

A NEW FORM OF EFFICIENT TREE-BASED PRIORITY
QUEUES FOR DISCRETE EVENT SIMULATION
Rick Siow Mong Goh* • Ian Li- Jin Thng+ • Wai Teng Tang • Marie Therese Quieta
Department of Electrical and Computer Engineering, National University of Singapore

3 Engineering Drive 3, CCN Laboratory, Singapore 117576
Email: <*engp1815@nus.edu.sg,+eletlj@nus.edu.sg>

KEYWORDS
Priority queue, splay tree, skew heap, calendar queue.

ABSTRACT
A priority queue plays an important role in stochastic
discrete event simulations for as much as 40% of a
simulation execution time is consumed by the pending
event set management. This article describes a new form
of tree-based priority queues which employs the
demarcation procedure to systematically split a single
tree-based priority queue into many smaller trees, each
divided by a logical time boundary. These new
Demarcate Construction priority queues offer an
average speedup of more than twice over the single tree-
based counterparts and outperform the current expected
O(1) Calendar Queue in many scenarios. Their superior
performance renders them suitable for many
applications such as discrete event simulators.

INTRODUCTION
In stochastic discrete event simulation (DES), we often
observe that the known kinds of efficient tree-based
priority queues such as the Splay Tree (Sleator and
Tarjan 1985) and Skew Heap (Sleator and Tarjan 1986)
only have at best an amortized time bound of O(log(n))
per operation, where by amortized time is meant the
time per operation averaged over a worst-case sequence
of operations (Tarjan 1985). Comparatively, multilist-
based priority queues such as the Calendar Queue (CQ)
(Brown 1988) and its variant Dynamic CQ (DCQ) (Oh
and Ahn 1998) offer an “expected” O(1) average time
bound per operation, where by “expected” is meant that
the CQs are not theoretically proven to be O(1) but
rather displays an O(1) performance in numerous
scenarios. However, the drawback of employing the
CQs is that the worst-case time bound per operation can
be as poor as O(n) (Rönngren and Ayani 1997). That
said, the CQ has been chosen as the pending event set
(PES) structure in various simulators such as the
popular Network Simulator v2 (Fall and Varadhan
2002).

In DES, the PES is defined as the set of all events
generated during a DES and of which the events have
not been simulated yet. The basic operations of the
enqueue and dequeue of events define the PES as a
priority queue of events with the minimum time-stamp
having the highest priority and maximum time-stamp
having the least priority. Comfort (Comfort 1984) has
revealed that up to 40% of the computational effort in a

simulation may be devoted on the management of the
PES alone, where the enqueue and dequeue operations
account for as much as 98% of all operations on the
PES. A DES frequently operates in a three-step cycle:
dequeue – removal of an event with the highest priority
from the PES; execute – processing this dequeued event;
enqueue – insertion of new event/s resulting from the
execution into the PES. The two basic operations,
enqueue and dequeue, have run-time complexity closely
dependent on the total number of events in the PES.
Therefore, a PES structure should be efficient especially
for large-scale simulations that involve large number of
events during simulation jobs.

In most applications the metric of interest for a priority
queue is often the time required to perform the most
common operations. This metric is referred to as access
time. In DES, the total run-time of the simulation job is
by far more important than the individual times of the
operations, except for real-time applications. Therefore,
the amortized (or average) access time per operation is
by far more important than the worst-case access time
for each individual operation. Fine-grain simulations,
such as but not limited to ATM network simulations, are
time-consuming due to the huge number of events to
process (Oh and Ahn 1998). The faster and the larger
the networks, the higher the number of events would be
in the PES and the longer run-times these network
simulations would require, which may take days or
weeks to yield results with an acceptable level of
statistical error. For example, experiments conducted in
Tcpsim (Dupuy et al. 1990) for a three-minute
simulated time over Sun Ultra 1 took more than one day
execution time on average (Oh and Ahn 1998).
Therefore, to speed up simulation jobs, one approach is
to develop high-performance priority queue structures
for the PES.

In this article we develop the Demarcate Construction
(Demarco) priority queue, a multilist-based structure
which is made up of two building blocks. The name
Demarco arises from the word “demarcate” which
means to divide and separate clearly as if by boundaries.
The primary structure is an array of buckets, where each
bucket may contain a tree holding near-future events.
The secondary structure is made up of a simple unsorted
linked list to hold far-future events. Demarcation refers
to the process of constructing the primary structure and
transferring events from the secondary structure to the
primary. In an amortized sense, this demarcation
process ensures that a tree-based priority queue has

comparable performance or better, than one which does
not undergo demarcation.

DEMARCATE CONSTRUCTION
The Demarcate Construction (Demarco) has four
essential principles. First and foremost, the concept of
demarcation is to have many trees each containing a
small number of events. In contrast, a tree-based priority
queue manages only a single tree containing all the
nodes or events. Upon applying demarcation, an array
of logical buckets is constructed. Each bucket spans
equal time-interval and these buckets systematically
enable the events to be demarcated and distributed in
the buckets. Thus on the average, the tree in each bucket
will have a smaller number of events leading to a much
reduced height as compared to a single tree priority
queue.

Secondly, Demarco defers the sorting of events until
necessary. At the onset, all enqueued events are
appended in the secondary tier (SecT) of Demarco.
These events are not sorted according to their
timestamps. During the first dequeue operation, the
primary tier (PriT) is constructed and the events are
inserted into the corresponding buckets in PriT where
they are sorted according to the tree-based priority
queue’s native enqueue algorithm.

Thirdly, unlike other multilist-based priority queues
(e.g. the CQs), Demarco does not rely on sampling
heuristics to obtain structure parameters. The
parameters used when constructing PriT are obtained
from the events distribution in the SecT.

Lastly, the algorithm of Demarco proceeds in
demarcation cycles where by a cycle is defined as the
duration when: the events in SecT are transferred to the
PriT, more events are enqueued in PriT and SecT, and
all the events in the PriT are dequeued.

Basic Structure of Demarco
The main building blocks of the Demarcate
Construction (Demarco) consist of:
1. Primary Tier (PriT) – an array of buckets where

each bucket may contain a tree. Each tree-node
contains an event holding a near-future (i.e. soon to
be dequeued) timestamp. Within each bucket, the
events are sorted according to the algorithm of the
tree-based priority queue. The parameters used in
creating the PriT are obtained from the events
distribution in SecT.

2. Secondary Tier (SecT) – an unsorted singly linked
list. Acting as an overflow list to contain far-future
events, SecT buffers events that do not affect the
PriT. This reduces the number of events in the PriT
and thus, on the average, the number of events in
each bucket decreases as simulation time
progresses. Since the performance of tree-based
priority queues depends on the height (or number of
levels), reducing the number of events in PriT will

eventually lead to a reduction in the height of the
tree in the buckets in PriT. This leads to a superior
overall performance.

The Demarco Algorithm
Though the Demarco is a multilist-based structure alike
the CQs, Demarco marks the first departure from the
CQs’ resize triggers and sampling heuristics to obtain
structure parameters such as the number of buckets and
the bucketwidth. Instead of the static methodologies
used in the CQs, Demarco employs a dynamic approach
of updating its structure parameters by making PriT
structure parameters (i.e. bucketwidth and number of
buckets) to be dependent on the events distribution in
SecT. Since the Demarco proceeds in cycles, the
structure parameters of PriT gets renewed according to
the most current events and are not affected by the past
events. This process removes the need to have costly
resize operations found in the CQs. This becomes more
vivid when the enqueue and dequeue operations are
described.

The Demarco structure keeps a set of variables to
function and they are defined as follow:
PriT_Start – Used for calculating the bucket-index of

the event which is to be enqueued in PriT. It is set to
SecT_Min during each Demarcation process, where
by events are transferred from SecT to PriT.

PriT_Num – Number of events in PriT.
PriT_Bw – Bucketwidth of PriT.
PriT_Index – Bucket-index of the first non-empty

bucket bucket in PriT.
SecT_Cur – Minimum timestamp of an event that can

be enqueued in SecT. This value will be set equal to
SecT_Max at each transfer of events from SecT to
PriT.

SecT _Min – Minimum timestamp in SecT.
SecT _Max – Maximum timestamp in SecT.
SecT _Num – Number of events in SecT.

The Demarco Algorithm – Dequeue Operation
At the onset, all enqueued events are placed in SecT in a
FIFO manner without time-order thus leaving PriT
being empty. On the first dequeue operation, PriT is
constructed and thereafter, all the events are transferred
from SecT to PriT. The bucketwidth of PriT, an
important structure parameter, is dynamically assigned
using equation (1).

PriT_Bw = Bucketwidth =
_

SecT_Max - SecT_Min

SecT Num
 (1)

The number of buckets to be created in PriT is set to be
SecT_Num, giving an average of one event per bucket
on the assumption that the event distribution is a
uniform distribution. Though in practical scenarios this
may not be true, the Demarco will still perform well
because the enqueue of events into PriT is O(log(nB))
per event whereby nB is the number of events in a
bucket. For most scenarios, nB << N, where N is the
total number of events in the Demarco structure.

After the construction of PriT, the events in SecT are
transferred to PriT. Transferring of an event into PriT is
alike enqueuing an event into PriT which utilizes the
tree-based priority queue’s native enqueue algorithm.
Thereafter, the highest priority event would be in the
first bucket in PriT (where PriT_Index = 0 and that
PriT_Start = SecT_Min have been initialized). On each
dequeue, the highest priority event would be removed
from the first bucket in PriT by employing the tree-
based priority queue’s native dequeue algorithm.
Subsequently, when the first bucket is empty, it is
invalidated and the second bucket is then considered,
where at the same time, parameter PriT_Index is
incremented by one. If the second bucket is empty,
PriT_Index is incremented again until a non-empty
bucket is found and the current highest priority event is
dequeued. After all the events in PriT are dequeued, i.e.
all the buckets are empty, the demarcation cycle repeats
itself with SecT treating the next dequeue to be alike the
first dequeue as mentioned.

The Demarco Algorithm – Enqueue Operation
For each enqueue operation, Demarco checks if that
event timestamp is greater than SecT_Cur. If so, the
event is simply placed at the end of the linked list in
SecT. If the event is not inserted in SecT, then the event
is enqueued in PriT. On enqueuing in PriT, the bucket-
index of the bucket where this event is to be inserted in
PriT is:

Bucket_index =
timestamp - PriT_Start

PriT_Bw

 (2)

and the event is enqueued according to the tree’s native
enqueue algorithm.

PERFORMANCE MEASUREMENT
TECHNIQUES
The performance of priority queues are often measured
by the average access time of the enqueue and dequeue
operations under different load conditions. The
parameters to be varied for each priority queue
performance benchmark are: the access pattern, the
priority increment distribution and the queue size. The
access pattern models used are the Classic Hold and
Up/Down. They emulate the steady-state and the
transient phase of a typical simulation respectively. The
various priority increment distributions tested are as
shown in Figure 1 and the queue size ranges from 100
to 1 million. These benchmark scenarios had also been
commonly applied in (Jones 1986; Rönngren et al.
1993; Rönngren and Ayani 1997; Oh and Ahn 1998).
The experiments were carried out on an AMD Athlon
MP 1.2GHz dual-processor server running the priority
queues sequentially. Required memory was pre-
allocated. All code was written in the C programming
language. 10 runs of each experiment were done.

The Camel(x,y) distribution is used to model bursty
traffic in computer and communication networks which
represents a highly-skewed distribution. The parameters

used for Camel(x,y) result in two humps with x
probability mass being concentrated in the two humps.
The duration of the humps makes up y of an interval,
where x and y are (0,1). Change(A,B,x) is a compound
distribution that combines priority distribution A and B,
with x priority increments being alternately drawn by A
and B. In our experiments, Camel(0.999,0.001) and
Change(Exp(1),Triangle,2000) are used.

Figure 1: Priority Increment Distributions

EXPERIMENTAL RESULTS
The objectives of this section are firstly to present the
performance of tree-based priority queues with and
without Demarco. Secondly, we compare Demarco
priority queues with the current fastest multilist-based
queues – CQ and DCQ. Lastly, we would like to
determine Demarco priority queues’ generality and
sensitivity in the six priority increment distributions
using the Classic Hold and Up/Down models, as well as
when the queue size increases from 100 to 1 million.
Note that a logarithmic scale has been used for the
queue-size axis which leads to logarithmic complexity
for linear plots.

Steady-State Phase Experiments
Figures 2(a) to 2(f) show the results obtained under the
Classic Hold experiment which is commonly employed
to test the steady-state performance of the priority
queues. Note that the obvious knee seen in the graphs is
due to the declining cache performance and occurs
when the queue size is about 10,000. This phenomenon
is also observed in the graphs in (Rönngren and Ayani
1997) where the experiments were done on SUN and
Intel architectures.

Figures 2 show vividly that the performance of
Demarco structures, i.e. Demarco-Skews and Demarco-
Splays, outperform the tree-based priority queues; Skew
Heap and Splay Tree, where by Demarco-Skews/-
Splays is made up of a Demarco structure where each
bucket in PriT of Demarco may contain a Skew
Heap/Splay Tree. At larger queue sizes, the
performance speedup that Demarco offers is more than
three times. Figures 2(a) to 2(d) show that the
performance of the Demarco structures are comparable
to the expected O(1) complexity multilist-based priority
queues, i.e. CQ and DCQ. Furthermore, Figures 2(e)
and 2(f) demonstrate clearly that the Demarco structures
outperform the CQs which have erratic performance for
skewed distributions such as the Camel and Change.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Performance Graphs for Classic Hold Model Experiments.

Transient Phase Experiments
The Up/Down model which tests the performance of
priority queue structures during transient periods when
the queue size fluctuates frequently, reveals the
weaknesses of the CQs. Figures 3(a) to 3(d) show that
the CQs experience several peaks and these suggest
strongly that the resize operations found in the CQs can
be costly since the CQs resize whenever the queue size
fluctuates by factors of two. The form of triggers found

in the CQs are clearly inflexible because even though
the CQs can be performing well with its existing
operating parameters, but because of their static
triggers, they still have to resize whenever the queue
size fluctuates by factors of two. Figures 3(e) and 3(f)
again demonstrate that the CQs are sensitive to skewed
distributions. The Demarco structures outperform all the
priority queues in all these experiments.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Performance Graphs for Up/Down Model Experiments.

Overall Performance Comparison
This section illustrates numerically the performance
speedup of the Demarco structures over the normal
single tree-based priority queues. In addition, we
compare the relative performance of the Demarco
structures and tree-based priority queues versus the
multilist-based CQ and DCQ.
Table 1 shows that the speedup offered by the Demarco
structure is more than two times, average over all queue
sizes and distributions. Table 2 illustrates the relative
performance of all the priority queues considered. The
Demarco-Skews and Demarco-Splays outperform their

tree-based counterparts and are generally more stable
than the CQs.

Table 1: Speedup Offered by the Demarco Structure
Normalized Over a Single Tree-Based Priority Queue –

Comparison by Priority Increment Distribution
Distribution Demarco-Skews Demarco-Splays
Rectangle 2.99 2.61
Exponential 2.62 2.66
Triangle 3.01 2.46
NegTriangle 2.99 2.66
Camel 2.05 1.31
Change 1.91 1.39
Average 2.60 2.18

Table 2: Relative Average Performance for All Distributions
(Normalized Respect to Fastest Access Time where 1.00 is the Fastest)

Model Queue Size Demarco-Skews Demarco-Splays Skew Heap Splay Tree CQ DCQ
100 1.07 1.14 1.31 1.61 1.59 1.00
1000 1.15 1.26 1.76 2.15 1.00 1.41
10000 1.00 1.10 1.55 1.70 5.32 1.23
100000 1.00 1.12 3.27 2.59 1.20 1.81
1000000 1.00 1.11 4.44 3.61 1.90 NA*

C

la
ss

ic
 H

ol
d

Average 1.04 1.15 2.47 2.33 2.20 NA*
100 1.00 1.09 1.01 1.12 2.17 2.38
1000 1.00 1.06 1.25 1.42 1.56 1.75
10000 1.00 1.08 1.16 1.27 19.55 15.96
100000 1.00 1.10 1.93 1.95 NA* NA*
1000000 1.00 1.10 2.67 2.63 NA* NA*

U

p/
D

ow
n

Average 1.00 1.09 1.60 1.68 NA* NA*
Total Average 1.02 1.12 2.04 2.01 NA* NA*

* NA is meant that some of the access times are too high in at least one or more distributions. Thus the results are not considered in this comparison.

Generality and Sensitivity of Demarco Structures
Figures 4(a) and 4(b) show the generality and
insensitivity of Demarco-Skews under the various
distributions and queue sizes (Demarco-Splays has
similar graphs and is thus not included). Though the
performance of Demarco-Skews may differ by as
much as twice for different distributions, the
complexity is still considered near O(1). Furthermore,
the graphs show that it is stable for all the distributions
unlike the CQs which is near O(n) for skewed
distributions. This superior performance is made
possible because of the four essential principles
mentioned.

(a)

(b)

Figure 4: Performance Graphs for Demarco-Skews

CONCLUSION
Demarcate Construction is a new form of tree-based
priority queues which employs the demarcation
process. These new priority queues offer an average
speedup of more than twice over the single tree-based
counterparts and outperform the current expected O(1)
Calendar Queues in many scenarios. Its generality in
small to large queue sizes (100 to 1 million events),
insensitivity to priority increment distributions and low
overhead costs, make it a superior priority queue for
many applications such as the pending event set
structure in discrete event simulators.

REFERENCES
Brown, R. 1988. “Calendar Queues: A Fast O(1) Priority

Queue Implementation for the Simulation Event Set
Problem.” Commun. ACM 24, 12 (Dec.), 825-829.

Comfort, J. C. 1984. “The Simulation of a Master-Slave
Event Set Processor.” Simulation 42, 3 (March), 117-124.

Dupuy, A., Schwartz, J., Yemini, Y. and Bacon, D. 1990.
“NEST: A Network Simulation and Prototyping
Testbed.” Commun. ACM 33, 10 (Oct.), 63-74.

Fall, K. and Varadhan, K. 2002. The ns Manual.
UCB/LBNL/VINT Network simulator v2.
http://www.isi.edu/nsnam/ns/.

Jones, D. W. 1986. “An Empirical Comparison of Priority-
Queue and Event-Set Implementations.” Commun. ACM
29, 4 (April), 300-311.

Oh, S., and Ahn, J. 1998. “Dynamic Calendar Queue.” In
Proceedings of the 32nd Annual Simulation Symposium,
20-25.

Rönngren, R. and Ayani, R. 1997. “A Comparative Study of
Parallel and Sequential Priority Queue Algorithms.”
ACM Trans. Model. Comput. Simul. 7, 2 (April), 157-
209.

Schwetman, H. 1996. CSIM18 User’s Guide. Austin, TX:
Mesquite Software, Inc.

Rönngren, R., Riboe, J., and Ayani, R. 1993. “Lazy Queue:
New Approach to Implementing the Pending Event Set.”
Int. J. Computer Simulation 3, 303-332.

Sleator, D. D. and Tarjan, R. E. 1985. “Self-Adjusting Binary
Search Trees.” Journal of the ACM 32, 3 (July), 652-686.

Sleator, D. D. and Tarjan, R. E. 1986. “Self-Adjusting
Heaps.” SIAM Journal of Computing 15, 1 (Feb.), 52-69.

Tarjan, R.E. 1985. “Amortized Computational Complexity.”
SIAM Journal on Algebraic and Discrete Meth. 6, 2
(April), 306-318.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

