

MODELING A SERVICE DISCOVERY BRIDGE USING RAPIDE ADL

 Ahmed Sameh Rehab El-Kharboutly
 Dept. of Computer Engineering Dept. of Computer Science,
 The George Washington University The American University in Cairo
 Washington, DC 20052 P.O.Box 2511, Cairo, Egypt
 Email: sameh@gwu.edu Email: sameh@aucegypt.edu

KEYWORDS
SDP, ADL, Jini, UpnP, Rapide

ABSTRACT

The exploding deployment of network enabled mobile
devices, along with the expansion of networked services
have created the need for users to easily manage these
devices and services and also to coordinate with one
another. Service Discovery Protocol (SDP) enables
networked devices, applications, and services to seek out
and find other complementary networked devices,
applications, and services needed to properly complete
specified tasks. A variety of Service Discovery Protocols
have been proposed by the market and academia,
including Jini, UPnP, SLP, Salutation and Bluetooth. For
these protocols to co-exist, they should exhibit
interoperability features. A number of bridging
techniques have been proposed and implemented. Efforts
have been on going to analyze these bridges from an
architectural point of view. A most suitable means for
such purpose is Architecture Descriptive Languages
(ADLs). ADLs, like Rapide, enable the simulation of
distributed systems such as Service Discovery Protocols.
In this paper we propose a one directional bridging
system (Jini-UPnP Bridge). To validate the proposed
system, we model and simulate the bridge using Rapide
ADL simulation and analysis toolset. We perform a
number of simulation tests and use the Rapide Poset
viewer to analyze the simulator’s output Poset tree of
events. The bridge overhead, compared to a non-bridged
native Jini service was found to be about 93.5%. The
bridge performance was measured under both light and
heavy network loads. Under light loads the bridge
achieved 0.071% improvement, while its performance has
degraded 0.034% under heavy load. The bridge
performance was also measured when bridging multiple
services. The results fall in reasonable ranges from
1.00079s to 1.00143s for the overall bridging time. To
further validate our model, we performed a set of
experiments to test communication failures.

INTRODUCTION

The number of networked services is expected to increase
enormously in the incoming era. Other than traditional
services (e.g. printing, scanning and faxing), new
networked-services for business purposes, such as
network based computational systems, or light weight

services, such as restaurant directories and translators, are
becoming available and highly important. For an effective
use of these services, users should have means for direct
and easy access to these services. Service Discovery
Protocol (SDP) presents an attractive solution for services
discovery and coordination (Bettstetter and Renner 2000).

One of the main factors of judging the efficiency of a
given SDP is its ability to interoperate with other SDPs.
Interoperability is a vital issue since it would enable
services and clients with different service discovery
protocols to communicate and interact with one another.
Some of the SDPs use a proxy or bridge as a solution to
enable services that don’t support their SDP to
nevertheless have role in their federations.

In this paper, we present a new approach for bridging
between Jini and UPnP. We use architectural modeling to
develop a Jini-UPnP Bridge. We validate our work by
carrying out a series of simulation tests and experiments
on the executable architectural model. Initially, we set a
hypothetical topology of Jini and UPnP clients and
services in addition to our proposed Jini-UPnP bridge.
This setup is used to verify that the Jini-UPnP Bridge is
capable of registering a UPnP Service that offers a
JiniFactory, with the Jini Lookup service. The basic
functionalities of The Jini-UPnP Bridge are tested and
verified. We assess the performance of the Jini-UPnP
Bridge through a number experiments including: 1-
measuring the overhead of bridging a UPnP service
versus direct registration of a Jini native service, 2-
measuring the performance of the bridge under both light
and heavy network loads, 3- deducing the performance of
the bridge on bridging multiple UPnP JiniFactory
services. Moreover, we performed the set of experiments
conducted by Dabrowski and Mills in (Dabrowski and
Mills 2001) to test the behavior of our hybrid-bridging
environment in cases of communication failures. We
compared their results to ours to validate the correctness
of our model (El-Karboutly 2002).

This remainder of this paper is organized as follows: In
Section 2, we describe the proposed Jini-UPnP bridging
technique. First we give a high level design view and then
we present some implementation details. Our tests and
experimental work is discussed in Section 3. We
conclude in Section 4.

mailto:sameh@gwu.edu

THE PROPOSED Jini-UPnP BRIDGE

One of the main factors of evaluating and judging any of
the available SDP protocols is the extent to which it
allows for interoperability. A bridge between UPnP and
Jini has not been investigated before; though it has been
mentioned as possibility in a number of references (IBM
1999) (Richard 2000) (ADL 1997).

Both Jini and UPnP introduce the concept of bridging a
foreign network device as part of their specifications. Jini
refers to it as a network proxy (Luckham 2001). While
UPnP refers to it explicitly as a UPnP Bridge (Wang
2003). In both SDPs, the bridging concept is based on
introducing a foreign device to the SDP environment
through the use of a representing entity that speaks on its
behalf (a bridge).

The choice of bridging Jini and UPnP is based upon the
fact that both protocols, though similar at the core
functionality level, have dissimilar points of strength.
Both Jini and UPnP support the same set of basic SDP
operation, including service advertisement and service
discovery. They both support the concept of leasing for
registered services and support eventing and notification
mechanisms for updating service information. Jini a
centric protocol, based on the presence of a central cache
manager, is an example of three-party protocols, which
cannot function without a Lookup Service. On the other
hand, UPnP is decentralized and is more of a peer-to-peer
communication model. Compared to Jini, UPnP is a
lightweight protocol. This is due to the fact that Jini
requires the presence of a JVM for all its entities.
Bridging between Jini and UPnP will enable thin services
that don’t have a JVM to announce their services to Jini
clients. Jini’s most attractive feature is the ability of
downloading services driver’s or proxy, which enables
easy and direct usage of the service.

Our work is built on the concept of a Jini network proxy
described in Jini Device Architecture and is based on the
efforts of Eric Guttman in (Guttman and Kempf 1999). A
Jini-UPnP Bridge is an entity that enables services that
support UPnP protocol to be reachable by Jini clients. For
Jini clients, Jini-UPnP is a transparent layer that they are
unaware of. The UPnP services that are advertised via the
bridge are treated as native Jini services.

The proposed Jini-UPnP Bridge is modeled as a special
network node that can communicate with other network
nodes in both Jini and UPnP protocols. It mainly acts as a
Service User (i.e. Control Point) in UPnP environment
and a Service Manager (Service) in Jini environment. It
waits for announcements made by UPnP devices and
services that are willing to advertise their presence to the
Jini clients and acts as a representative, almost a mirror
for them in the Jini environment.

The first order of business of the proposed bridge is to
prepare an appropriate entry for UPnP services, in the Jini

Lookup Service. This involves primarily setting the
appropriate attributes required and creating a service
object as part of Jini service’s registration.

UPnP services that are willing to advertise their presence
to Jini clients are not required to have a JVM installed.
They are mainly required to have a Jini driver Factory
(Guttman and Kempf 1999). A Jini driver factory is a
(*.jar) file that bares a manifest for the advertised service.
A Java Archive File (*.jar) file is used to bundle multiple
files into a single archive file. Typically a JAR file
contains the class files and auxiliary resources associated
with applications.

The proposed bridging process is done through the
following steps:

The Jini-UPnP bridge searches the UPnP reachable
entities to find devices and services that have Jini driver
Factory or waits till it receives announcements made by
Jini driver Factory services.
Once a Jini driver Factory service is found, the Jini-UPnP
bridge obtains a complete description of the service
including attributes, GUI URL and control URL.

The URL of the Jini driver factory is composed by
extending the control URL with a unique identifier. The
Jini driver factory is downloaded using GET method over
HTTP.

The Jini-UPnP bridge performs attributes transformation
from UPnP format to Jini format to prepare for service
registration. Upon successfully translating the entire
service attributes and obtaining the Jini driver factory, the
Jini-UPnP bridge registers the discovered service with
Jini Lookup Service. Using the Jini driver factory, the
bridge creates a service object that is used for registration.
Registration is done by sending a join request with all
necessary attributes to Jini Lookup Service that adds the
new service to its cache.

Whenever a Jini client needs our bridging service, it
contacts Jini Lookup Service and downloads the
instantiated object that is used to drive the service. Like
any typical Jini service, the Jini-UPnP bridge should be
equipped with JVM to be able to participate in the Jini
SDP.

The first step in modeling our bridge is to set a hybrid
Service Discovery environment, where different services
and clients speak different service discovery protocols.
This means that we would have n Jini services, m Jini
clients, e Jini lookup services , p UPnP services and q
UPnP clients, where n,m,e,x,p,q are natural numbers > 0
and by setting them we define our topology. This
topology would be ADL modeled such that entities are
able to perform normal service discovery operations with
no conflicts.

Having the two NIST Rapide models for Jini and UpnP
(Dabrowski and Mills 2001) , we merged the two models
into one model with both Jini and UPnP interfaces and
main modules in preparation to build our proposed
bridge. The proposed Jini UPnP bridge is basically a
network node that acts as a UPnP SM in UPnP
environment and a Jini SU in Jini environment. It’s basic
sub modules are the basic components of UPnP SM and
Jini SU models, in addition to sub modules that perform
bridging.

The main sub modules of Jini-UPnP Bridge architecture
are:

UPnP Service User (UPnP SM): is a modified
implementation of the UPnP SM entity that also includes
UPnP Local Cache Manager and the UPnP SU Filter.
The UPnP Local Cache Manager is modified such that
it handles attribute translation from UPnP to Jini and also
Jini driver factory download.

Jini Service Manager (Jini SM) : is a modified
implementation of the Jini SU that communicates directly
with the UPnP SM module of the bridge to receive
bridged services.

 In normal UPnP SU, the local cache Manager module is
an interface for the internal cache of the SU. It handles
UPnP discovered service records, notifications and
events. In our bridged model it also handles the
functionality of managing a cache for the Jini driver
factory of the discovered Jini Driver Factory services. It
implements the interface MANAGED_RESOURCE_JAR
which exposes two methods: SUGetJar that requests
downloading a jar file for a given Jini Factory service,
and SMJarResponse which is the response to a SUGetJar
request. MANAGED_RESOURCE_JAR is represented
in Rapide ADL as follows:

TYPE MANAGED_RESOURCE_JAR IS INTERFACE
ACTION
 OUT
 SUGetJar
 (SU_ID, SM_ID : IP_Address; -- Source SU, target
SM
 QueryIssueTime : TimeUnit; -- time query issued
 URLField : Integer); -- This should be a URL
or a Device ID for identification purposes
 IN
 SMJarResponse
 (SM_ID, SU_ID : IP_Address; -- Sending SM,
Receiving SU
 UniqueID : Integer; -- Unique Identifier for
SD
 Jar : String; -- a dummy string representing
the downloaded file
 TimeStamp : TimeUnit);
 END;

Upon discovering the presence of a UPnP Service that
provide a Jini Driver Factory, the Jini UPnP Bridge; first
retrieves its complete description and downloads its jar
file and then advertises its presence to the Jini Lookup
Service. To perform the last functionality, Jini UPnP
Bridge uses the interface ADVERTISE_SERVICE.
ADVERTISE_SERVICE is responsible for propagating
discovery of new service, change of a currently
discovered service and deletion of a service to the JINI
SM sub modules of the bridge. It is called by the Bridge
Local Cache Manager sub module and implemented by
the Jini Service Repository sub module.

ADVERTISE_SERVICE interface is presented as
follows in Rapide ADL:

TYPE ADVERTISE_SERVICE IS INTERFACE
ACTION
OUT AddNewService(?Service_ID : Integer; -- ID of the
service
ServiceType, -- service type /name
ServiceAttributes, -- service attributes
ServiceAPI, -- service Proxy and APIs
ServiceGUI : String; -- service GUI
NLeaseTime,
NDuration : TimeUnit
- lease duration),
 ChangeServiceEv (?Service_ID : Integer; -- ID of the
service
 ServiceAttributes:String -– new service
Attributes),
 DeleteServiceEv (?Service_ID : Ind_Service_ID; --
Service ID
 ExpireOption : String --Expire Option);

END; --ADVERTISE_SERVICE

A UPnP service that wishes to be used by Jini clients
through our Jini UPnP bridge, should provide a Jini driver
factory. The Jini UPnP Bridge issues an HTTP Get
command to download the Jini driver factory file. A
change was necessary to the UPnP SM Rapide Model for
providing this functionality. The
MANAGED_RESOURCE_JAR interface, introduced in
the last section, is added to the UPnP Service Manager
Model to be implemented by the UPnP SM_Repository
sub module.

The overall Rapide model for a hybrid SDP environment
with Jini UPnP Bridge consists basically of six different
types of network entities: Jini SM, Jini SU, Jini SCM,
UPnP SU, UPNP SM and Jini UPnP Bridge. Each of
these modules implements the basic functionally of UPnP
and Jini SDP Protocols. The Jini UPnP Bridge modules
implements protocols of Jini SM and UPnP SU in
addition to bridging functionality.

On the network level, the Jini-UPnP bridging
environment consists of network nodes that are connected
through communication links. Communication links are

mainly TCP/IP and UDP connections that are used for
multicasting and unicasting messages. These
communication links are modeled in our Rapide ADL as
separate entities representing different multicasting and
unicasting functionality.

The six network nodes: Jini SM, Jini SU, Jini SCM,
UPnP SU, UPNP SM and Jini UPnP Bridge consist of
major functional components. These are shown on the
Entity Major Functions layer or the third layer from top.
For Example the Jini Service Manager entity consists of
a Service Repository and SCM discovery modules.

The lower level in the architecture shows the main
functional subcomponents. These are the main
components that carry out the main functionalities in the
system. Some of these subcomponents are modeled as a
Rapide interface and are implemented by different higher
level models, while the rest are implemented as
independent low level functionality modules. The main
functional subcomponents of the SCM Discovery module,
which is a basic module required in all Jini entities, is
divided into three groups: Direct Discovery Protocol
subcomponents, Aggressive Discovery subcomponents
and Lazy Discovery subcomponents. Subcomponents that
implement Lazy Discovery Protocol are: the
Announcement Responder, which listens passively for
announcements from entities that the SCM may wish to
discover, the Announcer subcomponent, whose role is to
send announcements to entities that may wish to discover
the SCM to which it belongs, the SCM API Server,
which provides service interfaces (APIs) to discovering
entities after the initial response by the discovering entity
to the SCM announcement and the Executive
subcomponent whose main task is to control switching
between aggressive, lazy and directed discovery.

Jini-UPnP BRIDGE TESTING and
PERFORMANCE MEASURES

The next step after modeling the bridging between Jini
and UPnP is to verify that the basic functionality of the
bridge is correct through simulation tests. The Rapide
toolset provides a set of compilation and runtime
execution tools whose output is a simulation of the
Rapide architectural model. The output of the simulation
could be analyzed in various ways, including constraint
checking, analysis for surprises and depiction of
behavior. We chose to analyze the output of our
simulation using the Partial Order Set (Poset) browser.
Poset browser enables us to view how a given
architectural design behaves. It represents casual event
simulations in a DAG form, nodes representing events
and directed arcs representing causality.

In each of our tests, we first establish initial conditions by
constructing a topology of Jini and UPnP basic entities in
addition to the Jini-UPnP Bridge. The following tests
have been conducted and proven successful: 1- testing to
validate that initial discovery and advertisement activities

in our hybrid environment of both Jini and UPnP entities,
function correctly, 2- testing a complete scenario of
bridging a Jini Service to examine the correctness of the
bridging process, 3- testing that the proposed UPnP Jini
Bridge successfully propagates changes that occur in the
JiniFactory service to the SU Jini clients that have
previously discover it, 4- testing to confirm that the
JiniFactory service shutdown is propagated successfully
to Jini SCM through Jini-UPnP Bridge.

We have conducted five experiments to measure the
performance of the proposed Jini-UPnP bridge. In the
following we discuss and report only four of them,
naming: 1- measuring the overhead of bridging a UPnP
service verses direct registration of Jini native service, 2-
measuring the performance of the bridge under both light
and heavy network loads, 3- deducing the performance of
the bridge on bridging multiple UPnP JiniFactory
services. Moreover, we performed the experiments
conducted by Dabrowski and Mills in (Dabrowski and
Mills 2002) to test the behavior of our hybrid-bridging
environment in cases of communication failures. We
compared their results to ours to validate the correctness
of our model (El-Karboutly 2002).

The usage of a bridge in a hybrid system implies the
presence of an overhead in time and resources. We are
interested in measuring the overhead of bridging a UPnP
service compared to having that same service as a native
Jini service. The overhead is measured in terms of time
and the number of messages exchange.

The following table shows the most relevant parameters
and values for our experiment.

Table 1 Jini-UPnP Rapide Model Input Parameters

 Parameter Value

Simulation overall
time

3600s General
Parameters

Node Startup
Delay

1-15 s uniform

Polling interval 180s Behavior in both
Jini and UPnP
architectures

Registration TTL 1800s

Announcement
terval in

1800s

Msearch query
interval

120s

UPnP specific
behavior

SU purges SD At TTL
expiration

Probe interval 5s (7 times)
Announce interval 120s

Jini specific
behavior

SM or SU purges
SD

After 540s
with only
REX

Jini UPnP
Bridge specific
behavior

Jar file size 11Kb

UDP transmission
elay d

10 µs constant

TCP transmission
delay

10-100 µs
uniform

Transmission
and processing
delays

Per item
processing delay

10 µs for
cache items
10 µs for other
items

First, we ran the Jini Rapide model with a topology of
one Jini Service Cache Manager (SCM), two Jini Service
Users (Jini SUs) and one Jini Service manager (Jini SM),
where one of the Jini SUs requests a service of the same
type as that offered by the Jini SM. We measure the time
taken and the number of messages exchanged since the
Jini SM starts up and until the Jini SU receives the
service description. Next, we run our Jini-UPnP Bridged
model with a topology of one Jini SCM, two Jini SU, one
Jini SM, one Jini-UPnP Bridge, one UPnP SU and two
UPnP SM. The time taken by a Jini SU to discover a
requested UPnP service is measured. This time value is
the sum of the time taken for Jini UPnP Bridge to
discover the services; the time the bridge registers this
service with the Jini SCM and the time the Jini SCM
forwards the service description to the interested Jini SU.

Measurements for Jini are done on two stages; first we
measure the time taken for Jini SM to register with SCM
and the number of messages needed. We assume that
SCM discovery has already taken place. The time taken
for this operation, as shown in the results is TIME
TAKEN 1 = 0.064s , and the number of messages
exchanged is four messages (NUM MSGs 1 :4). The
second stage is where the SCM starts matching the newly
added service description to the available SU requests.
Two messages are exchanged for this operation to
complete and the total time needed is TIME TAKEN 2 =
0.00081s. Thus the total time for the whole operation
starting with SM registration to SU discovery takes
TOTAL TIME = 0.06481s on average.

Bridging a UPnP SM service to be reachable for Jini SUs
is done in three stages. First the Service SM is discovered
by the Jini-UPnP bridge, then the bridge registers the
service with Jini SCM. The time taken for a Jini-UPnP
bridge to discovery and obtain the complete description
of Jini Factory service is TIME TAKEN 1:1.00132s
where five messages are exchanged in this operation.
Secondly, the bridge registers the newly discovered
service with the SCM by exchanging two messages in
TIME TAKEN 2:.00022. The last stage is where the
SCM matches the added service to the notification for
services that SUs have registered with the SCM earlier.
This operation exhausts about TIME TAKEN 3:
0.00061s. The total time consumed in the process of
bridging TOTAL TIME = 1.00215s

Comparing the results for a native Jini service to that of
bridging the service through Jini-UPnP Bridge, it is clear

that the bridging process has an overhead of about
0.93734s or a 93.5% overhead.

Network Bandwidth is a main factor in the behavior of
any distributed system. The performance of different
entities in a SDP is very much affected by network delays
as a main parameter. In our model for Jini-UPnP Bridge,
we simulate network bandwidth by having network delay
as one of the main model input parameters. Parameters
are defined for unicast and multicast delays between any
pair of nodes and also for the network as a whole. The
following tests record the effect of varying network
delays on the performance of UPnP-Jini Bridge.

In the pervious experiment we were interested in
measuring the overhead of bridging a service in terms of
time and number of messages. We fixed the TCP/IP
network delay to a typical network delay value of 10-100
µs uniform. To measure the performance of the Jini-
UPnP Bridge in a light loaded network, we repeat the
experiment done in the previous section with the same
input parameters, yet changing the TCP/IP network delay
to 10-30 µs uniform. The results would be compared to
those obtain in the pervious section. We repeated the
experiment ten times to compute the average overall time
taken by the bridge.

Compared to the results obtained in the previous
experiment, the bridge performance increases about 0.071
% with a less loaded network (i.e. higher bandwidth) of
10-30 µs uniform delay. The results show an improved
value for the time of registration with the bridge from
1.00132 s in normal network to 1.000617 in a less loaded
network. We are more interested in the last time value
(Overall Time) since the time taken to download the Jini
driver factory is a factor of it. The results are up to our
expectations since an overall improvement in time delay
is noticed.

To measure the performance of Jini-UPnP Bridge in a
congested network, we apply the same experiment with a
higher network load with the same input parameters, yet
changing the TCP/IP network delay to 80-100 µs
uniform. The results would be compared to those obtain
in case of typical network delays. We repeated the
experiment ten times to compute the average overall time
taken by the bridge.

Compared to the results in normal network condition that
are obtained in the previous experiment, the bridge
performance degraded about 0.034 % with a congested
network (i.e. low bandwidth) of 80-100 µs uniform
delay. The result is as expected since the effect of having
a low bandwidth is of direct effect on the time taken to
transfer messages and to download Jini driver factory.
The overhead in time is more obvious in the time taken
for registration with the bridge, as downloading the Jini
driver factory file is a factor in it.

A UPnP client (UPnP SU), in a pure UPnP environment,
is capable of discovering and communicating with
multiple UPnP Services at the same time. Also, a Jini
Service Manager (Jini SM) could advertise and register
the availability of more than one service. Our UPnP-Jini
Bridge is primarily composed of both a UPnP SU and Jini
SM. Thus a UPnP-Jini Bridge is capable of bridging more
than one UPnP service and registering it with the Jini
SCM at the same time. We are interested in testing this
capability of our modeled Jini-UPnP Bridge to bridge
successfully multiple services at the same time and also
to depict the effect of multi-service bridging on the
Bridge performance.

In the previous experiment, we’ve chosen a topology with
one UPnP Service (UPnP SM) that offered a Jini Factory
and is bridged using the UPnP Jini Bridge. In this
experiment, we conduct a topology of five UPnP SMs to
be bridged, one UPnP Jini Bridge, one UPnP Service
User, one Jini SCM, two Jini SUs and one Jini SM. We
assume the same input delays and parameters presented
above. We record the time taken for a Jini SU to discover
a requested UPnP service. This time value is the sum of
the time taken for Jini UPnP Bridge to discover the
services; the time the bridge registers this service with
Jini SCM and the time the Jini SCM forwards the service
description to the interested Jini SU.

The results obtained are not uniform, yet they fall in a
certain time range, for example the overall time taken by
UPnP-Jini bridge to bridge a given service ranges
between 1.00079 s and 1.00143 s. These results are
expected since the behavior of the bridge is a function of
the number of events it receives at the same time and the
way it schedules the incoming events. The results fall in
reasonable ranges and are close to the results obtained in
case of bridging one service. These results are also
dependent on the time each node starts announcing its
service. Nodes that announce their services consecutively
with a small time variant (e.g Nodes 2, 3), cause high
frequency of events on the bridge, which results in
degradation in the bridge performance and higher delay
values.

CONCLUSION

The problem we addressed in this research is enabling
thin servers and lightweight devices to offer their services
to Jini clients through passive and indirect registration
using our proposed Jini-UPnP Bridge. This problem has
been addressed before by using SLP instead of Jini
(Guttman and Kempf 1999), yet the bridging between Jini
and UPnP has not been investigated before in SDP
research literature.

We modeled and simulated our solution using Rapide
ADL toolkit. Modeling is an approach for designing
quickly, efficiently and correctly. It allowed us to control
the quality and performance. We’ve chosen Rapide ADL
to benefit from the set of modeling and simulation tools it

offers. We used architectural models of Jini and UPnP as
a basis to create hybrid discovery environment including
both Jini and UPnP and to design and model our proposed
bridge. For testing and simulating the bridge, we created
a hypothetical topology of Jini and UPnP clients and
services in addition to our proposed Jini-UPnP bridge.
We simulated the topology to verify that the Jini-UPnP
Bridge is capable of registering a UPnP Service that
offers a JiniFactory, with the Jini Lookup service. The
Jini-UPnP Bridge is tested for cases where the bridged
service is updated or deleted. A number of performance
experiments have been done on the bridge.

REFERENCES

ADL 1997, "Using Architecture Description Languages
 (ADLs) to Improve Software Quality and Correctness

in Dynamic Distributed Systems"
http://www.itl.nist.gov/div897/ctg/adl/sdp_projectpage
.html

Bettstetter, C. and C. Renner, 2000, "A Comparison of
Service Discovery Protocols and implementation of
the Service Location Protocol", In Proceedings of
EUNICE 2000, Sixth EUNICE Open European
Summer School, Twente, Netherlands.

Dabrowski, C. and K. Mills, 2001, "Analyzing Properties
and Behavior of Service Discovery Protocols using
an Architecture-based Approach", Proceedings of
Working Conference on Complex and Dynamic
Systems Architecture.

Dabrowski, C. and K. Mills, 2002 "Understanding Self-
healing in Service-Discovery Systems," ACM
Workshop on Self-Healing Systems, Charleston.

El-Kharboutly, R. 2002, “Modeling Jini-UpnP Bridge
 Using Rapide ADL”, M.Sc. thesis in Computer
Science, The American University in Cairo.

Guttman, E. and J. Kempf, 1999, “Automatic Discovery
 of Thin Servers: SLP, Jini and the SLP-Jini Bridge,”

Proc. 25th Ann. Conf. IEEE Industrial Electronics
Soc. (IECON 99), IEEE, Press, Piscataway, N.J.

IBM 1999, white paper, “Discovering Devices and
 Services In Home Networks”.

Luckham, D. 2001, “Rapide: A Language and Toolset for
 Simulation of Distributed Systems by Partial Ordering
of Events,” http://anna.stanford.edu/rapide .

Richard, G. 2000, “Service Advertisement and
Discovery: Enabling Universal Device Cooperation,”
IEEE Internet Computing.

Wang, O. 2003, “Interoperability of COM/DCOM objects
 with CORBA objects by using DCOM/CORBA
Bridge and their performance analysis”,
http://www.engr.sjsu.edu/fatoohi/wang-
report/abstract.html

http://www.itl.nist.gov/div897/ctg/adl/sdp_projectpage.html
http://www.itl.nist.gov/div897/ctg/adl/sdp_projectpage.html
http://www.itl.nist.gov/div897/ctg/adl/adl_files/Dabowski&Mills-WOSS2002final.pdf
http://www.itl.nist.gov/div897/ctg/adl/adl_files/Dabowski&Mills-WOSS2002final.pdf
http://anna.stanford.edu/rapide
http://www.engr.sjsu.edu/fatoohi/wang-report/abstract.html
http://www.engr.sjsu.edu/fatoohi/wang-report/abstract.html

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

