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Università degli Studi della
Campania ”L. Vanvitelli”

viale Lincoln 5
81100, Caserta, Italy

Francesco Di Natale
Dipartimento di Ingegneria

Chimica, dei Materiali e della
Produzione Industriale
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ABSTRACT

Modern environmental regulations require rigorous
optimization of operations in process engineering to
reduce waste, pollution, and risks while maximizing
efficiency. However, the nature of chemical plants,
which include components with non-linear behavior,
challenges the use of consolidated tuning and control
techniques. Instead, ad-hoc, self-adapting, and time-
variant controls, with a balanced tuning of parameters
at both the subsystem and system level, may be neces-
sary. Needed computing processes may require signifi-
cant resources and high performance systems, if man-
aged by means of traditional approaches and with exact
solution methods. In this regard, domain experts sug-
gest instead the use of integrated techniques based on
Artificial Intelligence (AI), which include Explainable
AI (XAI) and Trustworthy AI (TAI), which are unique
in this industry and still in the early stages of develop-
ment.

To pave the way for a real-time, cost-effective solu-
tion for this problem, this paper proposes an AI-based
approach to model the performance of a real chemi-
cal plant, i.e. a marine scrubber installed on a Ro-Ro
ship. The study aims to investigate Machine Learning
(ML) techniques which can be used to model such pro-
cesses. Notably, this analysis is the first of its kind, at
the best of the authors’ knowledge. Overall, the study
highlights the potential of using ML-based techniques,
to optimize environmental compliance in the shipping
industry.

I. INTRODUCTION

Modern environmental regulations necessitate rig-
orous optimization of operations which are involved
in process engineering in order to decrease waste,
pollution, and risks, as well as maximize the effi-
ciency of each step and sub-system. Managing compli-

ance requires significant computational efforts and non-
negligible performances to ensure that systems keep all
operational parameters within the boundaries that al-
low a safe evolution of their dynamics, with real-time
verification and adjustment of all internal and exter-
nal variables. Considering chemical processes, the na-
ture of chemical plants, which include non-linear com-
ponents and could constitute one-of-a-kind elements of
a chemical plant, these requirements challenge the con-
solidated tuning and control techniques and suggests
the use of ad-hoc, self-adapting, and time-variant con-
trols, possibly with a balanced tuning of parameters at
both the subsystem and the system level.

As the real-time computing operations have to be
performed on-site to guarantee that the control loop is
closed and timely, the case of processes which happen
on ships, without the constant supervision of a full team
of IT personnel and with limited assets in a non-friendly
environment, with a need for constant monitoring and
intervention, suggests a quest for solutions that may
be implemented with reduced devices. Domain experts
in the process engineering area suggest the use of inte-
grated techniques based on Artificial Intelligence (AI)
or, even more interesting, Explainable (XAI) or Trust-
worthy AI (TAI), which are unique in this industry and
are still in the early stages of development. The use of
XAI/TAI techniques is significant for the process safety
and the imputation of responsibility in case of failures.

Shipping transports almost 90% of the world’s com-
merce annually and is critical to international trade and
the global economy. Shipping produces higher sulphur
emissions per tonne-mile of cargo than other modes of
transportation, owing to the high sulphur content of
the adopted fuels.

Sulphur compound limitations established by the In-
ternational Maritime Organization (IMO) under Annex
MARPOL VI regulation are achieved by using the ma-
rine scrubbers. Compliance has been established for
two conditions: sulphur emissions must be equivalent
to those produced by a fuel containing a sulphur con-
centration lower than 0.1% w/w for vessels traveling in
Sulphur Emission Control Areas (SECA); elsewhere, a
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worldwide limit equivalent to sulphur concentration in
fuels lower than 0.5% w/w applies. Marine scrubbers
work under a range of conditions relating to the route
of the ship, weather conditions, and engine running,
which is also dependent on ship movement. Marine en-
gines are either four-stroke or two-stroke diesels that
run on heavy fuel oils. They are a blend of diesel fuels
and mineral oils, and their qualities are governed by
ISO 8217:2017 Petroleum products — Fuels (class F)
— Maritime fuel specifications also known as Residual
Marine Fuels (RMx). These fuels are distinguished by
varying sulphur content and a non-negligible amount
of ashes, ranging from 0.040 to 0.150% w/w. In most
situations, the sulphur concentration of RMx utilized
onboard ships varies from 2 to 3.5% w/w of the fuels,
resulting in an average SO2(g) concentration in the ex-
haust gases of 400-800 ppmv. Sulphur is also released
in the form of SO3(g) , H2SO4(l) , and sulphate particles.
Compliance with the ship emission restrictions of the
MARPOL Annex VI Regulation 14 [5] indicates that a
marine scrubber must be built to ensure SO2(g) removal
efficiency above 97% in SECA zones.

In this paper, a modeling approach based on ML
techniques is presented for a real scrubber installed on a
Ro-Ro ship (cargo ship), considering as target variable
the SO2(g) scrubber outlet concentration. The aim of
this research is to understand if this kind of processes
could be modeled by using explainable machine learn-
ing models. The main original contribution is the appli-
cation of this kind of modeling on a real dataset: at the
best of our knowledge, no such analysis is available in
literature. After this section, the paper is structured as
follows: the next section summarizes related work and
provides a brief background on possible AI uses in pro-
cess engineering. The case study and the used dataset
are then described; after that, the methods utilized in
this paper to develop the model using machine learning
are presented; results and discussion close the paper, as
well as future work and advances.

II. RELATED WORKS

There are different examples in literature of AI appli-
cations in process engineering and the main problems
are related to prediction/modeling, optimization, con-
trol and fault diagnosis.

Considering the prediction/modeling challenges, in
[2] the authors implement AI techniques to predict
NOX emissions from coal-powder power plants, in [1]
the AI was used to evaluate the operation of a wet
scrubber system for air pollution management and in
[11] the collection efficiency of Venturi scrubbers was
evaluated by using different AI techniques; the work
in [12] present an artificial intelligence inference sys-
tem that minimizes the uncertainty of traditional ap-
proaches of risk assessment in pipelines by using case
study from the Colombian oil transportation network
while in [10] an AI technique was implemented to ad-
dress the numerical solutions of a adsorption fixed-bed
column where a monoclonal antibody is purified.

Regarding the optimization problems, in [8] the au-

Fig. 1: Ship Route

thors propose a methodology for optimizing the en-
ergy efficiency of an atmospheric distillation unit with-
out sacrificing product quality or process throughput,
whereas the case studies in [14] present an AI-based
real time optimization (RTO) for two chemical process
examples: a Continuous Stirred Tank Reactor (CSTR)
and a distillation column. Related to control issues, af-
ter the RTO analysis, the authors successfully updated
the control systems of both processes using AI ap-
proaches; always considering the control applications,
in [13] an AI based control-logic system was imple-
mented to regulate product compositions of distillation.
As regards fault diagnosis, in [7] the authors moni-

tored and analyzed flows and compositions of the in-
termediate streams of a wastewater treatment plant,
while in [6] they proposed a fault diagnostic system for
a distillation process.

III. THE CASE STUDY

The case study is based on real-time data from an
open loop scrubber installed on a cargo ship owned by
Grimaldi Group. In the reference year, the maritime
route reported in Fig. 1 runs from Bilbao (Spain) to
St. Petersburg (Russia).
The ship exhaust gases cleaning technology is based

on seawater scrubbing, this cleaning technology de-
pends on chemical-physical properties of the seawater
such as salinity, alkalinity and temperature. These pa-
rameters of seawater depend on the sea crossed along
the trip by the ship.
The equipment used in the process is known as scrub-

ber, it is intended to run continuously in wet circum-
stances. The two combustion units transport exhaust
fumes to the scrubber. The seawater is collected and
injected into the scrubber, where it is sprayed.
A continuous emission monitoring system (CEMS) is

installed on board to demonstrate that the SO2/CO2

ratio at discharge is less than or equal to the required
SO2/CO2 (i.e. 21.7 ppm/%vv out the SECA zones and
4.3 ppm/%vv in the SECA zones) at any loading point
and therefore complies with Regulation 14. Charac-
teristics of any wash water discharged into the sea are
continuously monitored and data for the following pa-
rameters must be recorded with respect to time and



Fig. 2: Data cleaning process

location of the vessel:
• pH (a measure of acidity);
• PAH (a measure of harmful oil components);
• Turbidity (a measure of particulate matter);
• Nitrates.

IV. METHODOLOGY

A. Dataset Description

The dataset used in this work was collected directly
on board the ship described in the case study.
All the data are recorded every ten minutes and are

stored on board in a data base. In addition to the reg-
ulated parameters, this database contains several oper-
ational variables related to ship operation, Venturi and
scrubber operations and several water and environmen-
tal parameters. Data retrieval occurred from 00:00 on
January 1st, 2017 to 8:00 on December 16th, 2017 for
a total of 50294 samples.
Before proceeding with the data analysis, we re-

moved the samples where the scrubber was switched
off because the data acquisition was switched on any-
way. This operation reduced the dataset by 46%. Then
a small number of samples had zero CO2 concentration
with the engines switched on. After this the dataset
reduced of 0.4%. Lastly, all samples with a SO2 con-
centration of less than 5 ppm were deleted, because
they are too close to the detection limit of the instru-
mentation.
The obtained dataset contains around 15.000 sam-

ples and the data cleaning process is summarized in
Fig. 2. The features of the dataset could be divided in
three main sections:
• ship information
• Venturi/scrubber data
• seawater parameter
The ship information section includes parameters

such as latitude, longitude, ship speed, and fuel type.
The Venturi/scrubber data section includes parameters
such as inlet flow and pressure of seawater, inlet pres-
sure of Venturis, and differential pressure of scrubber
vents. The seawater parameter section includes salinity
of seawater.

Table I summarizes the features of the dataset.

B. Data Analysis

The first step was to gain insight into the attribute
properties of the dataset, with descriptive statistics
summarized in Table II. Then, a graphical analysis
was performed to highlight the attribute characteris-
tics, and Fig. 3 provides a general overview of the dis-
tribution of each attribute.
The Python programming language and the Pan-

das library in the Jupyter Notebook environment were
mainly used for the data analysis of the comprehensive
dataset.

C. Evaluation Metrics

To confirm the ability of the regression model to
provide accurate predictions, the dataset was sepa-
rated into 80% training and 20% test portions. To as-
sess prediction ability, the Mean Square Error (MSE)
(Eq.(1)), Mean Absolute Error (MAE) (Eq.(2)) and
Coefficient of determination (R2) (Eq.(3)) were deter-
mined.

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)
2 (1)

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi| (2)

R2(y, ŷ) = 1−
∑n

i=0(yi − ŷi)
2∑n

i=0(yi − ȳi)2
(3)

where:

• yi is the prediction;
• ŷi is the experimental value;
• ȳi =

1
n1

∑n
k=1 yi is the mean of the true values.

MAE and MSE are metrics that measure the ex-
pected value of the error and the quadratic error, re-
spectively, while R2 represents the proportion of vari-
ance of y and provides a general measure of the ade-
quacy of fit of the model.

D. Regression Models

In order to perform the regression task, we imple-
mented six different regression models, four are related
to Linear Regressions, these are Ordinary Least Square
Regression (OLS), Ridge Regression, Lasso Regression
and the Stochastic Gradient Discent (SGD). The last
two are the k-Nearest Neighbors Regressor (kNN-R)
and Support Vector Machine Regressor (SVM-R).
Regarding the set of models for the linear regression,

in these models the target value is expected to be a
linear combination of the features. We use x ∈ Rn to
describe the input data, with n input features, y for
the target variable SO2 concentration, ŷ for the the
predicted value and w for the coefficients as reported
in Eq.(4).

ŷ(w, x) = w0 + wixi + · · ·+ wnxn (4)



Variable Unit Description
Ship Information
Lat degrees Latitude of the ship
Lon degrees Longitude of the ship
Ship Speed kNot Speed of the ship
IFO % w/w Composition of intermediate fuel oil in terms of sulphur
MGO % w/w Composition of marine gas oil in terms of sulphur
SFOC.ME.1 g/kWh Specific fuel oil consumption of main engine 1
SFOC.ME.2 g/kWh Specific fuel oil consumption of main engine 2
Venturi/Scrubber Data
SO2 ppm Concentration of sulphur dioxide in exhaust gases
SC.200.SW.Inlet.Flow m3/h Flow rate of seawater entering the scrubber
SC.200.SW.Inlet.Press. bar Pressure of seawater entering the scrubber
Venturi.1.Inlet.Pressure mmWC Pressure of gas entering the first Venturi
Venturi.2.Inlet.Pressure mmWC Pressure of gas entering the second Venturi
Scrubber.Vent.1.Diff. Press. mmWC Pressure drops across the first Venturi and the scrubber
Scrubber.Vent.2.Diff. Press. mmWC Pressure drops across the second Venturi and the scrubber
Venturi.1.Inlet.Temperature ◦C Temperature of gas entering the first Venturi
Venturi.2.Inlet.Temperature ◦C Temperature of gas entering the second Venturi
Scrubber.Outlet.Temperature ◦C Temperature of gas exiting the scrubber
Seawater parameter
PAH Scrubbing Water ppb Concentration of PAH in the scrubbing water
pH Scrubbing Water pH pH value of the scrubbing water
Turbidity Scrubbing Water FNU Turbidity of the scrubbing water
Temperature Scrubbing Water ◦C Temperature of the scrubbing water
Salinity g/L Salinity of the seawater

TABLE I: Dataset features

Feature Mean StDev Min P25% P50% P75% Max
SC.200.SW.Inlet.Flow 853 71.6 385 802 819 934 967
SC.200.SW.Inlet.Press. 3.02 0.45 1.20 2.70 2.70 3.50 4.10
So2 13.12 5.82 5.00 8.00 12.0 18.0 161
Venturi.1.Inlet.Pressure 44.1 17.6 -29.00 31.00 51.0 58.0 83.0
Venturi.2.Inlet.Pressure 31.2 16.8 -22.0 19.0 34.0 46.0 68.0
Scrubber.Vent..1.Diff..Press. 59.0 13.4 -1.00 50.0 63.0 69.0 89.0
Scrubber.Vent..2.Diff..Press. 46.1 13.5 -7.0 36.00 49.0 57.0 75.0
Venturi.1.Inlet.Temperature 258.6 19.2 32.0 255.0 260.0 267.0 293.0
Venturi.2.Inlet.Temperature 263.1 18.0 33.0 258.0 264.0 269.0 293.0
Scrubber.Outlet.Temperature 13.0 4.67 1.00 10.0 14.0 17.0 27.0
PAH.Scrubbing.Water 4.25 2.96 -3.00 1.00 5.00 6.00 16.0
pH.Scrubbing.Water 8.31 0.25 6.70 8.20 8.30 8.50 9.40
Turbidity.Scrubbing.Water 0.61 4.42 0.00 0.00 0.00 0.10 176
Temperature.Scrubbing.Water 16.7 4.29 4.00 14.0 18.0 20.0 27.0
Lat 56.2 3.04 48.0 54.8 56.5 58.8 60.5
Lon 14.3 8.59 -5.77 8.84 15.4 21.1 29.7
Salinity 17.4 11.8 4.00 8.00 8.00 35.0 35.0
Ship.Speed 8.94 6.71 0.00 6.17 9.13 12.01 164.03
IFO 2.39 0.24 1.62 2.33 2.42 2.51 2.64
MGO 0.07 0.01 0.04 0.07 0.07 0.07 0.08
SFOC.ME.1 182 8.13 175 177 179 186 225
SFOC.ME.2 180 6.74 175 176 177 183 225

TABLE II: Statistical outlook of attributes of the dataset

We also use the notation X to describe the matrix
of input features and w = (w1, . . . , wn) for the vector
of coefficients. The solution of the following problem

provides us with the values of the coefficients w of the
linear model, using the aforementioned methods.



Fig. 3: Outlook of distribution attributes

OLS : min
w

||Xw − y||22 (5)

Ridge : min
w

||Xw − y||22+α||w||22 (6)

Lasso : min
w

1

2nsamples
||Xw − y||22+α||w||1 (7)

Ridge (Eq. (6)) and Lasso regressions (Eq. (7))
address some of the problems of OLS by imposing a
penalty on the size of the coefficients. The α ≥ 0 pa-
rameter controls the entity of penalty.

SGD : min
w

1

nsamples

n∑
i=1

L(yi, f(xi)) + αR(w) (8)

Indeed, considering the SGD Regressor in Eq. (8),
where L is a loss function that measures model (mis)fit
and R is a penalty; also in this case α ≥ 0 is a non-
negative hyperparameter that controls the regulariza-
tion strength. Interested readers may find more details
on the most suitable L and R and about the overmen-
tioned ML algorithms in [3], [9], [4].
Concluding, the kNN-R and the SVM-R were se-

lected because they are non linear algorithms which use
a different approach on a different basis with respect to
the other linear ones: consequently, it is not possible to
define an analogous, yet consistent, formal expression.

V. RESULTS AND DISCUSSION

We have used Python 3.10 and the Sci-Kit Learn li-
brary to implement all previous described regression
models. Before showing regression results per each



Model R2 MSE MAE
OLS 0.5753 14.56 2.817
RIDGE 0.5753 14.56 2.815
LASSO 0.5502 15.42 2.857
SGD 0.5744 14.59 2.824
kNN-R 0.8360 5.620 1.368
SVM-R 0.8346 5.669 1.374

TABLE III: Evaluation Metrics

Fig. 4: Linear Models Results

model, some considerations are needed about the tun-
ing of models parameters. The optimal values of α for
all linear models and also the optimal functions for the
loss function L(yi, f(xi), as well as the penalty function
R(w) for the SGD model, have been selected by using a
k-Fold Cross Validation approach. Following the same
approach, for the kNN-R model 7 has been found to
be the optimal value for k and the Radial Basis Fuc-
ntion (RBF) has been found to be the best kernel for
the SVM-R.

All the regression models were applied using the vari-
able [SO2]OUT = y as target variable and the other
variables described in the Subsection IV-A as features
matrix X. The regressions result are reported in Fig.
4 and 5, respectively for the linear and no-linear mod-
els. The evaluation metrics for each model are shown
in Table III.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we explored the possibility of model-
ing the behavior of a naval scrubber for reducing SO2

emissions using machine learning tools.

We utilized a real dataset that gathered information
on a ship during an entire route, including data on
the scrubber and other relevant characteristics. The

Fig. 5: kNN-R and SVM-R Results

results were encouraging, particularly for support vec-
tor regression (SVR) and k-nearest neighbors (KNN)
algorithms, while not optimal for linear regression al-
gorithms, as expected due to the non-linearity of the
problem itself.
The importance of testing the use of machine learn-

ing algorithms, not necessarily deep learning, stems
from the possibility of future implementation of such
a system on board a ship, to set the scrubber parame-
ters in real-time for optimal performance. Under such
operational conditions, the use of algorithms with low
computational impact could make a significant differ-
ence.
Finally, as the next step in optimizing the proposed

algorithms, we will undertake a careful feature engi-
neering phase, involving a detailed analysis of the phys-
ical parameters involved, and the possible need to add
sensors to the onboard instruments to obtain additional
data that can enhance the model.
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