
the use of active Virtual Machines (VMs) in the cloud
to manage workload peaks that surpass the capacity of
the system, effectively serving as a permanent exten-
sion of the original system.

Irrespective of the selected strategy, cloud-hosted re-
sources must be synchronized with the original system,
with VMware solutions, for example, ensuring that the
state of the cloud-based system is harmonized with
the original system using a ”Recovery Point Objective”
(RPO) that, at worst, corresponds to the state of the
original system up to 30 minutes before. As a conse-
quence, this necessitates a continuous connection and
the presence of active or inactive cloud resources, as
well as hot or cold storage that are triggered in differ-
ent ways depending on the chosen strategy, with vary-
ing associated costs.

Cloud-based disaster recovery can be implemented
for either internal systems or those that provide services
to customers and generate value due to external access.
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For the sake of clarity, this paper focuses on the latter
case.

The utilization of multiformalism modeling method-
ologies relies on the amalgamation of constituents that
are defined via multiple modeling languages or for-
malisms. This approach has two distinctive features.
Firstly, it enables the modeler to utilize different for-
malisms to model various subsystems, which facilitates
the selection of a more suitable or recognizable lan-
guage, thereby reducing the learning curve or conform-
ing to the user’s preferred abstraction. Secondly, from
the perspective of the solution, selecting an appropriate
combination of formalisms entails the accurate align-
ment of model concepts with solver primitives, leading
to an improved fit for the problem.

This study proposes a multiformalism modeling ap-
proach that facilitates the assessment of trade-offs be-
tween organizational choices and associated costs, in-
cluding potential losses, to facilitate the design of cloud-
based disaster recovery solutions. The paramount ob-
jective is to provide system administrators and Chief
Technical Officers with a quantitative tool that em-
powers them to make informed decisions and formulate
strategic plans as business requirements and workload
dynamics evolve over time.

The paper is organized as follows: following the in-
troduction, the scientific literature is reviewed and a
reference ICT architecture is presented. Then, the au-
thors discuss a model of the considered scenario and
a simple case study. Finally, the conclusions close the
paper.

RELATED WORK

Evaluating cloud disaster recovery can be rather
complex, as it depends on different factors. For in-
stance, the cloud model can be public or private, re-
flecting considerable differences in costs ([Chang et al.,
2019], [Dreher et al., 2017]), or even hybrid (see
[Malawski et al., 2013] for a full evaluation). With re-
gard to disaster modeling, [Miles et al., 2019] present
an overview of the scientific literature by examining the
following perspectives: i) resource-constrained model-
ing, ii) machine learning, iii) dynamic economic im-
pact modeling, iv) system dynamics simulation, v)
agent-based simulation, vi) discrete-event simulation,
vii) network modeling, and viii) stochastic simulation.
The latter is described in terms of models performing
sampling-based techniques and the exploitation of ran-
dom variables, varying in space and in time, and chang-
ing their values according to probability.

A study of stochastic modeling of cloud disaster re-
covery is provided by [Andrade et al., 2017]. The au-
thors define the concept of cloud disaster recovery and
the need for stochastic modeling to estimate the like-
lihood and impact of potential disasters. Different ap-
proaches to stochastic modeling, including Markov pro-
cesses, queuing theory, and simulation are taken into
account and compared.

[Lenk and Tai, 2014] review a Markov Chain model
for cloud disaster recovery taking into account the cost

and time associated with different recovery options.
The authors provide a model that can be used to make
informed decisions about the appropriate disaster re-
covery strategy for a given cloud-based system. In
particular, a discrete-time Markov Chain to model the
state transitions of the cloud system is adopted. Each
state denotes a particular system configuration, such
as the system running normally, experiencing a par-
tial or complete failure, or undergoing a recovery pro-
cess. Furthermore, a method for optimizing the disas-
ter recovery strategy using the Markov Chain model is
proposed. Finally, the authors deploy a dynamic pro-
gramming technique to determine the optimal recovery
strategy based on the current system state and the ex-
pected cost and time of each recovery option.

[Silva et al., 2014] propose a Stochastic Petri Net-
works (SPNs) as a simulation model to evaluate the
survivability of cloud computing systems in the pres-
ence of disasters. The proposed framework considers
different factors, such as system availability, data loss,
and recovery time, to evaluate the survivability of cloud
computing systems. The use of SPNs allows for the
modeling of complex systems, including cloud comput-
ing systems, by representing system states and transi-
tions in a graphical manner. SPNs and fault-injection
experiments [Mendonça et al., 2018] can be used to
evaluate availability related metrics such as steady-
state availability and downtime. Furthermore, [An-
drade and Nogueira, 2019] use a similar approach for
evaluating cloud-based data recovery solutions for IT
environments. In [Nguyen et al., 2018], the authors
avoid the space state explosion by using hierarchical
modeling techniques based on stochastic reward net-
based models.

Scientific literature offers numerous contributions
concerning dedicated stochastic modeling tools based
on the notion of multiformalism. For example,
SHARPE (Stochastic Hierarchical Analysis for Reli-
ability Performance Evaluation) [Trivedi, 2002] is a
tool for reliability analysis and performance evalua-
tion of computer systems. The SHARPE tool is de-
signed to model and analyze complex systems that
have a hierarchical structure and stochastic behav-
ior. SMART (Stochastic Model-Checking Analysis and
Random Testing) [Ciardo, 2006] is a tool for the analy-
sis of stochastic models. The SMART tool is designed
to provide both model-checking and random testing ca-
pabilities for the analysis of complex stochastic sys-
tems. Möbius [Deavours et al., 2002] is a modeling
language to allow users to specify the behavior of a sys-
tem at a high level of abstraction, while still providing
the necessary detail for accurate performance analysis.
A graphical interface allows users to visualize and edit
models, as well as perform the simulation and analysis
tools, which can be used to evaluate the performance
of a system under a variety of different scenarios. Os-
MoSys [Vittorini et al., 2004] is an integrated tool en-
vironment for stochastic modeling and simulation. The
authors describe the various components of OsMoSys,
including its modeling language, simulation engine, and



visualization tools. They also discuss the features and
capabilities of the tool, including its ability to support
both discrete-event and continuous-time simulations, as
well as its support for hierarchical modeling.

THE ICT INFRASTRUCTURE

The reference architecture which is taken into ac-
count for the evaluation is depicted in Fig. 11, and may
be defined as one of the best practice in the field of Dis-
aster Recovery as a Service (DRaaS). In particular, this
work considers a service implemented using VMware
Cloud Disaster Recovery, which is an on-demand dis-
aster recovery and ransomware recovery service pro-
viding an easy-to-use and a cost-saving Software-as-a-
Service Solution. The service is organized as follows:
the VMs of the system to be protected are replicated
in remote instant power-on VMs and by implement-
ing them to a target VMware Cloud on AWS (Amazon
Web Services) Software Defined Data Center (SDDC)
on VMware Cloud on AWS. The system can be used as
a fast-recovery replica minimizing the service downtime
or, as another option, in case of a successful ransomware
attack, as an isolated recovery environment (IRE) in
which one can inspect, analyze, and repair snapshots
of infected VMs in which it is possible to restore the
service to a production environment by selecting the
most recent non-corrupted replica.

Fig. 1: The reference architecture

The network connection between the system and the
AWS cloud service may be achieved using three differ-
ent technologies:

• usual Internet connectivity, with very low costs
but suffering from latency and security issues;
• IPSec VPN connection, with low bandwidth but
a sufficient level of security, although not recommended
for production environment;
• AWS Direct Connect, which is a dedicated AWS
connection service that may guarantee high bandwidth
(up to 100 Gbit/s) and very low latency at high price.

The operating cost for the system has been computed
using AWS Pricing Calculator2.

1Adapted from https://docs.aws.amazon.com/prescriptive-
guidance/latest/disaster-recovery-vmware-cloud-on-aws/dr-
options.html

2https://calculator.aws

MODELING APPROACH

The model of the ICT infrastructure has been imple-
mented by using SIMTHESYS (Structured Infrastruc-
ture for Multiformalism modeling and Testing of Het-
erogeneous formalisms and Extensions for SYStems, see
[Barbierato et al., 2012] for an introduction and a case
study). It is a framework that offers a method for the
formulation and resolution of multiformalism models
through the production of intricate solvers, which are
automatically generated by integrating general solution
engines based on the rules that arise from formalism
definitions. The formalisms themselves are defined by
explicitly specifying both the syntax and semantics of
all their atomic components. This approach offers sev-
eral significant benefits, such as facilitating the rapid
prototyping of new formalisms and solution techniques,
enabling the deployment of new solvers without requir-
ing the modification of existing ones, and providing an
open architecture that allows for the creation of new
interfaces that can be utilized to characterize different
classes of formalisms.
The reference configuration of interest is based on

N VMs that serve the operations needs. In normal
conditions, VMs may be totally or partially run locally,
while, in case of disasters, all VMs should run in the
cloud after a transient. This work studies the effects
of this transient, with particular reference to transient
time and the effects of transient management on costs,
including losses due to lower capacity to serve requests
during the transient.
The configuration is parameterized on the number of

VMs out of the totalN that are run locally with respect
to the normal state of the system. In the normal state,
some VMs may be allocated in the cloud and ready
to serve requests to implement a hybrid cloud solution
that manages workload peaks.
One of theN VMs, namely a Front End, is used to ac-

cept requests and balance the workload; another is used
to run a Database Server that implements data man-
agement for the application. With no loss of generality,
requests are considered as generated by external traffic,
and the routing of requests is managed by a DNS-as-a-
service facility supplied by the cloud provider, redirect-
ing traffic to the Front end replacement VM executed
in the cloud in case of disaster.
To manage the requests during the disaster recovery

operations and to perform recovery, data must be repli-
cated in the cloud, with periodic transfers occurring
compatibly with application needs and according to
cost constraints. The replication policy and frequency
are also affected by the use of cloud VMs during nor-
mal operations, which may also induce a request for
bidirectional synchronizations when necessary. Conse-
quently, cloud storage may be solicited differently ac-
cording to the workload dynamics during normal oper-
ations as well.
Requests that are received by the Front End are as-

signed to one of the available VMs, prioritizing local
ones in case of hybrid cloud configurations. VMs serve
the request, accessing the Database server and possi-

https://calculator.aws


bly modifying data. Updates are periodically sent to
the cloud storage, asynchronously with respect to the
effects of VM accesses to the Database Server.
When cloud resources are invoked, used resources are

billed accordingly to their usage. Cloud counterparts of
local resources may be configured in different readiness
states, implying different activation times and costs.
Part of cloud resources (at least, cloud storage) is al-
ways active.
Modeling is done considering different scenarios and

different request rates and types.

VM

N-V-M

N-server

𝜆
𝜇

K

Loss

𝛾$

𝛾%

Q1

T1

T2

P1

P2

P3

Fig. 2: The multiformalism model of the proposed scenario

The considered system is modeled with the Petri Net
(PN) / Queuing Network (QN) multiformalism archi-
tecture presented in Figure 2. In particular, the service
is modeled by a N server finite capacity queue, serving
requests at an exponential rate µ. The system has a
total capacity of K jobs, including the ones in service:
the requests, arriving according to the Poisson process
of rate λ, are lost if the system is full when they at-
tempt to enter the server. The latter is controlled by a
Generalized Stochastic Petri Net (GSPN), according to
the test arc connecting queue Q1 with place P3. Follow-
ing the semantics given in [Gribaudo and Iacono, 2023],
the test arc controls the number of parallel servers of
station Q1. In particular, of the maximum of the N

servers that compose the queue, only as many as the
marking of P3 are actually active at any time. Place
P1 models the M hot spare VMs, each one becoming
available at rate γ1, according to the firing of the in-
finite server timed transition T1. Similarly, Place P2

with initial marking N − V −M and Transition T2 of
rate γ2 model the activity of additional VMs not being
supported as hot-spare. Place P3 models the current
number of active VMs: its initial marking V can be
used to support hybrid cloud scenario, where part of
the computation is initially deployed in the cloud .
The dynamics of the queue Q1 is at least two order

of magnitude faster than the one of the transitions: the
transient time required to reach the steady state is neg-
ligible with respect to the time the system remains with
the same number of servers. For this reason, it is pos-
sible to decouple the solution of the queuing network,
from the one of the Petri Net, and use the steady state
solution of the first as a reward for the second.
Specifically, following the classical theory of

M/M/c/K queues, the loss rate Lr(c) can be evaluated
when only c out of N servers are active. Let be ρ = λ

cµ
,

then:

Lr(c) =
cc(cρ)N

c!
(cρ)c

c!
1−ρN−c+1

1−ρ
+
∑c−1

k=0
(cρ)k

k!

(1)

The Petri Net component is mapped to a Continuous
Time Markov Chain (CTMC), with usual state-space
generation techniques. The corresponding CTMC has
(M + 1) × (N − V − M + 1) states, which leads to
an easily manageable model for a very large parameter
space. By identifying each state si = (n1, n2) with
a tuple where n1 and n2 account respectively for the
markings of places P1 and P2, the following holds:

q(n1,n2),(n1−1,n2) = n1 · γ1 with n1 > 0 (2)

q(n1,n2),(n1,n2−1) = n2 · γ2 with n2 > 0 (3)

The model has a single absorbing state sabs = (0, 0),
and its initial state is s0 = (M,N − V −M). Let Q =
|q(n1,n2)| be the infinitesimal generator of the CTMC,
and p0 the initial state of the system, a zero-vector,
with exception of the component corresponding to state
s0 that is set to one. The transient evolution p(t) of
the system at time t can be computed as follows:

p(t) = p0 · e
Q·t (4)

Let us call r a column vector, where component ri cor-
responding to state si = (n1, n2) accounts for the loss
rate of that configuration:

ri =

{

LR(N − n1 − n2) n1 + n2 > 0
0 n1 + n2 = 0

(5)

As there are not losses that might occur when the sys-
tem is at full capacity (they may occur even when no
recovery is in progress), the rate corresponding to the
absorbing state is set to rabs = 0. The instantaneous
loss rate Φ(t) and the total accumulated losses Ψ(t) at
time t can then be defined as:

Φ(t) = p0 · e
Q·t · r Ψ(t) =

∫ t

0

p0 · e
Q·τ · rdτ (6)

Since the CTMC has a single absorbing state, the aver-
age total loss of the system Ψ̄ can be easily computed
until its full service capacity of N virtual machines is
restored. Without loss of generality, let sabs be the last
state, and use Q̂ and r̂ to denote the sub-matrix and
sub-vector that exclude the absorbing state:

Q =

∥

∥

∥

∥

Q̂ −Q̂ · 1
0 0

∣

∣

∣

∣

r =

∥

∥

∥

∥

r̂

0

∣

∣

∣

∣

(7)

where 0 and 1 are respectively a zero-row and a one-
column vector. Due to the matrix exponential defini-
tion of p(t), the following holds:

Ψ̄ = lim
t→∞

Ψ(t) = p0 · Q̂
−1 · r̂ (8)



CASE STUDY EVALUATION

An e-commerce-oriented firm provides its services by
means of an in-house solution. In case of problems,
the cloud replaces the in-house solution simultaneously
depending on the chosen recovery scenario. Some of
the requests cannot be served until the backup cloud
configuration is fully operational in equivalent condi-
tions with respect to the in-house solution. This cre-
ates a loss depending on the value of each request and
the number of loss requests: as a result, the focus of
this scenario revolves around the study of the tran-
sient when the in-house system fails. Considering a
constant rate of requests, performance measures are a
proxy with respect to the overall loss, which can be
compared against the costs of the chosen cloud-based
recovery solution. For example, with regards to the cost
of cloud services, considering AWS, a popular provider
in the e-commerce world, costs related to the (virtual)
servers and the other -aaS services requested for the
operation of the online store are listed in Table I.

TABLE I: Cloud Service costs (AWS price list).

Item Description Cost

Front-
end and
hot-spare
servers

Server always-on VM 4
CPU, 16GB RAM, 1TB
disk

0.931 $/h

On-
demand
Server

Server on-demand,
same characteristics
as hot-spare, plus 300
MB/month provisioned
network traffic

2.973 $/h

DB-as-a-
Service

48 vCPU, 384GBMem, 10
GB/month, 10M i/o oper-
ations

7.708 $/h

DRaaS AWS Elastic Disaster Re-
covery service

0.357 $/h

The losses caused by the occurrence of a service in-
terruption have been estimated with the following as-
sumptions: the annual revenue is hypothesized to be
10M dollars, sufficiently high to consider the company
able to easily manage complex ICT systems and ser-
vices, and the mean value of orders is $40.

The E-commerce Conversion Rate (ECR) is used to
assess the revenue loss occurred during the interrup-
tion. This rate, conceived to represent the (economical)
performance of online shops, is defined as the number of
visitors to an online shop who make an order versus the
total number of visit of the store in a specified period
[Pradana and Luxianto, 2020]. Therefore, the typical
value of ECR for the chosen e-commerce business sector
(home/office electronics), which is estimated at around
4% by literature [Saleh, 2022], was taken into account
to estimate the revenue losses, as per Table II.

TABLE II: Revenue loss caused by a disaster.

Annual revenue 10,000,000 $

Average amount for orders 40 $

Annual orders No. 250,000
E-commerce Conversion Rate 4.00 %
Annual No. of visits 6,250,000
Hourly No. of visits (λ) 713.5
Revenue loss (hour) 1,141.55 $/h

TABLE III: Service parameters.

Avg. Service time per req. (µ−1) 0.00889 h
Avg. Time to setup a hot spare (T1) 2 h
Avg. Time to setup a new VM (T2) 48 h
Maximum Queue Length (K) 16
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Fig. 3: Scenarios

Fig. 3 presents the three scenarios that have been
evaluated. VMs are represented by rectangles and
cloud services by ovals. VMs with a thick contour are
active, VMs with a thin contour are in hot spare, so
they can be activated in a short time, VMs with a
dashed contour are in cold spare, so they need more
time to be available for processing requests. The first
scenario, represented in Fig. 3 a), is based on the case
in which cloud costs are minimized, as forN VMs in the
configuration of the in-house system N VMs are con-
figured in the cloud, with none of them as hot spares.
The second scenario, represented in Fig. 3 b), is based
on the case in which for N VMs in the configuration of
the in-house system, M of the N VMs are configured
in the cloud as hot spares, with M ≤ N . The third



scenario, represented in Fig. 3 c), is based on the case
in which the cloud is used as a hybrid resource, so that
part of the normal workload of the system is managed
by V cloud VMS, with V < N , which complete the
overall N VMs configuration. These V VMs are conse-
quently always active, while M VMs, with M ≤ N−V ,
are configured as hot spares and N −M − V VMs are
configured as cold spares.

The three scenarios were evaluated using the param-
eters given in Table III, with case b) using respectively
M = 2 and M = 3, and case c) with V = 2 and both
M = 0 or M = 1, and V = 2, M = 0. Fig. 4 shows the
number of active VMs as function of time. The height
of the curve is determined by the number of VMs that
can become active in a limited time, which corresponds
to M+V . Solutions that are hybrid, such as in case c),
start with a higher number of VMs from time zero. The
loss rate as function of time experienced in the various
configurations is shown in Fig. 5: V > 0 and M > 0
can reduce, as expected, the loss rate in the moments
immediately following the disaster. However, the cost
might not be worth the gain, as shown in figure 6. In
particular, the hybrid solutions seem not being worth
the extra price, giving total losses very similar to hot-
spare configuration with the same number of V + M

backup virtual machines.
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CONCLUSIONS AND FUTURE WORK

This paper presented a parametric model to study
the transient effects of the implementation of a cloud-
based disaster recovery solution, based on commercial
offers and on a typical application class. The discussed
model will be the base for further work, more focused
on cost evaluation and parameters selection, aiming at
the design of a decision support methodology for Chief
Information Officers and IT divisions.
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ster, P. G. (2002). The Möbius Framework and Its Implemen-
tation.

[Dreher et al., 2017] Dreher, P., Nair, D., Sills, E., and Vouk, M.
(2017). Cost analysis comparing HPC public versus private
cloud computing. In Cloud Computing and Services Science:
6th International Conference, CLOSER 2016, Rome, Italy,
April 23-25, 2016, Revised Selected Papers 6, pages 294–316.
Springer.

[Gribaudo and Iacono, 2023] Gribaudo, M. and Iacono, M.
(2023). Places, transitions and queues: New proposals for in-
terconnection semantics. In Gilly, K. and Thomas, N., editors,



Computer Performance Engineering, pages 216–230, Cham.
Springer International Publishing.

[Lenk and Tai, 2014] Lenk, A. and Tai, S. (2014). Cloud
standby: disaster recovery of distributed systems in the cloud.
In Service-Oriented and Cloud Computing: Third European
Conference, ESOCC 2014, Manchester, UK, September 2-4,
2014. Proceedings 3, pages 32–46. Springer.

[Malawski et al., 2013] Malawski, M., Figiela, K., and
Nabrzyski, J. (2013). Cost minimization for computa-
tional applications on hybrid cloud infrastructures. Future
Generation Computer Systems, 29(7):1786–1794.

[Mendonça et al., 2018] Mendonça, J., Lima, R., Matos, R., Fer-
reira, J., and Andrade, E. (2018). Availability analysis of a dis-
aster recovery solution through stochastic models and fault in-
jection experiments. In 2018 IEEE 32nd International Confer-
ence on Advanced Information Networking and Applications
(AINA), pages 135–142.

[Miles et al., 2019] Miles, S. B., Burton, H. V., and Kang, H.
(2019). Community of practice for modeling disaster recovery.
Natural Hazards Review, 20(1):04018023.

[Nguyen et al., 2018] Nguyen, T. A., Min, D., Choi, E., and
Márquez, F. G. (2018). Stochastic reward net-based modeling
approach for availability quantification of data center systems.
In Dependability Engineering. InTech Rijeka, Croatia.

[Pradana and Luxianto, 2020] Pradana, R. and Luxianto, R.
(2020). Analysis on user activity in e-commerce website for
performance evaluation and decision making using big data
analytics. In Selected Papers from the 1st International Con-
ference on Islam, Science and Technology, ICONISTECH-1
2019, 11-12 July 2019, Bandung, Indonesia.

[Saleh, 2022] Saleh, K. (2022). The average website conversion
rate by industry.

[Silva et al., 2014] Silva, B., Maciela, P. R. M., Zimmermannb,
A., and Brilhantea, J. (2014). Survivability evaluation of dis-
aster tolerant cloud computing systems. In Proc. Probabilistic
Safety Assessment & Management conference, page 12.

[Trivedi, 2002] Trivedi, K. S. (2002). Sharpe 2002: Symbolic
hierarchical automated reliability and performance evaluator.
In DSN ’02: Proceedings of the 2002 International Conference
on Dependable Systems and Networks, page 544, Washington,
DC, USA. IEEE Computer Society.

[Vittorini et al., 2004] Vittorini, V., Iacono, M., Mazzocca, N.,
and Franceschinis, G. (2004). The OsMoSys approach to
multi-formalism modeling of systems. Software and System
Modeling, 3(1):68–81.

AUTHOR BIOGRAPHIES

ENRICO BARBIERATO is
an Assistant Professor in Data Sci-
ence at Dipartimento di Matem-
atica e Fisica, Università Cat-
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