

CONTINUOUS REINFORCED SNAP-DRIFT LEARNING IN A NEURAL
ARCHITECTURE FOR PROXYLET SELECTION IN ACTIVE COMPUTER

NETWORKS

Sin Wee Lee Christopher Roadknight
Dominic Palmer-Brown* BTexact Technologies

Computational Intelligence Research Group BT Adastral Park
School of Computing Martlesham Heath, Ipswich IP5 3RE

Leeds Metropolitan University and
Beckett Park Campus, Leeds LS6 3QS Computational Intelligence Research Group

*Email : D. Palmer-Brown@leedsmet.ac.uk School of Computing
 Leeds Metropolitan University

KEYWORDS
Computational Intelligence, Artificial Neural Networks,
Category Learning, Reinforcement Learning.

ABSTRACT

A new continuous learning method is used to optimise
the selection of services in response to user requests in
an active computer network simulation environment.
The learning is an enhanced version of the ‘snap-drift’
algorithm, which employs the complementary concepts
of fast, minimalist (snap) learning and slower drift
(towards the input patterns) learning, in a non-stationary
environment where new patterns arrive continually.
Snap is based on Adaptive Resonance Theory, and drift
on Learning Vector Quantisation. The new algorithm
swaps its learning style between these two self-
organisational modes when declining performance is
detected, but maintains the same learning mode during
episodes of improved performance. Performance
updates occur at the end of each epoch. Reinforcement
is implemented by enabling learning on any given
pattern with a probability that increases linearly with
declining performance. This method, which is capable
of rapid re-learning, is used in the design of a modular
neural network system: Performance-guided Adaptive
Resonance Theory (P-ART). Simulations demonstrate
the learning is stable, and able to discover alternative
solutions in rapid response to new performance
requirements and significant changes in the stream of
input patterns.

INTRODUCTION

The Adaptive Resonance Theory (ART) Network

Developments (Carpenter and Grossberg 1987a) of the
original ART (Grossberg, 1976a; Grossberg 1976b)
networks include ART1 that self-organises recognition

categories for arbitrary sequences of binary input
sequences; and ART2 which does the same for either
binary or analogue inputs (Carpenter and Grossberg
1987b). Subsequently, ART3 (Carpenter and Grossberg
1990) has been used to implement parallel searches of
compressed or distributed recognition codes (output
categories) in a neural network hierarchy. Following the
successful implementation of the theory in real-time
applications, further development has seen the creation
of ART2-A (Carpenter et al. 1991a), which is 2 or 3
orders of magnitude faster than ART2. Fuzzy ART
(Carpenter et al. 1991b) the fuzzy extension of ART,
incorporated computations from fuzzy set theory.
Extensions to ART networks to allow supervised
learning were also introduced (Palmer-Brown 1992);
and ARTMAP (Carpenter et al. 1991c) and Fuzzy
ARTMAP (Carpenter et al. 1992) autonomously learn
to classify based on predictive success. Furthermore,
there are several other versions of ART network (Tan
1997; Carpenter et al. 1998; Bartfai and White 2000),
including supervised multi-layer, self-growing systems
(Palmer-Brown 1992).

Limitations

There are limitations of ART networks in non-
stationary environments where self-organisation needs
to take account of periodic or occasional performance
feedback:

• The ART network tends to organize itself into a

stable state during fast learning whereby the weights
stop changing in the presence of new inputs.

• There is no external feedback to improve the
performance of the network when it stabilises with
poor performance.

Feedback
Module

Performance Input (p)

Input
Pattern

(I)

Proxylet
Metafiles

F22 F21 F12 F11 F01

Selection P-ART (sP-ART)
(For Proxylet Types

Selection)

Distributed P-ART (dP-ART)
(For Features Extraction)

Figure 1: Architecture of the P-ART Network

PERFORMANCE-GUIDED ART (P-ART)

P-ART Architecture

The P-ART network proposed is a modular, multi-
layered architecture as shown in Figure 1. It is
composed of 3 modules, a Distributed P-ART (dP-
ART) network, a Selection P-ART (sP-ART) network
and a Kohonen Self-Organising Map. The F11 ↔ F21
connections of the dP-ART network and F12 ↔ F22 of
the sP-ART are interconnected through weighted
bottom-up and top-down connections that can be
modified during the learning stage. For clarity, only the
connections from the F1 layer to the active (winning)
F2 node in each P-ART module are shown. The F01 →
F11 and two P-ART modules connected through F21 →
F12 are unidirectional, one to one and non-modifiable.
Each of the F22 nodes is hard-wired onto a specific pre-
trained region of the Kohonen Feature map where
similar available proxylets (the target outputs) are
spatially organised on the 2-D map according to their
featural similarity.

Overview of the Operation of the System

On presentation of an input pattern at the input layer
F01, the dP-ART will learn to group the input patterns
according to their general features using the novel
learning principles developed in this work from the
snap-drift’ algorithm recently developed (Lee et al.
2002; Lee et al. 2003; Lee et al. 2004). The latest
version has several improvements over the previous one
in terms of the normalization process, and the
synchronization of learning between the s and d P-
ARTs; but the two key differences are performance
guided toggling of learning between snap and drift, and

the introduction of a probabilistic aspect to enhance
reinforcement and stability. The standard matching and
reset mechanism of ART (Carpenter and Grossberg
1987a) is retained: If no existing matching prototype is
found, i.e. when the stored pattern prototypes are not a
good match for the input, the winning F21 node is reset
and another F21 node is selected. When no
corresponding output category can be found, the
network considers the input as novel, and generates a
new output category node that learns the current input
pattern.

The three winning F21 nodes, whose prototypes are best
match to the current input pattern, are used as the input
data to the P-ART module for selecting an appropriate
output type (called a proxylet in the target application).
For the purpose of selecting the required proxylet, the
proxylet type information indicated by the P-ART
references pre-trained locations on the Kohonen Self-
Organising Map (SOM) (Kohonen 1982; Kohonen
1990a), which represent specific proxylets. If the
proxylet is unavailable, one of its neighbours is selected
(the most similar alternative available).

A non-specific performance measure is used because, as
in many applications, there are no specific performance
measures (or external feedback) in response to each
individual output decision. This measure is used to
encourage or discourage reselection of outputs (proxylet
types) to occur in order to improve the performance of
the neural system. The continuous learning method is
the snap-drift algorithm. It involves toggling between
snap and drift modes depending on performance
changes. Snap and drift are alternative forms of
adaptation, and they are described in the next section,

THE LEARNING. The following is a summary of the
steps that occurs in P-ART:

Step 1: Initialise parameters: (α = 1, σ = 0)
Step 2: For each epoch, t

Measure or calculate performance in the range
{0,1} over the last epoch, P(t).

 Performance improvement, PI = P(t) – P(t-1)
Set probability of learning, PL = 1 – P(t)

Step 3: For each new input pattern
Find the D winning nodes with the largest
input (or create new nodes for mismatches)

 Set learn (adapt) true with probability PL.

 If learn is true test learning strategy condition:
 IF (PI <= 0) THEN

Weights of d-PART adapted according to the
alternate learning procedure: (α ,σ)
becomes Inverse (α andσ) in equation (8)
below

 ELSE
Weights of d-PART adapted according to the
same procedure as in the last epoch: (α ,σ)
unchanged.

Step 4: Process the output pattern of F21 as input pattern
of F12

 Find winning node (just one) in F22.

Weights of s-PART adapted according to the same
learning probability and strategy conditions as above,
except that the in first half of the learning epoch, both
dP-ART and sP-ART learn, whereas in the second half
of the epoch, only sP-ART learns. This allows
relearning of the mapping from features to selections
without the moving target problem of those features
changing simultaneously.

THE LEARNING

Snap-Drift

In an environment where new patterns are introduced
over time, the learning utilises a novel snap-drift
algorithm based on fast, convergent, minimalist learning
(snap) and cautious learning (drift) when the
performance is good. Snap is based on a modified form
of ART; and drift is based on Learning Vector
Quantization (LVQ) (Kohonen 1990b). The two forms
are combined within a semi-supervised learning system
that shifts its learning style whenever it receives a drop
in the performance feedback. So, in general terms, the
snap-drift algorithm can be stated as:

)()__(LVQARTLearningFastw σα += (1)

where α and σ are determined by performance
feedback. In previous simulations, α and σ were real

values (Lee et al. 2002; Lee et al. 2003; Lee et al.
2004). In this paper, α and σ are set to (0, 1) or (1, 0)
depending on changes in performance, and the learning
is then enabled probabilistically.

Input Encoding

A form of coarse coding (Eurich 1997) is used to
represent proportional differences between numeric data
encoded within the input patterns, e.g. the
representation of the value 15 must be closer in input
space to the representation of value 20 than that of say
30. The input pattern is arranged in a 25 bit vector.
Each property, such as bandwidth, time, file size, loss
and completion guarantee, occupies 5 bits of the overall
pattern. Table 1 shows the realistic range for each of the
request properties. The coding of the user request is
performed as illustrated in Table 2, across a different
range for the 5 bits in the case of each property. The
input patterns are generated by maintaining the coding
of each field in turn and randomly generating the codes
for rest of the fields for every 20 patterns, giving 1000
patterns in all.

Table 1: Value Ranges of User Request Properties

Properties Ranges
Bandwidth 10Kb/s → 2000Kb/s
Time 1ms → 1000ms
Loss 20% → 60%
Cost 0.1p → 100p
Completion Guarantee 40% → 100%

Table 2: Example Coding of Bandwidth in User

Requests

Ranges (Kb/s) User Request
200 → 400 10000
800 → 1000 01100
1800 → 2000 00001

Weights Initialisation

The weights are calculated as floating point and are
initialised at the beginning of the simulations. Top-
down weights are set randomly to either 0 or 1.

]1,0[)0(=jiw (2)

Thus, a simple distributed affect will be generated at the
output layer of the network, with different patterns
tending to give rise to different activations across F2

from the start. The bottom-up weights wij are assigned
initial values corresponding to the initial values of the
top-down weights wji. This is accomplished by equation
(3):

|)0(|
)0(

)0(
ji

ji
ij w

w
w = (3)

The Distributed P-ART (dP-ART) Learning

On presentation of input pattern, the bottom-up
activation is calculated using (4). Then the D number of
F21 nodes with the highest bottom-up activation, using
(5), are selected.

|| IwT
ijJ ∩= ∑ (4)

}M,.....,2,1J|Tmax{T JJ == (5)

D is set to 3 in this application. If the distributed output
categories are found with the required matching level,
the three F21 nodes will enter into resonant state and
learn using (6):

))(()()()()()(old
Ji

old
Ji

old
Ji

new
Ji wIwwIw −++∩= βσα (6)

where wji = top-down weights vectors; I = binary input
vectors, and β = the drift speed constant = 0.5.

When α =1, (6) can be simplifies to:

)wI(w)old(
Ji

)new(
Ji ∩= (7)

This invokes fast minimalist learning, causing the top-
down weights to reach their new asymptote on each
input presentation:

)old(
JJ wIw ∩→ (8)

In contrast, when σ = 1, (6) simplifies to

))wI(w(w)old(
Ji

)old(
Ji

)new(
Ji −β+= (9)

This causes a simple form of clustering or LVQ at a
speed determined by β. As describe in the pseudo code
presented in Operation of the System above, learning
is a combination of the two forms of adaptation,
because the mode is toggled between snap and drift
whenever performance has deteriorated during the
previous epoch. In addition, whether adaptation occurs
or not on a given pattern is a probabilistic decision,
whereby the probability of the snap or drift occurring is
proportional to declining performance. The novel
bottom-up learning of the P-ART is a normalised
version of the top-down learning:

||)(

)(
)(

new
Ji

new
Jinew

iJ w
ww = (10)

where wJi

(new) = top-down weights of the network after
learning. Poor performance can occur when the final

selection of proxylet type is wrong, even if the general
feature extracted by dP-ART is valid. To cope with this,
the dP-ART learning is toggled on-off every half-epoch
so that sP-ART can readjust its learning of selections
without modification of the general features in dP-ART,
thus resolving a moving target problem.

The Selection P-ART (sP-ART) Learning

The outputs produced by the dP-ART act as input to the
sP-ART. The behaviour of sP-ART is the same as that
described in section P-ART Architecture, with one
exception; only the F2 node with the highest activation
is adapted. Each output node of the sP-ART points to a
set of available application-specific groupings (in this
case proxylet types). The proxylet type data, containing
attributes of the types, is used as off-line training data
for the SOM so that it forms a map with similar
proxylets placed on adjacent nodes. This allows each
output node of the sP-ART to be ‘hardwired’ onto
regions of the SOM. The task of the sP-ART is
therefore to learn to associate the correct group of input
patterns with an output node that is hardwired to a
region of the SOM. The effect of learning and
relearning within the sP-ART module is that specific
output nodes will relate different groups of input
patterns to different regions of the SOM until the
performance feedback indicates that it is indexing the
SOM regions that select the most appropriate proxylets.
In that event, the learning probability is low, so that
even if the snap-drift has not yet converged, further
adjustment is slow.

The Performance Feedback

The external performance feedback into the PART
reflects the performance requirement in different
circumstances. Various performance feedbacks profiles
in the range {0, 1} are fed into the network to evaluate
the dynamic stability and effectiveness of the learning.
Initially, some very basic tests with performances of 1
or 0 were evaluated in a simplified system (Lee et al.
2002; Lee et al. 2003; Lee et al. 2004). Below, the
simulations involve computing the performance based
on a parameter associated with the winning output
neuron. Ultimately, a realistic commercial external
performance feedback criteria will be established,
which will be obtained from BT, to evaluate the
improvement in performance of the network learning
under realistic external performance feedback. Factors
which affect performance include latencies for request
with differing time to live, dropping rate for requests
with differing time to live, and different charging level
with related Quality of Service.

BRITISH TELECOM (BT) APPLICATION

Application Layer Active Network (ALAN)

British Telecom (BT) is the main data network provider
in the UK. At present, most applications are run on edge
devices (which send and receive data, but do not route
third party data), such as servers, PCs and WAP enabled
devices. There are strong arguments for moving as
many of these applications as possible into the network
(Tennenhouse and Wetherall 1996), thereby ensuring
optimal placement of applications with respect to
performance, version synchronicity (so that more users
have the same version), and increased security. ‘Active
Networking’ (Tennenhouse and Wetherall 1996) aims
to achieve this application migration into the network
by running code within the network on specialised
routers. It gives users the ability to load software
components onto network devices dynamically without
explicit references to any third party. The ALAN
architecture (Fry and Ghosh 1999) enabled the user to
supply JAVA based active-service codes known as
proxylets that run on a network device. Each
networked server runs the ‘Execution Environments for
Proxylets’ (EEPs) that contains the user supplied
software. The purpose of the architecture is to locate the
software at optimal points of the end-to-end path
between the server and the clients.

Automated Active Network Management using
Distributed Genetic Algorithm (GA)

The original ALAN proposal, the management system
supports conventional management agent interfaces
(Marshall 1999; Marshall et al. 2000) that respond to
instructions from the system operators. Each application
is individually placed in the network. However, since
ALAN with the potential for an enormous range of
services, it is necessary to combine the active services
with an automated and adaptive management solution.
Recently, a novel adaptive approach, a Distributed
Genetic Algorithm (GA) solution was introduced by BT
Research Laboratories (Marshall and Roadknight 2001).
It performs proxylet placement. Here, P-ART provides
a means of finding a set of conditions that produce
optimum proxylet selection in an EEP containing the
frequently requested proxylets that have been placed.
Continuous performance guided adaptation of the
mapping of input patters, which contain the main
attribute values of user proxylet requests, performs
intelligent proxylet type selection.

THE P-ART SIMULATION

P-ART is used for learning and mapping user requests
onto appropriate proxylets. The test patterns consist of
1000 input vectors. Each test pattern characterizes the
properties of a network request, such as bandwidth,
time, file size, loss and completion guarantee. These
test patterns are presented in random order with 10
patterns per epoch for 100 epochs where the

performance, p, is calculated according to the average
bandwidth of selections. This on-line continuous
random presentation of test patterns simulates the real
world scenario in which pattern presentation order is
random, so that a given network request might be
repeatedly encountered while others are not used at all.

RESULTS & CONCLUSIONS

Results are presented in Figure 2, 3 and Table 3 and 4.
They are representative (typical) of many simulations
that have been run. Performance feedback is updated at
the end of each epoch of 10 patterns. Much longer
epochs are less effective. The best results are for the
shortest epochs for which the performance estimate
remains a reasonable estimate of overall performance,
which of course it would not be for a very small number
of patterns. In this application, although there are 1000
patterns, there are only 100 general types, and hence 10
is approximately the smallest reasonable sample for
which updates in performance may be trusted to
increase or decrease with true overall performance. This
will clearly be different for each application. A key
observation behind the results presented in the tables
and graphs here is that learning is actually over by
epoch 64, after which no new selections of proxylets
occur until the criteria change to low bandwidth. After
64 (640 pattern presentations), all the performance
variation between epochs (the jitter in the performance
curve) is due to the epochs being short (in other words,
samples of 10 give approximately 70% accurate
performance values), and hence the performance over
1000 patterns is actually constant at about the average
of the values of the table values from 70-100, which is
just under 70%.

In Table 4 and Figure 3 the performance criterion is
swapped from high to low bandwidth after 100 epochs,
and we see relearning and re-stabilisation occur, with
similar results to above once convergence has occurred.

In conclusion, learning stabilizes reliably and is able to
map the inputs onto appropriate proxylets. The
simulations have shown that the snap-drift algorithm is
able to provide continuous probabilistic real-time
learning in order to improve the performance, based on
the external performance feedback.

Further work is applying the same methods in other
areas, but we are also working on attributing
performance to each output neuron separately, so that
the approach can be appied to classification tasks.

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Train in g Epo ch

N
o.

 o
f P

ro
xy

le
ts

 S
el

ec
te

d

Figure 2: The Selection Frequency of the Proxylet

Type. E.g. Bandwidth Bands: Low Bandwidth Proxylet:
0 → 1000 Kb/S and High Bandwidth Proxylet Type:

1001 → 2000 Kb/S

Figure 3: The Selection Frequency of Proxylet Type.

Table 3: Performance of P-ART

Epoch Average No. of
High Bandwidth

Proxylet
Selected (/10)

Performance
(%)

0 – 9 4.9 49

30 – 39 4.8 48

40 – 49 4.0 40

50 – 59 5.2 52

70 – 79 6.6 66

80 – 89 8.5 85

90 – 99 8.7 87

Table 4: Performance of P-ART with Switching of
Performance Criterion

Epoch

Average
No. of High

B/W
Proxylet
Selected

(/12)

Average
No. of

Low B/W
Proxylet
Selected

(/12)

High B/W
Proxylet
Selection

(%)

Low B/W
Proxylet
Selection

 (%)

0 - 9 6.08 3.92 50.69 32.64
10 - 19 5.25 4.75 43.75 39.58
30 - 39 3.50 6.50 29.17 54.17
40 - 49 6.00 4.00 50.00 33.33
50 - 59 6.33 3.67 52.78 30.56
60 - 69 5.83 4.17 48.61 34.72
70 - 79 7.83 2.17 65.28 18.06
80 - 89 8.42 1.58 70.14 13.19
90 - 99 8.33 1.67 69.44 13.89

100 -109 6.67 3.33 55.56 27.78
110 - 119 5.17 4.83 43.06 40.28
130 - 139 4.42 5.58 36.81 46.53
150 - 159 3.75 6.25 31.25 52.08
160 - 169 2.83 7.17 23.61 59.72
170 -1 79 3.42 6.58 28.47 54.86
180 - 189 2.83 7.17 23.61 59.72
190 - 199 0.08 9.92 0.69 82.64

REFERENCES

Bartfai, G. and R. White. 2000. “Incremental Learning
and Optimization of Hierarchical Clustering with
ART-based Modular Networks.” In Innovations in
ART Neural Networks, L. C. Jain, B. Lazzerini and
U. Halici (Eds.). Physica-Verlag, 87 – 132.

Carpenter, G. A. and S. Grossberg. 1987a. “A
Massively Parallel Architecture for a Self-
Organising Neural Pattern Recognition Machine,”
Computer Vision, Graphics and Image Processing,
Vol. 37, 54-115.

Carpenter, G. A. and S. Grossberg. 1987b. “ART2:
Self-Organization of Stable Category Recognition
Codes for Analogue Pattern.” Applied Optics, Vol.
26, 4919 - 4930.

Carpenter, G. A. and S. Grossberg. 1990. “ART 3:
Hierarchical Search Using Chemical Transmitter in
Self-Organizing Pattern Recognition Architectures.”
Neural Network, Vol. 3, No. 4, 129 – 152.

Carpenter, G. A.; S. Grossberg and D.B. Rosen. 1991a.
“ART 2-A: An Adaptive Resonance Algorithm for
Rapid Category Learning and Recognition.” Neural
Networks, Vol. 4, 493 - 504.

Carpenter, G. A.; S. Grossberg and D.B. Rosen. 1991b.
“Fuzzy ART: Fast Stable Learning and
Categorization of Analogue Pattern by an Adaptive
Resonance System.” Neural Networks, Vol. 4, 759 -
771.

Carpenter, G. A.; S. Grossberg and J. H. Reynold.
1991c. “ARTMAP: Supervised Real-Time Learning
and Classification of Nonstationary Data by a Self-
Organizing Neural Networks.” Neural Networks,
Vol. 4, 565 – 588.

Carpenter, G. A.; S. Grossberg; A. Markuzon; J. H.
Reynold and D. B. Rosen. 1992. “Fuzzy ARTMAP:
A Neural Network Architecture for Incremental

0
2
4
6
8

10
12

0 50 100 150 200

Training Epoch

N
o.

 o
f P

ro
xy

le
ts

 S
el

ec
te

d

High Bandwidth Low Bandwidth

Supervised Learning of Analogue Multidimensional
Maps.” IEEE Transactions in Neural Networks, Vol.
3, No. 5, 698 – 713.

Carpenter, G. A.; B. Milenova and B. Noeske. 1998.
“dARTMAP: A Neural Network for Fast Distributed
Supervised Learning.” Neural Networks, Vol. 11,
793 – 813.

Eurich, C. W.; H. Schwegler and R. Woesler. 1997.
“Coarse Coding: Applications to the Visual System
of Salamenders.” Biological Cybernetics, Vol. 77,
41 – 47.

Fry, M. and A. Ghosh. 1999. “Application Layer Active
Network.” Computer Network, Vol. 31, No. 7, 655 –
667.

Grossberg, S. 1976a. “Adaptive Pattern Classification
and Universal Recoding. I. Parallel Development
and Coding of Neural Feature Detectors.” Biological
Cybernetics, Vol. 23, 121 – 134.

Grossberg, S. 1976b. “Adaptive Pattern Classification
and Universal Recoding. II. Feedback, Expectation,
Olfaction, and Illusions.” Biological Cybernetics,
Vol. 23, 187 – 202.

Kohonen, T. 1982. “Self-Organized Formation of
Topologically Correct Feature Maps.” Biological
Cybernetics, Vol. 43, 53 – 69.

Kohonen, T. 1990a. “The Self-Organizing Maps.” In
Proceeding of IEEE, Vol. 78, No. 9, 1464 – 1480.

Kohonen, T. 1990b. “Improved Versions of Learning
Vector Quantization.” In Proceeding of the
International Joint Conference on Neural Networks,
Vol. 1, 545 – 550.

Lee, S. W.; D. Palmer-Brown; J. Tepper and C. M.
Roadknight. 2002. “ Performance-guided Neural
Network for Rapidly Self-Organising Active
Network Management.” In Soft Computing Systems:
Design, Management and Applications, A. Abraham
J. Ruiz-del-Solar and M. Köppen (Eds.). IOS Press,
Amsterdam, 21 – 31.

Lee, S. W.; D. Palmer-Brown; J. Tepper and C. M.
Roadknight. 2003. “Snap-Drift: Real-Time
Performance-guided Learning.” In Proceeding of
International Joint Conference on Neural Networks,
Vol. 2, 1412 – 1416.

Lee, S. W.; D. Palmer-Brown and C. M. Roadknight.
2004. “Performance-guided Neural Network for
Rapidly Self-Organising Active Network
Management.” Accepted for Neurocomputing.

Marshall, I. W. 1999. “Application Layer
Programmable Internetwork Environment.” British
Telecom Technology Journal, Vol. 17. No. 2, 82 –
94.

Marshall, I. W.; J. Hardwicke; H. Gharid; M. Fisher and
P. Mckee. 2000. “Active Management of Multi-
Service Networks.” In Proceeding of the IEEE
Network Operations and Management Symposium
(Hawaii). 981 – 983.

Marshall, I. W. and C. M. Roadknight. 2001. “Provision
of Quality of Service for Active Services.”
Computer Networks, Vol. 36, No. 1, 75 – 85.

Palmer-Brown, D. 1992. “High Speed Learning in a
Supervised, Self Growing Net.” In Proceeding of
the International Conference of Artificial Neural
Network, Vol.2, 1159 – 1162.

Tan, A-H. 1997. “ Cascade ARTMAP: Integrating
Neural Computation and Symbolic Knowledge
Processing.” IEEE Transactions in Neural
Networks, Vol. 8, No. 2, 237 – 250.

Tennenhouse, D. and D. Wetherall. 1996. “Towards An
Active Network Architecture.” Computer
Communication Reviews, Vol. 26, No. 2, 5 – 18.

AUTHOR BIOGRAPHIES

SIN WEE LEE was born in
Melaka, Malaysia, in 1976. He
graduated with first class honours
in electronics and computing
engineering from the Nottingham
Trent University, United Kingdom,
in 1999. His PhD’s thesis focuses
on the development of

performance-guided neural network for active network
management. From 2000 to 2001, he was a systems
engineer at Malaysia Multimedia University in
Malaysia. In December 2001, he joined the School of
Computing, Leeds Metropolitan University, Leeds,
United Kingdom, with a research scholarship from
EPSRC/BT Research Laboratories in Neural Networks.
As a research assistant, he works with Dominic Palmer-
Brown, on the improvement and development of
connectionist language processing, improvements to the
snap-drift algorithm and its applications.

DOMINIC PALMER-BROWN is
Professor of Neurocomputing and
the leader of the Computational
Intelligence Research Group, in the
School of Computing at Leeds
Metropolitan University, UK. The
Group have active research links
with several organisations,

including British Telecom Research Labs, The Centre
for Ecology and Hydrology, and with other universities.
A key focus of our research is Neurocomputing and
related methods of adaptation and learning in cognitive
science, intelligent data analysis, and pattern
recognition. Dominic has published over 40
international conference and journal papers and
supervised 10 PhDs since 1993, having completed his
own PhD on an adaptive resonance classifier in 1991.
His interests have principally concerned supervised and
performance-guided ART, enhanced MLPs for
intelligent data analysis, and architectures incorporating
MLPs and SRNs for thematic knowledge extraction and
natural language processing. He was editor of the
review journal Trends in Cognitive Sciences during
2000-2 before rejoining Leeds Met.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

