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ABSTRACT 

A new continuous learning method is used to optimise 
the selection of services in response to user requests in 
an active computer network simulation environment. 
The learning is an enhanced version of the ‘snap-drift’ 
algorithm, which employs the complementary concepts 
of fast, minimalist (snap) learning and slower drift 
(towards the input patterns) learning, in a non-stationary 
environment where new patterns arrive continually. 
Snap is based on Adaptive Resonance Theory, and drift 
on Learning Vector Quantisation. The new algorithm 
swaps its learning style between these two self-
organisational modes when declining performance is 
detected, but maintains the same learning mode during 
episodes of improved performance. Performance 
updates occur at the end of each epoch. Reinforcement 
is implemented by enabling learning on any given 
pattern with a probability that increases linearly with 
declining performance. This method, which is capable 
of rapid re-learning, is used in the design of a modular 
neural network system: Performance-guided Adaptive 
Resonance Theory (P-ART). Simulations demonstrate 
the learning is stable, and able to discover alternative 
solutions in rapid response to new performance 
requirements and significant changes in the stream of 
input patterns.    
 
INTRODUCTION  

The Adaptive Resonance Theory (ART) Network  

Developments (Carpenter and Grossberg 1987a) of the 
original ART (Grossberg, 1976a; Grossberg 1976b) 
networks include ART1 that self-organises recognition 

categories for arbitrary sequences of binary input 
sequences; and ART2 which does the same for either 
binary or analogue inputs (Carpenter and Grossberg 
1987b). Subsequently,  ART3 (Carpenter and Grossberg 
1990) has been used to implement parallel searches of 
compressed or distributed recognition codes (output 
categories) in a neural network hierarchy. Following the 
successful implementation of the theory in real-time 
applications, further development has seen the creation 
of ART2-A (Carpenter et al. 1991a), which is 2 or 3 
orders of magnitude faster than ART2. Fuzzy ART 
(Carpenter et al. 1991b) the fuzzy extension of ART, 
incorporated computations from fuzzy set theory. 
Extensions to ART networks to allow supervised 
learning were also introduced (Palmer-Brown 1992); 
and ARTMAP (Carpenter et al. 1991c) and Fuzzy 
ARTMAP (Carpenter et al. 1992) autonomously learn 
to classify based on predictive success. Furthermore, 
there are several other versions of ART network (Tan 
1997; Carpenter et al. 1998; Bartfai and White 2000), 
including supervised multi-layer, self-growing systems 
(Palmer-Brown 1992). 
 
Limitations  

There are limitations of ART networks in non-
stationary environments where self-organisation needs 
to take account of periodic or occasional performance 
feedback:  

 
• The ART network tends to organize itself into a 

stable state during fast learning whereby the weights 
stop changing  in the presence of new inputs. 

• There is no external feedback to improve the 
performance of the network when it stabilises with 
poor performance. 
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Figure 1: Architecture of the P-ART Network  

PERFORMANCE-GUIDED ART (P-ART) 

P-ART Architecture  

The P-ART network proposed is a modular, multi-
layered architecture as shown in Figure 1. It is 
composed of 3 modules, a Distributed P-ART (dP-
ART) network, a Selection P-ART (sP-ART) network 
and a Kohonen Self-Organising Map. The F11 ↔ F21 
connections of the dP-ART network and F12 ↔ F22 of 
the sP-ART are interconnected through weighted 
bottom-up and top-down connections that can be 
modified during the learning stage. For clarity, only the 
connections from the F1 layer to the active (winning) 
F2 node in each P-ART module are shown. The F01 → 
F11 and two P-ART modules connected through F21 → 
F12 are unidirectional, one to one and non-modifiable. 
Each of the F22 nodes is hard-wired onto a specific pre-
trained region of the Kohonen Feature map where 
similar available proxylets (the target outputs) are 
spatially organised on the 2-D map according to their 
featural similarity. 
 

Overview of the Operation of the System  

On presentation of an input pattern at the input layer 
F01, the dP-ART will learn to group the input patterns 
according to their general features using the novel 
learning principles developed in this work from the 
snap-drift’ algorithm recently developed (Lee et al. 
2002; Lee et al. 2003; Lee et al. 2004). The latest 
version has several improvements over the previous one 
in terms of the normalization process, and the 
synchronization of learning between the s and d P-
ARTs; but the two key differences are performance 
guided toggling of learning between snap and drift, and  

the introduction of a probabilistic aspect to enhance 
reinforcement and stability. The standard matching and 
reset mechanism of ART (Carpenter and Grossberg 
1987a) is retained: If no existing matching prototype is 
found, i.e. when the stored pattern prototypes are not a 
good match for the input, the winning F21 node is reset 
and another F21 node is selected. When no 
corresponding output category can be found, the 
network considers the input as novel, and generates a 
new output category node that learns the current input 
pattern. 
 
The three winning F21 nodes, whose prototypes are best 
match to the current input pattern, are used as the input 
data to the P-ART module for selecting an appropriate 
output type (called a proxylet in the target application). 
For the purpose of selecting the required proxylet, the 
proxylet type information indicated by the P-ART 
references pre-trained locations on the Kohonen Self-
Organising Map (SOM) (Kohonen 1982; Kohonen 
1990a), which represent specific proxylets. If the 
proxylet is unavailable, one of its neighbours is selected 
(the most similar alternative available). 
 
A non-specific performance measure is used because, as 
in many applications, there are no specific performance 
measures (or external feedback) in response to each 
individual output decision. This measure is used to 
encourage or discourage reselection of outputs (proxylet 
types) to occur in order to improve the performance of 
the neural system. The continuous learning method is 
the snap-drift algorithm. It involves toggling between 
snap and drift modes depending on performance 
changes. Snap and drift are alternative forms of 
adaptation, and they are described in the next section, 



 

 

THE LEARNING. The following is a summary of the 
steps that occurs in P-ART: 
 
Step 1: Initialise parameters: (α = 1, σ = 0) 
Step 2: For each epoch, t 

Measure or calculate performance in the range 
{0,1} over the last epoch, P(t). 

             Performance improvement, PI = P(t) – P(t-1)  
Set probability of learning, PL = 1 – P(t) 

Step 3: For each new input pattern 
Find the D winning nodes with the largest 
input (or create new nodes for mismatches) 

 
 Set learn (adapt) true with probability PL. 

  
 If learn is true test learning strategy condition:  
 IF (PI <= 0) THEN  

Weights of d-PART adapted according to the 
alternate learning procedure: (α ,σ ) 
becomes Inverse (α andσ ) in equation (8) 
below 

 ELSE   
Weights of d-PART adapted according to the 
same procedure as in the last epoch: (α ,σ ) 
unchanged. 

Step 4: Process the output pattern of F21 as input pattern 
of F12 

 
 Find winning node (just one) in F22. 

 
Weights of s-PART adapted according to the same 
learning probability and strategy conditions as above, 
except that the in first half of the learning epoch, both 
dP-ART and sP-ART learn, whereas in the second half 
of the epoch, only sP-ART learns. This allows 
relearning of the mapping from features to selections 
without the moving target problem of those features 
changing simultaneously.   
 

THE LEARNING 

Snap-Drift 

In an environment where new patterns are introduced 
over time, the learning utilises a novel snap-drift 
algorithm based on fast, convergent, minimalist learning 
(snap) and cautious learning (drift) when the 
performance is good. Snap is based on a modified form 
of ART; and drift is based on Learning Vector 
Quantization (LVQ) (Kohonen 1990b). The two forms 
are combined within a semi-supervised learning system 
that shifts its learning style whenever it receives a drop 
in the performance feedback. So, in general terms, the 
snap-drift algorithm can be stated as: 

)()__( LVQARTLearningFastw σα +=    (1) 
 
where α and σ are determined by performance 
feedback. In previous simulations, α and σ  were real 

values (Lee et al. 2002; Lee et al. 2003; Lee et al. 
2004). In this paper, α and σ  are set to (0, 1) or (1, 0) 
depending on changes in performance, and the learning 
is then enabled probabilistically.  
 
Input Encoding  

A form of coarse coding (Eurich 1997) is used to 
represent proportional differences between numeric data 
encoded within the input patterns, e.g. the 
representation of the value 15 must be closer in input 
space to the representation of value 20 than that of say 
30.  The input pattern is arranged in a 25 bit vector. 
Each property, such as bandwidth, time, file size, loss 
and completion guarantee, occupies 5 bits of the overall 
pattern. Table 1 shows the realistic range for each of the 
request properties. The coding of the user request is 
performed as illustrated in Table 2, across a different 
range for the 5 bits in the case of each property. The 
input patterns are generated by maintaining the coding 
of each field in turn and randomly generating the codes 
for rest of the fields for every 20 patterns, giving 1000 
patterns in all. 
 

Table 1: Value Ranges of User Request Properties  
 

Properties  Ranges  
Bandwidth  10Kb/s → 2000Kb/s 
Time  1ms → 1000ms 
Loss  20% → 60% 
Cost 0.1p → 100p 
Completion Guarantee  40% → 100% 

 
Table 2: Example Coding of Bandwidth in User 

Requests  
 

Ranges (Kb/s) User Request   
200 → 400 10000 
800 → 1000 01100 
1800 → 2000 00001 

  
Weights Initialisation  

The weights are calculated as floating point and are 
initialised at the beginning of the simulations. Top-
down weights are set randomly to either 0 or 1. 
 

]1,0[)0( =jiw      (2) 

 
Thus, a simple distributed affect will be generated at the 
output layer of the network, with different patterns 
tending to give rise to different activations across F2 

from the start. The bottom-up weights wij are assigned 
initial values corresponding to the initial values of the 
top-down weights wji.  This is accomplished by equation 
(3):  
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The Distributed P-ART (dP-ART) Learning  

On presentation of input pattern, the bottom-up 
activation is calculated using (4). Then the D number of 
F21 nodes with the highest bottom-up activation, using 
(5), are selected. 
 

|| IwT
ijJ ∩= ∑    (4) 

 
}M,.....,2,1J|Tmax{T JJ ==    (5) 

 
D is set to 3 in this application. If the distributed output 
categories are found with the required matching level, 
the three F21 nodes will enter into resonant state and 
learn using (6): 
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where wji = top-down weights vectors; I = binary input 
vectors, and β  = the drift speed constant = 0.5. 
 
When α =1, (6) can be simplifies to: 
 

)wI(w )old(
Ji

)new(
Ji ∩=    (7) 

 
This invokes fast minimalist learning, causing the top-
down weights to reach their new asymptote on each 
input presentation: 
 

)old(
JJ wIw ∩→    (8) 

 
In contrast, when σ = 1, (6) simplifies to 
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This causes a simple form of clustering or LVQ at a 
speed determined by β. As describe in the pseudo code 
presented in Operation of the System above, learning 
is a combination of the two forms of adaptation, 
because the mode is toggled between snap and drift 
whenever performance has deteriorated during the 
previous epoch. In addition, whether adaptation occurs 
or not on a given pattern is a probabilistic decision, 
whereby the probability of the snap or drift occurring is 
proportional to declining performance.  The novel 
bottom-up learning of the P-ART is a normalised 
version of the top-down learning: 
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where wJi

(new) = top-down weights of the network after 
learning. Poor performance can occur when the final 

selection of proxylet type is wrong, even if the general 
feature extracted by dP-ART is valid. To cope with this, 
the dP-ART learning is toggled on-off every half-epoch 
so that sP-ART can readjust its learning of selections 
without modification of the general features in dP-ART, 
thus resolving a moving target problem.   
 
The Selection P-ART (sP-ART) Learning  

The outputs produced by the dP-ART act as input to the 
sP-ART. The behaviour of sP-ART is the same as that 
described in section P-ART Architecture, with one 
exception; only the F2 node with the highest activation 
is adapted. Each output node of the sP-ART points to a 
set of available application-specific groupings (in this 
case proxylet types). The proxylet type data, containing 
attributes of the types, is used as off-line training data 
for the SOM so that it forms a map with similar 
proxylets placed on adjacent nodes. This allows each 
output node of the sP-ART to be ‘hardwired’ onto 
regions of the SOM. The task of the sP-ART is 
therefore to learn to associate the correct group of input 
patterns with an output node that is hardwired to a 
region of the SOM. The effect of learning and 
relearning within the sP-ART module is that specific 
output nodes will relate different groups of input 
patterns to different regions of the SOM until the 
performance feedback indicates that it is indexing the 
SOM regions that select the most appropriate proxylets. 
In that event, the learning probability is low, so that 
even if the snap-drift has not yet converged, further 
adjustment is slow. 
 
The Performance Feedback  

The external performance feedback into the PART 
reflects the performance requirement in different 
circumstances. Various performance feedbacks profiles 
in the range {0, 1} are fed into the network to evaluate 
the dynamic stability and effectiveness of the learning. 
Initially, some very basic tests with performances of 1 
or 0 were evaluated in a simplified system (Lee et al. 
2002; Lee et al. 2003; Lee et al. 2004). Below, the 
simulations involve computing the performance based 
on a parameter associated with the winning output 
neuron. Ultimately, a realistic commercial external 
performance feedback criteria will be established, 
which will be obtained from BT, to evaluate the 
improvement in performance of the network learning 
under realistic external performance feedback. Factors 
which affect performance include latencies for request 
with differing time to live, dropping rate for requests 
with differing time to live, and different charging level 
with related Quality of Service.  
 



 

 

BRITISH TELECOM (BT) APPLICATION  

Application Layer Active Network (ALAN) 

British Telecom (BT) is the main data network provider 
in the UK. At present, most applications are run on edge 
devices (which send and receive data, but do not route 
third party data), such as servers, PCs and WAP enabled 
devices. There are strong arguments for moving as 
many of these applications as possible into the network 
(Tennenhouse and Wetherall 1996), thereby ensuring 
optimal placement of applications with respect to 
performance, version synchronicity (so that more users 
have the same version), and increased security.  ‘Active 
Networking’ (Tennenhouse and Wetherall 1996) aims 
to achieve this application migration into the network 
by running code within the network on specialised 
routers.  It gives users the ability to load software 
components onto network devices dynamically without 
explicit references to any third party. The ALAN 
architecture (Fry and Ghosh 1999) enabled the user to 
supply JAVA based active-service codes known as 
proxylets that run on a network device.  Each 
networked server runs the ‘Execution Environments for 
Proxylets’ (EEPs) that contains the user supplied 
software. The purpose of the architecture is to locate the 
software at optimal points of the end-to-end path 
between the server and the clients.  
 
Automated Active Network Management using 
Distributed Genetic Algorithm (GA)  

The original ALAN proposal, the management system 
supports conventional management agent interfaces 
(Marshall 1999; Marshall et al. 2000) that respond to 
instructions from the system operators. Each application 
is individually placed in the network. However, since 
ALAN with the potential for an enormous range of 
services, it is necessary to combine the active services 
with an automated and adaptive management solution. 
Recently, a novel adaptive approach, a Distributed 
Genetic Algorithm (GA) solution was introduced by BT 
Research Laboratories (Marshall and Roadknight 2001). 
It performs proxylet placement. Here, P-ART provides 
a means of finding a set of conditions that produce 
optimum proxylet selection in an EEP containing the 
frequently requested proxylets that have been placed. 
Continuous performance guided adaptation of the 
mapping of input patters, which contain the main 
attribute values of user proxylet requests, performs 
intelligent proxylet type selection.  
 
THE P-ART SIMULATION  

P-ART is used for learning and mapping user requests 
onto appropriate proxylets. The test patterns consist of 
1000 input vectors. Each test pattern characterizes the 
properties of a network request, such as bandwidth, 
time, file size, loss and completion guarantee.  These 
test patterns are presented in random order with 10 
patterns per epoch for 100 epochs where the 

performance, p, is calculated according to the average 
bandwidth of selections. This on-line continuous 
random presentation of test patterns simulates the real 
world scenario in which pattern presentation order is 
random, so that a given network request might be 
repeatedly encountered while others are not used at all.  
 
RESULTS & CONCLUSIONS 

Results are presented in Figure 2, 3 and Table 3 and 4. 
They are representative (typical) of many simulations 
that have been run.  Performance feedback is updated at 
the end of each epoch of 10 patterns. Much longer 
epochs are less effective. The best results are for the 
shortest epochs for which the performance estimate 
remains a reasonable estimate of overall performance, 
which of course it would not be for a very small number 
of patterns. In this application, although there are 1000 
patterns, there are only 100 general types, and hence 10 
is approximately the smallest reasonable sample for 
which updates in performance may be trusted to 
increase or decrease with true overall performance. This 
will clearly be different for each application. A key 
observation behind the results presented in the tables 
and graphs here is that learning is actually over by 
epoch 64, after which no new selections of proxylets 
occur until the criteria change to low bandwidth. After 
64 (640 pattern presentations), all the performance 
variation between epochs (the jitter in the performance 
curve) is due to the epochs being short (in other words, 
samples of 10 give approximately 70% accurate 
performance values), and hence the performance over 
1000 patterns is actually constant at about the average 
of the values of the table values from 70-100, which is 
just under 70%.  
 
In Table 4 and Figure 3 the performance criterion is 
swapped from high to low bandwidth after 100 epochs, 
and we see relearning and re-stabilisation occur, with 
similar results to above once convergence has occurred. 
 
In conclusion, learning stabilizes reliably and is able to 
map the inputs onto appropriate proxylets. The 
simulations have shown that the snap-drift algorithm is 
able to provide continuous probabilistic real-time 
learning in order to improve the performance, based on 
the external performance feedback.  
 
Further work is applying the same methods in other 
areas, but we are also working on attributing 
performance to each output neuron separately, so that 
the approach can be appied to classification tasks. 
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Figure 2: The Selection Frequency of the Proxylet 

Type. E.g. Bandwidth Bands: Low Bandwidth Proxylet:  
0 → 1000 Kb/S and High Bandwidth Proxylet Type: 

1001 → 2000 Kb/S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  The Selection Frequency of Proxylet Type. 
 

Table 3: Performance of P-ART  
 

Epoch  Average No. of 
High Bandwidth 

Proxylet 
Selected (/10) 

Performance 
(%) 

0 – 9 4.9 49 

30 – 39 4.8 48 

40 – 49 4.0 40 

50 – 59 5.2 52 

70 – 79 6.6 66 

80 – 89 8.5 85 

90 – 99 8.7  87 

 
 
 
 
 
 

Table 4: Performance of P-ART with Switching of 
Performance Criterion  

 

Epoch 

Average 
No. of High 

B/W 
Proxylet 
Selected 

( /12) 

Average 
No. of 

Low B/W 
Proxylet 
Selected 

( /12) 

High B/W 
Proxylet 
Selection 

(%) 

Low B/W 
Proxylet 
Selection 

 (%) 

0 - 9 6.08 3.92 50.69 32.64 
10 - 19 5.25 4.75 43.75 39.58 
30 - 39 3.50 6.50 29.17 54.17 
40 - 49 6.00 4.00 50.00 33.33 
50 - 59 6.33 3.67 52.78 30.56 
60 - 69 5.83 4.17 48.61 34.72 
70 - 79 7.83 2.17 65.28 18.06 
80 - 89 8.42 1.58 70.14 13.19 
90 - 99 8.33 1.67 69.44 13.89 

100 -109 6.67 3.33 55.56 27.78 
110 - 119 5.17 4.83 43.06 40.28 
130 - 139 4.42 5.58 36.81 46.53 
150 - 159 3.75 6.25 31.25 52.08 
160 - 169 2.83 7.17 23.61 59.72 
170 -1 79 3.42 6.58 28.47 54.86 
180 - 189 2.83 7.17 23.61 59.72 
190 - 199 0.08 9.92 0.69 82.64 
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