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BSTRACT 

Systems become increasingly complex. Their 
decomposition into smaller units is the usual way to 
overcome the problem of complexity. This has 
historically led to the development of atomized 
structures consisting of a limited number of 
autonomous subsystems that decide about their own 
information input and output requirements, i.e. can 
be characterized by what is called an information 
closure. Autonomous subsystems can still be 
interrelated and embedded in larger systems, as 
autonomy and independence are not equivalent 
concepts. These ideas are  gaining very strong 
interest in both academia and industry, and the 
atomized approach to information flow modelling 
and evaluation is an idea whose time has certainly 
come. This presentation discusses some modelling 
and evaluation issues, and challenges existing in the 
exciting area of knowledge capture for  information 
flow managemen support for autonomous 
subsystems. 
 
I
 
NTRODUCTION 

Managing complex systems that function in 
changing and uncertain information-rich 
environments requires greater understanding and 
knowledge about the role of information in systems 
operation. To gain this understanding, an approach 
is needed that could be used to model and evaluate 
information flow in different situations. Such an 
approach is presented in this paper. 
 
    In fact, this paper goes well beyond the above in 
proposing an approach considering important 
practical issues of information flow, i.e. delays, 
incompleteness, imprecision and loss in value. The 
current practice of dealing with such issues are 
mostly when problems are detected and reactively. 
This situation may not be desirable and definitely be 
a major drawback for systems that more and more 
rely on the timeliness and quality of information for 
their operation. The proposed approach, in this 
respect, would greatly enhance the understanding of 

the various factors that influence the quality of 
information to the benefit of better decisions in 
adequate time, which in fact is the core of  the 
philosophy behind any information system 
development. 
 
    System decomposition into smaller units is the 
usual way to overcome the problem of complexity. 
This has historically led to the development of 
atomised structures consisting of a limited number 
of autonomous subsystems/agents that decide about 
their own information input and output 
requirements, i.e. can be characterised by what is 
called an information closure. Autonomous 
subsystems/agents can still be interrelated and 
embedded in larger systems, as autonomy and 
independence are not equivalent concepts. These 
ideas are recently gaining very strong interest in 
both academia and industry, and the atomised 
approach to systems modelling, design and 
development is an idea whose time has certainly 
come (Morimoto 2001, Tharumarajah 1999, 
Prakken 2000, O’Grady 19999). The issues 
discussed in this paper will focus on information 
flow for autonomous subsystems/agents. 
 
     In a real-world industrial context, autonomous 
subsystems/agents consist of groups of people 
and/or machines tied by the flow of information 
both within a given subsystem and between this 
subsystem and its external environment (Szczerbicki 
1996a). We will briefly present a modelling 
approach that could be used to evaluate such an 
information flow. The suggested approach allows 
for the evaluation of an information flow to be 
performed for different types of external and 
internal environments of a given system. The 
approach also accommodates the question of 
uncertain and imprecise information flow 
modelling. 
 
A NALYTICAL MODELLING APPROACH 

An autonomous subsystem/agent is usually 
functioning in the external environment which 
determines the decision-making process. Its 
knowledge could be described by the following: 
 



(i) characteristic of the external 
environment (relationship between 
variables describing the environment and 
its dynamics), 

(ii) characteristic of the internal 
environment, i.e. the relationship 
between the actions of the members of 
an agent, 

(iii) the range of information about variables 
describing external environment.   

    
   The formal representation of the above knowledge 
is presented in this Section. For the knowledge 
extraction purposes, a general approach is needed 
that captures the whole of the behaviour of an agent. 
Such an approach, based on correlation between 
information and energy, is very briefly outlined 
next. Certain features implemented in previous 
research presented in (Szczerbicki 2000, 2002a, 
2002b) are included for the sake of completeness.  
 
   Let A represent the set of possible actions which 
can be undertaken by the members of an agent, Z 
the set of corresponding consequences, and X 
random variables describing the actual state of the 
xternal environment. It can be assumed that: e

 
z=f(a,x)                               (1) 

 
as the particular consequence (z) depends usually on 
an action (a) undertaken in the particular state of the 
environment (x). On the other hand, the decision 
about particular action depends on information that 
is available about the state of the environment. If ß 
tands for the decision function, we have  s

 
a=ß(d)                                (2) 

 
where d represents information. 
 
   For general description of the function f(a,x) let us 
consider certain correlation between information, 
action, and energy. Its theory is relatively young, 
but is has already been pointed out that in certain 
situations energy can be replaced by information 
and vice versa (matsumoto 19999, Bogdan 2000). 
This replacement is of statistical character and 
according to it for certain amount of information, 
say C1, certain task can be performed using E1 
energy (Szczerbicki 1996a). Then, for a given C1 
there exists the best way (action Aopt) to fulfill the 
job, i.e. the action which uses E1 energy. Actions 
different than Aopt result in more energy 
consumption. The above concept was presented in 
detail in (Szczerbicki 1996a, 2003) and used to 
arrive at the best decision functions ßi . It can be 
shown that for n-person agent we have (Szczerbicki 

a, 2003): 1996 
ß (di)+ΣqE[ßj(dj)di=E(bidi)     (3) i         j≠i 

 

where i, j = 1, 2, ..., n. 
 
   Formalization of agent decision making process 
expressed by (3) is a tool necessary for modelling 
and evaluation of information flow in an 
autonomous system. Information flow connects 
agent members with the external environment 
described by random variables X. The connection is 
represented by information structure. This structure 
is modelled by matrix C in which cij=1 if the ith 
member has obtained (either by observation or 
communication) information about the jth variable 
X realization (if cij=0 he/she has not got it). The ith 
variable X realization can be observed only by the 
ith member of the agent. He/she can be informed 
about other realizations only when communication 
(information exchange) inside the agent is 
organized. The value of information structure 
defined above is given by the following 
Szczerbicki 2000): (

 
VC=min E[f(a, X) C0]-minE[f(a, X)C],         (4) 

 
where min E[f(a, X)C0] represents the utility of 
information structure C0 in which cij=0 for each i 
nd j. Using (3) the VC can be represented by: a

 
VC=E[bTß].                              (5) 

    
   With the modelling tools given by (3) and (5) one 
can easily extract knowledge about autonomous 
systems functioning in various decision situations. 
In Table 1 some samples of such a knowledge are 
specified for static environments [11]. This 
knowledge is easily  codified and can be used in 
control, command, and management of autonomous 
systems. Similar rules can be easily captured for 
decision situations involving dynamic environments 
(please see [11] for details). 
 

Table 1:  Production rules describing agents 
functioning in static environment 

_________________________________________ 
 
RULE 11 

IF  an external environment of an 
autonomous agent is static, 

AND  it is described by random variables, 
THEN  the value of an information structure 

that represents the flow of 
information between the agent and its 
environment depends on interaction 
between agent members, correlation 
between random variables, and their 
variance. 

 
RULE 12 

IF an external environment of an 
autonomous agent is static, 

AND it is described by a random variable, 



THEN the value of information about this 
variable realization is proportional to 
the value of its variance. 

 
RULE 13 

IF an external environment of an 
autonomous agent is static, 

AND it is described by random variables, 
THEN full information has the value that is 

always greater or equal to the value of 
any other information structure. 

 
RULE 14 

IF an external environment of an 
autonomous agent is static, 

AND there is no interaction in the internal 
environment, 

THEN it is enough to restrict the information 
flow only to observation; organizing 
an information exchange does not 
improve the value of a resulting 
information structure.  

 
RULE 15 

IF an external environment of an 
autonomous agent is static, 

AND  there is an interaction in the internal 
environment, 

AND the relationship between variables 
describing the external environment 
is of statistical character, 

THEN information structure should include 
observation and communication. 

 
RULE 16 

IF an external environment of an 
autonomous agent is static, 

AND the relationship between variables 
describing the external environment 
is given by function dependence, 

THEN communication between agent 
members does not affect the value of 
information structure; information 
flow should be restricted to 
observation. 

 
RULE 17 

IF an external environment of an 
autonomous agent is static, 

AND interaction in the internal 
environment is of substitute character, 

THEN positive correlation in the external 
environment is preferred. 

 
RULE 18 

IF an external environment of an 
autonomous agent is static, 

AND interaction in the internal 
environment is of complementary 
character, 

THEN negative correlation in the external 
environment is preferred. 

 
RULE 19 

IF an external environment of an 
autonomous agent is static, 

AND the relationship between variables 
describing the external environment 
is given by function dependence, 

AND  there is an interaction in the internal 
environment, 

THEN  it is easier to improve the value of 
information flow for small agents 
than for larger agents. 

 
RULE 20 

IF an external environment of an 
autonomous agent is static, 

AND the relationship between variables 
describing the external environment 
is of statistical character, 

AND  there is no interaction in the internal 
environment, 

THEN efficiency of an information flow 
increases with increasing n. 

 
RULE 21 

IF an external environment of an 
autonomous agent is static, 

AND the relationship between variables 
describing the external environment 
is of statistical character, 

AND  there is an interaction in the internal 
environment, 

AND there is no communication between 
agent members, 

THEN the increase in the value of 
information structure decreases with 
increasing n. 

 
RULE 22 

IF an external environment of an 
autonomous agent is static, 

AND the relationship between variables 
describing the external environment 
is of statistical character, 

AND  there is an interaction in the internal 
environment, 

AND there is  communication between 
agent members, 

THEN efficiency of an information flow 
increases with increasing n. 

  
RULE 23 

IF an external environment of an 
autonomous agent is static, 

AND  there is an interaction in the internal 
environment, 

THEN  the losses caused by incomplete 
information increase with decreasing 



correlation in the external 
environment.  

 
 
S
 

OFT MODELLING APPROACH 

A formal quantitative model as presented in the 
previous Section can be helpful in creation of 
knowledge connected with an information flow 
evaluation in autonomous systems.  Because of its 
complexity the model cannot be used for analysis 
and evaluation of an information flow in all possible 
decision situations. Qualitative modeling and 
reasoning, on the other hand, are areas of Artificial 
Intelligence (AI) that focus on reasoning about the 
behaviour of real life complex systems without 
relying on numbers.  In the development of an 
information structure for a given system, Qualitative 
Reasoning (QR) tools can play a role similar to that 
of traditional analysis based on the mathematical 
model. 
 
   Next, some non-quantitative tools are discussed 
for addressing the problem of knowledge acquisition 
for an autonomous subsystem/agent in various 
decision situations. 
 
C onnectionist systems 

Problem solving tasks, such as information structure 
development, may be considered pattern 
classification tasks. The system analyst learns 
mappings between input patterns, consisting of 
characteristics of system's external and internal 
environment, and output patterns, consisting of 
information structures to apply to these 
characteristics. Thus, neural networks (neural-based 
expert systems) offer a promising solution for 
automating the learning process of the analyst. 
 
   As we already know,  systems analyst, while 
developing an information structure for a given 
system, transforms certain characteristics of a 
system into recommendations concerning the flow 
of information. These characteristics represent the 
input for the system and their full description (for 
both static and dynamic environments)  includes 5 
parameters: correlation in the external environment 
(r), dynamics (t), interaction in the internal 
environment (q), delay (d), and type of the process 
describing the external environment (w).  Output 
consists of the following decisions 
(recommendations): (i) observation (or sensoring) 
should be present, and (ii) exchange of information 
should be present. An input portion together with an  
output portion of the data represents a training pair. 
The training pairs were used to train a 5-10-2 neural 
network (Szczerbicki 1996b). 
 
   The target values for each output node were 
normalised in such a way that the maximum target 

for each node received a value of 0.75 and the 
minimum target for each node received a value of 
0.25. The training values for each input node were 
identically normalised. The learning rate  and 
momentum term of 0.9 were used in the network. 
The network was trained using error back 
propagation procedure with a training tolerance of 
5%. The network was considered trained if, for all 
training pairs and output nodes, |(desired output - 
actual output)/(desired output)| < tolerance.  
    
   After training, additional characteristics of a 
system were generated for use by the network. Five 
sets of characteristics were submitted to the 
network. In response, the network suggested five 
information flow recommendations. In all cases the 
recommendations agree with the IF ... AND ... 
THEN rules presented in Table 1. 
 
D
 

ecision tree classifiers 

Decision tree classifiers are used successfully in 
many diverse areas. Their most important feature is 
the capability of capturing descriptive 
decisionmaking knowledge from the supplied data 
(Safavian and Landgrebe 1991). Decision tree can 
be generated from training sets. The procedure for 
such generation based on the set of objects (S), each 
belonging to one of the classes C1, C2, ..., Ck  is as 
follows (Quinlan 1990): 
 
Step 1. If all the objects in S belong to the 

same class, for example Ci, the 
decision tree for S consists of a 
leaf labelled with this class. 

 
Step 2. Otherwise, let T be some test with 

possible outcomes O1, O2, ..., On. 
Each object in S has one outcome 
for T so the test partitions S into 
subsets S1, S2, ... Sn where each 
object in Si has outcome Oi for T. 
T becomes the root of the decision 
tree and for each outcome Oi we 
build a subsidiary decision tree by 
invoking the same procedure 
recursively on the set Si.     

    
   The above procedure is applied to training sets. 
The training sets are delivered from the analysis 
based on the quantitative model presented earlier.  
   Suppose, for illustration purposes, that we are 
interested in decision making situations involving 
static environment only. For such cases the 
following rules can be delivered using decision tree 
classifiers (Szczerbicki 1996b): 
 
Rule 1 
IF an external environment of a system is 

static 
AND it is described by random variables 



AND there is no interaction in the internal 
environment 
THEN communication (exchange of information) 
between system elements is not necessary 
 
Rule 2 
IF an external environment of a system is 

static 
AND it is described by random variables 
AND there is  interaction in the internal 
environment  
AND  the relationship between variables 

describing  the external environment is of 
statistical character 

THEN exchange of information between system 
elements should be organised   
 
Rule 3 
IF an external environment of a system is 

static 
AND it is described by random variables 
AND there is  interaction in the internal 
environment  
AND  the relationship between variables 

describing the external environment is 
given by function dependence 

THEN exchange of information between system 
elements is not necessary 
 
   The use of decision trees is simple and as effective 
as the analysis based on a rigorous mathematical 
model (the production rules formulated above are  
the same as the rules based on quantitative 
modelling given in Table 1).   
 
S igned directed graphs 

A directed graph, or digraph, is a graph in which all 
edges are directed (Chartrand and Oellermann 
1993). A signed digraph is a digraph with either + or 
- associated with each edge. SDG nodes are chosen 
as variables relevant to or representative of the 
problem that is studied. There is an edge from 
variable A to variable B if a change in A has a 
significant direct effect on B. The sign of the edge is 
+ if an increase in A leads to an increase in B, and a 
decrease in A leads to a decrease in B. The sign is - 
if the effect is opposite; an increase in A leads to a 
decrease in B, and a decrease in A leads to an 
increase in B.    
            
   According to the mathematical model, information 
flow depends on the following state parameters: 
delay of information (d), amount of information (a), 
dynamics in the external environment (w), variance 
in the external environment (s), and interaction in 
the internal environment (q). The above parameters 
influence the loss in the value of information caused 
by delay (L1), the loss in the value of information 
caused by incompleteness (L2), and total loss (LV). 
Based on relationships and dependencies described 

by mathematical model, the SDG can be developed 
and then simplified. Two principles are used for the 
simplification process. The first one is the principle 
of removal of intermediate nodes and the other one 
is the simplification of positive feedback loop.  
 
   The following logic rules can be written for the 
model after simplification (Szczerbicki 2002b):  
 
SDG Rule 1: 
IF [d=+]  .and.  p[dLV] 
THEN it is a possible solution pattern for a positive 
change in d 
 
SDG Rule 2: 
IF [a=+]  .and.  n[aLV] 
THEN it is a possible solution pattern for a positive 
change in a 
 
SDG Rule 3: 
IF[w=+]  .and.  p[wLV] 
   .and.  p[wd] 
   .and.  p[dLV] 
THEN it is a possible solution pattern for a positive 
change in w   
 
   Using the above logic rules, the qualitative 
behaviour of the SDG model can be found. It is easy 
to notice that the corresponding qualitative states 
(consistent patterns) for the parameters of our 
interest are given as follows: 
 
(i) solution pattern for a positive change in d 
 
d a w LV 
+ 0 0 + 
 
(ii) solution pattern for a positive change in w 
 
d a w LV 
0 + 0 - 
 
(iii) solution pattern for a positive change in a 
 
d a w LV 
+ 0 + + 
 
   The above results of qualitative simulation are 
again the same as quantitative information flow 
modelling and evaluation. For example, they depict 
the adverse character of two contrary information 
attributes, i.e. delay and incompleteness. They also 
show clearly the effects of increasing dynamics in 
the external environment. More generally, the 
results show that as far as the analysis of overall 
directions of a system behaviour is concerned the 
simple qualitative model can be sufficient at a 
minimum level of complexity.   
 
 



C
 

ONCLUSION 

This paper tries to signal some of the emerging 
challenges and opportunities in the area of 
information flow modelling and simulation based on 
formal mathematical modelling platform. It also 
includes the preliminary results of some non-
quantitative procedures applied in the process of 
knowledge acquisition for information management. 
The procedures show the potential for use in 
reasoning and retrieval of knowledge describing the 
flow of information between a system and its 
external environment as well as within a system. It 
was shown that the techniques applied are able to 
provide general knowledge about system 
functioning in static and dynamic external 
environments. The techniques presented illustrate 
the ease and appropriateness of such methods for 
dealing with implicit knowledge and also provide a 
model for extension into other expert domains.  
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