
OSA : AN OPEN COMPONENT-BASED ARCHITECTURE FOR
DISCRETE-EVENT SIMULATION

Olivier Dalle
Mascotte project

I3S-CNRS/Inria/Université de Nice-Sophia Antipolis
B.P. 93, F-06902 Sophia Antipolis Cedex, France.

E-mail: Olivier.Dalle@sophia.inria.fr

Abstract—This paper describes work in progress to initi-
ate the collaborative development of a new software plat-
form for discrete-event simulation studies, the Open Sim-
ulation Architecture (OSA). OSA is primarily intended
to be a federating platform for the simulation commu-
nity: it is designed to favour the integration of new or
existing contributions at every level of its architecture.
The platform core supports discrete-event simulation en-
gine(s) built on top of the ObjectWeb Consortium’s Fractal
component model. In OSA, the systems to be simulated
are modeled and instrumented using Fractal components.
Fractal components offer many advanced and original fea-
tures, such as multi-programming language support and
the ability to share sub-components. In OSA, the event
handling is mostly hidden in the controller part of the
components, which alleviates noticeably the modeling pro-
cess, but also ease the replacement of any part of the sim-
ulation engine. Apart the simulation engine, OSA aims at
integrating useful tools for modeling, developing, exper-
imenting and analysing simulations. For this purpose it
relies on the Eclipse development platform and its ability
to be extended.

I. Introduction

For modeling and simulation of discrete event systems,
the component approach was introduced in the 70’s, with
the DEVS formalism[21]. Indeed, an interesting property
of the DEVS approach is that it allows to model complex
systems by dividing the initial system, recursively and hi-
erarchically, into smaller sub-systems. Since the DEVS
formalism is a powerful way of formally describing com-
plex systems, it has been widely used in discrete-event
simulation softwares. However, DEVS do not address all
the critical issues raised by component approaches. For
example, as noted in preface of [22], the following critical
issues for simulation have not received enough attention
yet: model credibility (validation, verification, . . .) and
inter-operation (repositories, reuse of components, and
resolution matching).

It is worth stressing that considering these major is-
sues to be specific to the simulation domain would be
too restrictive, because similar or identical issues are also
being addressed in general purpose software[14]. Indeed,
the ability of components to ease the process of sharing
and reusing code parts is clearly an attractive property
for simulation models. However, this is also a common
software issue that is addressed by most general purpose
component models like CORBA[16], COM[19] and Java-
Beans[8].

Consequently, building a new discrete-event simulation
software based on a general purpose component architec-
ture could noticeably help in solving the pending critical

issues in the simulation domain. However, selecting the
most appropriate general purpose component model to
build such a new simulation software becomes a new is-
sue. In this paper, we present our ongoing work on such
a new simulation software, the Open Simulation Archi-
tecture (OSA). OSA relies on one of the latest emerging
component models, the ObjectWeb’s Fractal component
model[5], [6].

The selection of the Fractal component model is no
more than a heuristic answer to the previous selection
issue. Indeed, the main design guideline of OSA is to
pick as much as possible of the recent advances, emerg-
ing technologies, and trends from the general software
engineering solutions and to apply them and study their
benefits in the discrete-event simulation context. Accord-
ing to this policy, the Fractal model exhibits several ap-
pealing innovative features:
• it implements the separation of concerns paradigm[1];
• it allows the sharing of a sub-component between sev-
eral distinct components (the same instance of a compo-
nent may be inserted inside several distinct surrounding
components);
• it offers multi-programming language support: for ex-
ample, components written in the Java language may be
mixed (or replaced) with components written in the C++
or C languages;
• if offers advanced mechanisms to support dynamic
models (creation, destruction, and mutation of compo-
nents), like factories components, template components,
and binding primitives;
• it offers an extensible Architecture Description Lan-
guage (ADL) based on the XML language.

The component model is a key part of OSA, but it is
not enough to build a complete architecture. In addi-
tion to the Fractal component model, OSA adopts the
following other elements and design principles:
• adopt both the Eclipse environment and Eclipse phi-
losophy[7]: provide an extensible environment open to
contributions;
• extend the separation of concern principle to the
whole architecture, identifying distinct user activities and
strongly enforcing a separation between these activities;
• provide a model packaging and versionning system, and
a repository service;
• Support distributed execution and middle-ware inter-
connexion (especially HLA[12]).

Before going further in the details of OSA, let us first
emphasize that most of the previous elements are not yet
implemented or even clearly specified. Indeed, because

OSA is open to contributions, the OSA developments
shall not (and will not) be conducted by a unique devel-
opment team. In order to initiate the collaborative work
process, the author’s development team currently focus
on a few basic elements, such as a simple simulation en-
gine and tools for components edition and assembly.

In section II we first summarize the key features of the
Fractal component model used in the OSA architecture.
Then, through a simple modeling case study, section III
illustrates how the Fractal model helps to enforce the
previous objectives. Eventually, we describe the overall
architecture of OSA in section IV and some of its key
internals in section V.

II. The Fractal Component Model

From a software engineering point of view, a compo-
nent is usually defined as “an independent unit of soft-
ware deployment that satisfies a set of behavior rules and
implements standard component interfaces that allow it
to be composed with other components.”[2]

Fractal is the ObjectWeb Consortium component ref-
erence model[5], [6]. Fractal is neither a software en-
vironment nor a runtime executive. It is a specifica-
tion. In other words, it is a set of rules and features that
a component-based software architecture is supposed to
follow or implement in order to be compliant with this
model. Fractal does not mandate the use of any spe-
cific programming language. On the contrary, it allows
to combine component implementations possibly based
on different programming languages.

The Fractal specification defines several levels and sub-
levels of compliance. These levels allow an implemen-
tation not willing or not able to implement completely
the model to state how much of the specification it com-
plies with. At the lowest level, a component architecture
claiming to be compliant with level 0.0 is just supposed to
implement its components using the object programming
paradigm. At the highest level, a component architec-
ture claiming to be compliant with level 3.3 is supposed
to fully implement all the features of the specification.

Hereafter, we summarize some of these key features
(see [6] for the complete description).

Component external structure. A Fractal component is
an object-oriented unit of code that has external inter-
faces. These interfaces may be of two kinds: either client
or server. The former emits service requests, the latter
receives service requests. Interfaces are named. Their
name must be unique for a given component but names
may be reused for naming interfaces in other components.
A client interface is intended to be bound to a server in-
terface.

Hierarchical structure. Components may have a hierar-
chical structure (fig 1). Hierarchical components are
made of a controller part (also called membrane) and
a content part. The content part is composed of one or
more components. Since a membrane and its content
recursively form a component it may have external inter-
faces. It may also have internal interfaces. As external

interfaces, internal interfaces may be either of type client,
or of type server. Internal interfaces are only available to
components of the content part. A component of the in-
ner part may only bind its external interfaces to external
interfaces of other inner components or to the inner inter-
face of its surrounding controller. Therefore, the model
strictly forbids a component to bind its external inter-
faces to the ones of components outside its membrane or
inside its neighbouring (inner part) components.

controller
content

binding
export import binding

normal binding

Fig. 1. Example of Fractal hierarchical component.

Interface Introspection. Introspection is the ability for an
object to collect useful information about other objects
(possibly including itself). In the Fractal model, compo-
nents have the ability to introspect their interfaces. For
example, a component may retrieve its own list of avail-
able internal and external interfaces.

Functional and controller interfaces. A functional inter-
face is an interface used to offer or obtain services to
or from other components. A controller interface is
a server-only interface. It is offered to a component
to access non-functional services, such as introspection,
(re)configuration, persistence, service policy, life cycle
control (ability to start/stop a component), and so on.

Factories and templates. A factory component is a com-
ponent that has the ability to create other components.
Fractal distinguishes two kinds of factories: generic facto-
ries, that have the ability to create several kinds of com-
ponents, and standard component factories, that only
have the ability to create one kind of component. Tem-
plates components are a special kind of standard factory
components that may be recursively composed of facto-
ries, and serve as a model to create normal components
in a quasi isomorphic manner (isomorphic meaning the
created component has the same hierarchical structure as
its creator template). Since factories are components and
components are created from factories, a special compo-
nent is required to initiate the recursion. This special
component is a generic component factory called “boot-
strap”.

Shared components. The Fractal model allows a compo-
nent to appear in the content of several distinct enclosing
components. Such components are called shared compo-
nents. This property has two noticeable consequences:
(i) a component is possibly placed under the control
of several surrounding controller components and (ii) a

shared component may directly interact with components
located in the inner parts of several distinct components.

III. A simple modeling case study

This case study serves two objectives: (i) provide an
example to illustrate the OSA modeling concepts, and
(ii) demonstrate the usefulness of shared components.

In section III-A we first give a conceptual model of the
system under study. Then, in section III-B, we present
and discuss possible component implementations of this
model with and without shared components.

A. Conceptual model

Figure 2 gives a conceptual view of our example sys-
tem using a very simple form of Data Flow Diagram
(DFD)[20] in which we just show data flow interactions
between system entities.

source sink

transport

source sink

transport

application

node

application

node

Fig. 2. Simple system conceptual model.

The simple system is composed of two identical nodes
that communicate with each other using the message
passing paradigm. Each node of the system is decom-
posed in two sub-systems: the application and the trans-
port. The application sub-system, itself, is decomposed in
two sub-systems: the source and the sink.

The transport sub-system implements a reliable, or-
dered, connectionless, datagram routing and delivery ser-
vice. It supports variable but limited datagram sizes.

The application sub-system contains a source sub-
system that produces and sends new packets, and a sink
sub-system that consumes and discards the packets re-
ceived.

The source sub-system simulates file transfers. It
repetitively executes the following actions:
1. sleep for a random time
2. pick a random file length flen;
3. Call d flen

MAX PKT SIZE e times the transport’s sending
service to send fragments of at most MAX PKT SIZE bytes
(the maximum packet size supported by the transport).

B. Component implementations

In the following, we discuss two particular implemen-
tation policies of our system example: a first one that
does not use shared components and a second one that
does use them.

B.1 Implementation without shared components.

The first implementation that comes to mind without
shared components is the one shown on figure 3. This
diagram reflects the client/server interactions between

components which explains why some arrows have a re-
versed orientation compared to the ones of the data-flow
diagram. For example, in the conceptual model the sink
component receives data while in the client/server inter-
action diagram it initiates the reception service call.

The main quality of this implementation is to be struc-
turally very close to the conceptual model. This good
property is achieved by applying a very simple strategy
in order to reflect interactions that need to cross sub-
systems boundaries: replicate the client and server inter-
faces of the interacting components on the internal and
external sides of any surrounding membrane that need to
be crossed.

source sinksource sink

transport

application

node

transport

application

node

Fig. 3. Component implementation without shared component

In this example, the consequence of the “replicate in-
terfaces” strategy is that a node component have to ex-
pose an external transport interface. Therefore reusing
node components in another system model would require
a minimal understanding of this transport interface which
contradict the separation of concerns principle: nodes
cannot be used as self-contained “black-boxes” that hide
their internal implementation details.

Furthermore, it is worth stressing that the simple
“replicate-interface” strategy has several other negative
effects that contradict the very fundamental philosophy
of component-based design. For example, let’s consider
the evolve-ability good property of the component ap-
proach. The component-based approach is expected to
ease the replacement of a component (when new im-
proved versions of the component are released, for in-
stance). For example, let us consider the following
possible evolution of the node component: a new sub-
component modeling the physical network layer is added
as shown in figure 4. Since interactions between transport
sub-systems have been replaced by interactions between
physical layer components, the component implementa-
tion of the new conceptual model implies modifications
of all the surrounding components.

B.2 Implementation with shared components.

A possible implementation with a shared compoent is
depicted in figure 5. In this new construct, the trans-
port component is built hierarchically and contains two
sub-components: the one named proxy is shared and the
other, named local part is not. Indeed, the transport shall
not be totally shared because the conceptual model im-
plies a distributed architecture of the transport compo-

source sink

transport

source sink

transport

phy. layer phy. layer

application

node

application

node

Fig. 4. A possible evolution of the simple system

nents (one instance in each node component) and this
distributed architecture may have a significant impact
both on the implementation of the component and on
its control. For example, the transport component may
consume processing time in behalf of one of its surround-
ing component (the node component in this example).
In this construct, the distributed part of the transport
is preserved, by means of the local part sub-component,
and this distributed local part may use the shared proxy
component in order to interact directly with the other
instances without crossing any surrounding membrane.

source sink source sink

�����������������
�����������������
�����������������

���������������
���������������
���������������local part

transport

application

node

���������������
���������������
���������������

���������������
���������������
���������������

transport

local part

application

node

same (shared) component

proxyproxy

Fig. 5. Implementation with a shared component

As a conclusion about shared components, philosophi-
cally, one may wonder whether using shared components
is wise since it is a way of bypassing and somehow violat-
ing the components boundaries. It is worth stressing that
in the context of simulation modeling, the isolation prop-
erty of components may be considered from two point of
views, which may be somehow confusing. The first point
of view is the software engineering one and the second
the simulation one. In [6], the authors claim that “para-
doxically shared components are useful to preserve com-
ponent encapsulation”. This is a software engineering
point of view and exactly what we demonstrated with
the simple model case study.

Let us now consider the simulation point of view. Sup-
porting the shared component modelling feature is clearly
breaking the tree structure of components. As stated in
the Fractal specification, the component structure with
shared components may be a directed acyclic graph and

bindings (interaction paths) may form cycles. Since in-
teractions are eventually translated into events, shared
components may imply nasty causal effects, that should
be properly handled by the discrete event simulation en-
gine. However, while supporting this feature may add
some complexity, especially for the engine, it also opens
interesting perspectives, both for the engine implemen-
tation and for modelling.

The previous modelling case study gave an example of
a modelling pattern in which the use of shared compo-
nents may prove to be usefull. In section V, several places
in the simulation engine implementation where the use of
shared components may also prove to be usefull are dis-
cussed. Prior to entering into the details of the simulation
engine implementation, an overall description of the OSA
architecture is first given in the following section.

IV. The OSA architecture

Studying a system using discrete-event computer sim-
ulations imply several activities[3], [22], [13]. OSA aims
at supporting a large number of these activities, which
currently include (but are not restricted to) the one de-
picted on figure 6.

Instrumentation

Experimentation

Analysis

Modeling

Simulation

Deployment

Administration

Functionnal Concerns Typical tasks

● Users management
● Concerns extensions, plugins

● Simulation runs scheduling
● Middleware settings

● Simulation engine development
● Simulation engine configuration

● Model component development
● Scenario definition

● Data probe definition
● Data collectors setting

● Scenario parameters setting
● Scenario selection

● Statistical analysis
● Plotting, visulisation, animation

External
tools

Eclipse
IDE

User Interface

Fig. 6. OSA functional architecture.

A typical simulation study life-cycle is made of several
iterations of the three following steps:
1. the simulation preparation, which involves tasks re-
lated to nearly all the functional concerns depicted on
figure 6 except the analysis one;
2. the simulation execution (which belongs to the deploy-
ment functional concern);
3. the simulation run(s) analysis.

Notice that during the early iterations, while the model
of the system is still under development, these three steps
exist in a slightly different form: the simulation prepara-
tion consists in developing new models and building test
scenarios, while the simulation run(s) analysis mainly
consists in checking the validity of the models by com-
paring the effective outputs with the expected ones.

At any iteration of this life-cycle, the OSA architecture
aims at providing a strong support for the two first steps,
by means of an integrated (graphical) user interface and
a simulation engine. Support for the last step, analysis,
may be envisaged but is not a high priority because off-
the-shelf power-tools already exist for this purpose.

The OSA software architecture follows a N-tier design
which may involve the following layers: a front-end user
interface layer, a middle-ware executive layer, a simula-
tion engine layer, a data layer for results storage, and
a source code management layer for models storage and
versionning.

The three first layers are described further in the fol-
lowing sections.

A. Front-end user interface

The OSA architecture must provide tools to assist
users in many tasks. Furthermore, the architecture
should enforce a strong cooperation of these tools, us-
ing an integrated and easily extensible environment. For
this purpose, we selected the Eclipse platform[11], [7].

Eclipse already provides a large amount of plugs-in to
assist developers in various software development tasks:
specification, development in several programming lan-
guages, unit testing, debugging, source code manage-
ment, and so on. Some of these plugs-in are dedicated
to the development of new Eclipse plugs-in, which ex-
plains the ever growing list of available plugs-in, and con-
sequently its ever growing popularity.

An interesting feature of the Eclipse plugs-in is their
ability to be extended. Indeed the Eclipse plug-in API
defines extensions points[10]: plugs-in that implement
such extension points (this is not mandatory) may be
extended in order to build new enriched or specialized
versions of the initial plugs-in.

Eclipse plugs-in are mainly used to build new Eclipse
perspectives. An Eclipse perspective is dedicated organi-
zation of the Eclipse Graphical User Interface (GUI), of-
fering support and specialized tools for a particular task.

Therefore, the development of the OSA user interface
mainly consist in providing new Eclipse plugs-in and per-
spectives to support users in (possibly) all the tasks of the
simulation study life-cycle. Within Eclipse, new plugs-in
and perspectives may be developed concurrently, which
enforces our collaborative development philosophy. Nev-
ertheless, once new plugs-in and perspectives are made
available for the community, this is up to each user to
decide whether to install them or not.

B. Middle-ware layer

A middle-ware layer may optionally be used to support
the execution of the simulations. Indeed, such architec-
tures are often criticized for their potentially poor perfor-
mance. Since performance is a critical issue for simula-
tion, this architectural choice may be unwise. Therefore,
the middle-ware layer is not mandatory in the OSA ar-
chitecture, thanks to the Fractal component model: the
distribution of component executions across a network
through a middle-ware is an optional feature of Fractal
that may, or may not be activated, without any change
in the component functional implementations (the part
of components that implements models).

The OSA architecture may support the distribution of
the simulation executions across a network in different
manners:

• distribution of several simulation-runs, each one ex-
ecuting on a single computer node. In this case, the
distribution support required is very limited (a “gang-
scheduler” facility);
• distribution of one (or several) simulation runs across
the network, simply using the Fractal model ability to
distribute transparently the execution of the components,
but without any cooperation of the simulation engine.
Since the minimal requirement of the simulation engine,
whether it executes in parallel or not, is to ensure con-
sistency of event processing between components, this
implements de facto a conservative mode of parallel exe-
cution[9];
• distribution of one (or several) simulation runs across
the network, using the Fractal model ability to distribute
the execution of the components, and the cooperation of
the simulation engine. Provided the components have the
persistency non-functional feature in order to regularly
save their global simulation state, this may lead to the
optimistic modes of parallel execution[9];
• the last form of distribution, which is somehow com-
plementary of the previous ones, is achieved when the
middle-ware is used to bridge together several simulation
architectures, using the HLA standard for example[12].

C. Back-end simulation engine

The simulation engine is distributed over all the
components that have a surrounding membrane im-
plementing the simulation non-functional services.
These services are accessed through a dedicated
simulation-controller interface. Component with a
simulation-controller interface are called managed
components and those without such an interface are
called passive components. This interface provides a uni-
fied access to a simulation-controller implementa-
tion. The simulation-controller implementation is
not fixed. It may be totally or partially replaced.

The OSA simulation engine supports the three follow-
ing semantics of interaction between components:
• synchronous interactions: the service requested by the
client is synchronous with the simulation time (no simu-
lated time consumption);
• asynchronous interactions: the client thread is not
blocked while the service is being processed, concurrently,
by the server. This asynchronous mode of interaction im-
plies the client shall not expect a meaningful return value
from its service call;
• blocking interactions: the client thread is blocked un-
til the service is completed (or aborted) by the server.
The client may expect a meaningful return value from
its service call.

When at least one of the involved peers is a passive
component, the only interaction mode available is the
synchronous one.

The OSA simulation engine automatically translates
asynchronous and blocking interactions into discrete-
events, provided that both peers are managed compo-
nents and thus each have a surrounding membrane with
a simulation-controller interface.

The technique used to translate service invocations
into simulation events was first introduced in [15]. It
consists in using an object-oriented construction called
a functor. A functor is the transformation of a method
invocation into an object. Indeed, when a component
issues a (functional) service request, through its client
interface, its call is automatically intercepted by the con-
troller part of the source component and reified into an
event object.

This event object contains the current time in simula-
tion, the event type, an object encapsulating the method
called on the server side and its arguments (functor), and
possibly other data that do not need to be further de-
scribed.

In order to ensure a minimal inter-operability between
components, the following rules are imposed :
• The particular event created at the time the service
call is issued by the client is initialized with a type value
of SOC (Start Of Call) and inserted in the event queue
of the server interface;
• In case of a blocking service the particular event cre-
ated at the time the service is completed by the server is
initialized with a type value of EOR (End Of Reply) and
inserted in the event queue of the client interface.

V. Implementing a simulation engine in OSA

As already mentioned in previous section, the sim-
ulation engine implementation is located (distributed)
in the simulation-controller implementations that
lay in each managed component. However, be-
cause Fractal supports shared components, and con-
trollers may be implemented as Fractal components, the
simulation-controller, and thus the whole simulation
engine may be shared between all managed components.
In this case, the simulation engine becomes fully central-
ized.

Implementing a new simulation engine for OSA
mainly consist in developing new event management
policies and replacing the corresponding parts of
the simulation-controller implementation. The
simulation-controller implementation is build using
three types of abstractions, each having their own in-
terface: the event queues, the event schedulers, and the
explicit simulation services.

Dynamic structure of models[4] may be implemented
using the special factory and template components of
the Fractal component model. Mutation of models and
multi-models[17] may be implemented by replacing the
implementation of the non-functional binding primitives
of the components. This replacement is easy because the
binding primitives are grouped together in a binding con-
troller that lays in the controller-part of each component.

A. Event queues

An event queue should be associated with each func-
tional interface of a component. But since event queues
are components and components may be shared, all the
interfaces of a component may share the same event

queue. Or some may share a common queue and oth-
ers may have their own.

B. Scheduling policy

Each managed component of the simulation should be
associated with a scheduler. Like queues, schedulers may
be shared amongst several components. The scheduler
manage the current execution state of the component. A
typical scheduler would support the following states :
• INIT; the component is in its initial state and awaiting
for its start() service to be called;
• IDLE: the component is sleeping and waiting for an
incoming request;
• RUNNING: the component is consuming processing time
because it is servicing a request;
• BLOCKED: the component has issued a blocking service
call and is waiting for the EOR event (service comple-
tion).

A typical blocking interaction between a client and a
server component is shown on the temporal diagram of
figure 7.

t

BLOCKED RUNNING

t

IDLE RUNNING IDLE

EndOfReply

RUNNING

Server

Client

StartOfCall

Fig. 7. Temporal diagram of interactions during a blocking service
call.

As soon as several schedulers act concurrently, a syn-
chronizing policy has to be implemented in order to en-
force simulation time consistency[9].

C. Explicit simulation services

During the simulation, the functional services (the ser-
vice that implement the conceptual model of the sys-
tem) may use the following services offered by the non-
functional simulation-controller interface of their
surrounding component:
• current time(): returns the current simulated time;
• terminate()/abort(): requests normal/abnormal
termination of the simulation execution;
• wait until(time):
• wait until(condition):
• wait until(time,condition): the current compo-
nent thread requests to stay in RUNNING state until the
simulation time reaches time or the condition condition
is matched. New incoming service calls may still be ac-
cepted by the component if the component has multi-
processing capability and an idle processing thread is
available. Otherwise incoming calls may be either queued
or refused according to the parameters of the queue of
server interface on which the call was received.
• release(condition): resume execution of a com-
ponent thread waiting for condition condition to be
matched. This call is synchronous (non blocking): it

returns true in case a thread is woken up and false oth-
erwise.
• release(condition,time): resume execution of a
component thread waiting for condition condition to be
matched. This call is blocking its caller thread at most
until time is reached. It returns true in case a thread is
woken up and false otherwise (timeout time is reached).
• spin lock()/spin unlock(): primitive intended for
components with multi-processing capability to ensure
mutual exclusion between processing threads of the com-
ponent (spinlock() blocks its caller processing thread
as long as any other processing thread in the same com-
ponent is not in the IDLE state).

VI. Conclusion

In this paper we introduced the Open Simulation
Architecture and explained how this novel architecture
could meet the expectations of a large part of the
discrete-event simulation community. Indeed, the OSA
architecture aims at (i) providing an open platform that
supports simulationists in a wide set of their simulation
activities, (ii) allowing the reuse and sharing of system
models by means of a flexible component model, (iii)
favouring contributions from the simulation community
at any level of the architecture.

The critical issue of integrating numerous software con-
tributions into a single open platform is addressed first
by relying on a powerful and extensible GUI, Eclipse,
whose philosophy is clearly to ease and favour such con-
tributions and secondly by choosing the Fractal compo-
nent model, which offers many interesting features, such
as shared components and the ability to support multi-
programming language. Furthermore, the Fractal model
adopts the separation of concerns paradigm, which ease
the process of replacing any part of the architecture, from
the model components to the very core parts of the sim-
ulation engine. Therefore, OSA may be used both as a
testbed to experiment new parallel and distributed sim-
ulation engine algorithms or as an integration platform
to reuse existing discrete-event simulation models.

It shall be noted that the OSA simulation engine does
not enforce the use of any particular discrete-event for-
malism because the event management is kept hidden in
the components non functional part. The resulting model
of interactions is a classical (client-server) procedural pro-
gramming model, which may serve as a basis to support
or encapsulate most popular modeling formalisms, such
as Petri nets or DEVS.

In order to initiate third party contributions in OSA,
a detailed specification of the simulation-controller
interfaces and a first implementation of the simulation
engine, based on the Java language and Aspect Ori-
ented Programming techniques, are planned to be re-
leased during the first quarter of 2006. This implementa-
tion is based on the AOKell implementation of the Frac-
tal model[18].

VII. Acknowledgements

This work is co-sponsored by the french National Re-
search Agency and the INRIA Research Institute.

References

[1] M. Aksit. Separation and composition of concerns in the
object-oriented model. ACM Computing Surveys, 28(4es):148,
Dec. 1996.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn,
L. McInnes, S. R. Parker, and B. A. Smolinski. Toward a
common component architecture for high-performance scien-
tific computing. In HPDC, 1999.

[3] J. Banks, editor. Handbook of Simulation Principles, Method-
ology, Advances, Applications, and Practice. Wiley-EMP,
1998.

[4] F. Barros. Modeling Formalism for Dynamic Structure Sys-
tems. ACM Transactions on Modeling and Computer Simu-
lation, 7(4):501–515, 1997.

[5] E. Bruneton, T. Coupaye, and J. Stefani. Recursive
and dynamic software composition with sharing. In Sev-
enth Intl. Workshop on Component-Oriented Programming
(WCOP02), ECOOP2002, Malaga, Spain, June 2002.

[6] E. Bruneton, T. Coupaye, and J. Stefani. The frac-
tal component model specification. Available from
http://fractal.objectweb.org/specification/, February 2004.
Draft version 2.0-3.

[7] J. des Riviêres and J. Wiegand. Eclipse: A platform for inte-
grating development tools. IBM Systems Journal, 43(2):371–
383, 2004.

[8] R. Englander. Developing Java Beans. O’Reilly, 1997.
[9] R. M. Fujimoto. Parallel and distributed simulation systems.

Wiley Series on Parallel and Distributed Computing. J Wiley
& Sons, 2000.

[10] E. Gamma and K. Beck. Contributing to Eclipse: principles,
patterns, and plugs-in. The Eclipse series. Addison-Wesley,
2004.

[11] S. Holzner. Eclipse. O’Reilly, May 2004.
[12] IEEE-SA. IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA), Federate Interface
Specification. Std 1516.1-2000.

[13] R. K. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley, 1991.

[14] K.-K. Lau and Z. Wang. A Taxonomy of Software Compo-
nent Models. In 31st EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO-
SEAA’05), Porto, Portugal, August 2005. IEEE.

[15] P. Mussi and G. Siegel. The prosit sequential simulator: a
test-bed for object oriented discrete event simulation. In Proc.
of 7th European Simulation Symposium, Erlangen, Germany,
October 1995.

[16] OMG. Corba Components. Revision 3.0., March 1999. OMG
TC Document orbos/99-02-05.

[17] T. I. Oren. Dynamic Templates and Semantic Rules for Sim-
ulation Advisors and Certifiers. In P. A. Fishwick and R. B.
Modjeski, editors, Knowledge Based Simulation: Methodology
and Application, pages 53–76. Springer Verlag, 1991.

[18] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. Re-
cent developments in AOKell. Fractal Workshop @ Middle-
ware’05, Grenoble, France, Dec. 2005.
http://aofractal.gforge.inria.fr.

[19] R. Sessions. COM and DCOM: Microsoft Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[20] E. Yourdon. Modern Structured Analysis. Prentice-Hall, 1989.
[21] B. P. Zeigler. Theory of Modelling and Simulation. Wiley,

1976.
[22] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Mod-

eling and Simulation. Academic Press, 2nd edition, 2000.

OLIVIER DALLE is assistant professor
in the C.S. dept. of Faculty of Sciences at
University of Nice-Sophia Antipolis (UNSA).
He received is BS from U. of Bordeaux 1
and his M.Sc. and Ph.D. from UNSA. From
1999 to 2000 he was a post-doctoral fel-
low at the the french space agency cen-
ter in Toulouse (CNES-CST), where he
started working on the simulation of satel-
lite telecommunication networks for mul-
timedia. His web-page can be found at

http://www.inria.fr/mascotte/Olivier.Dalle/.

	c0: Proceedings 20th European Conference on Modelling and Simulation
Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006
ISBN 0-9553018-0-7 / ISBN 0-9553018-1-5 (CD)

