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ABSTRACT 
A priority queue plays an important role in stochastic 
discrete event simulations for as much as 40% of a 
simulation execution time is consumed by the pending 
event set management. This article describes a new form 
of tree-based priority queues which employs the 
demarcation procedure to systematically split a single 
tree-based priority queue into many smaller trees, each 
divided by a logical time boundary. These new 
Demarcate Construction priority queues offer an 
average speedup of more than twice over the single tree-
based counterparts and outperform the current expected 
O(1) Calendar Queue in many scenarios. Their superior 
performance renders them suitable for many 
applications such as discrete event simulators. 

INTRODUCTION 
In stochastic discrete event simulation (DES), we often 
observe that the known kinds of efficient tree-based 
priority queues such as the Splay Tree (Sleator and 
Tarjan 1985) and Skew Heap (Sleator and Tarjan 1986) 
only have at best an amortized time bound of O(log(n)) 
per operation, where by amortized time is meant the 
time per operation averaged over a worst-case sequence 
of operations (Tarjan 1985). Comparatively, multilist-
based priority queues such as the Calendar Queue (CQ) 
(Brown 1988) and its variant Dynamic CQ (DCQ) (Oh 
and Ahn 1998) offer an “expected” O(1) average time 
bound per operation, where by “expected” is meant that 
the CQs are not theoretically proven to be O(1) but 
rather displays an O(1) performance in numerous 
scenarios. However, the drawback of employing the 
CQs is that the worst-case time bound per operation can 
be as poor as O(n) (Rönngren and Ayani 1997). That 
said, the CQ has been chosen as the pending event set 
(PES) structure in various simulators such as the 
popular Network Simulator v2 (Fall and Varadhan 
2002). 
 
In DES, the PES is defined as the set of all events 
generated during a DES and of which the events have 
not been simulated yet. The basic operations of the 
enqueue and dequeue of events define the PES as a 
priority queue of events with the minimum time-stamp 
having the highest priority and maximum time-stamp 
having the least priority. Comfort (Comfort 1984) has 
revealed that up to 40% of the computational effort in a 

simulation may be devoted on the management of the 
PES alone, where the enqueue and dequeue operations 
account for as much as 98% of all operations on the 
PES. A DES frequently operates in a three-step cycle: 
dequeue – removal of an event with the highest priority 
from the PES; execute – processing this dequeued event; 
enqueue – insertion of new event/s resulting from the 
execution into the PES. The two basic operations, 
enqueue and dequeue, have run-time complexity closely 
dependent on the total number of events in the PES. 
Therefore, a PES structure should be efficient especially 
for large-scale simulations that involve large number of 
events during simulation jobs.  
 
In most applications the metric of interest for a priority 
queue is often the time required to perform the most 
common operations. This metric is referred to as access 
time. In DES, the total run-time of the simulation job is 
by far more important than the individual times of the 
operations, except for real-time applications. Therefore, 
the amortized (or average) access time per operation is 
by far more important than the worst-case access time 
for each individual operation. Fine-grain simulations, 
such as but not limited to ATM network simulations, are 
time-consuming due to the huge number of events to 
process (Oh and Ahn 1998). The faster and the larger 
the networks, the higher the number of events would be 
in the PES and the longer run-times these network 
simulations would require, which may take days or 
weeks to yield results with an acceptable level of 
statistical error. For example, experiments conducted in 
Tcpsim (Dupuy et al. 1990) for a three-minute 
simulated time over Sun Ultra 1 took more than one day 
execution time on average (Oh and Ahn 1998). 
Therefore, to speed up simulation jobs, one approach is 
to develop high-performance priority queue structures 
for the PES. 
 
In this article we develop the Demarcate Construction 
(Demarco) priority queue, a multilist-based structure 
which is made up of two building blocks. The name 
Demarco arises from the word “demarcate” which 
means to divide and separate clearly as if by boundaries. 
The primary structure is an array of buckets, where each 
bucket may contain a tree holding near-future events. 
The secondary structure is made up of a simple unsorted 
linked list to hold far-future events. Demarcation refers 
to the process of constructing the primary structure and 
transferring events from the secondary structure to the 
primary. In an amortized sense, this demarcation 
process ensures that a tree-based priority queue has 



 

comparable performance or better, than one which does 
not undergo demarcation.  

DEMARCATE CONSTRUCTION 
The Demarcate Construction (Demarco) has four 
essential principles. First and foremost, the concept of 
demarcation is to have many trees each containing a 
small number of events. In contrast, a tree-based priority 
queue manages only a single tree containing all the 
nodes or events. Upon applying demarcation, an array 
of logical buckets is constructed. Each bucket spans 
equal time-interval and these buckets systematically 
enable the events to be demarcated and distributed in 
the buckets. Thus on the average, the tree in each bucket 
will have a smaller number of events leading to a much 
reduced height as compared to a single tree priority 
queue. 
 
Secondly, Demarco defers the sorting of events until 
necessary. At the onset, all enqueued events are 
appended in the secondary tier (SecT) of Demarco. 
These events are not sorted according to their 
timestamps. During the first dequeue operation, the 
primary tier (PriT) is constructed and the events are 
inserted into the corresponding buckets in PriT where 
they are sorted according to the tree-based priority 
queue’s native enqueue algorithm. 
 
Thirdly, unlike other multilist-based priority queues 
(e.g. the CQs), Demarco does not rely on sampling 
heuristics to obtain structure parameters. The 
parameters used when constructing PriT are obtained 
from the events distribution in the SecT. 
 
Lastly, the algorithm of Demarco proceeds in 
demarcation cycles where by a cycle is defined as the 
duration when: the events in SecT are transferred to the 
PriT, more events are enqueued in PriT and SecT, and 
all the events in the PriT are dequeued. 

Basic Structure of Demarco 
The main building blocks of the Demarcate 
Construction (Demarco) consist of: 
1. Primary Tier (PriT) – an array of buckets where 

each bucket may contain a tree. Each tree-node 
contains an event holding a near-future (i.e. soon to 
be dequeued) timestamp. Within each bucket, the 
events are sorted according to the algorithm of the 
tree-based priority queue. The parameters used in 
creating the PriT are obtained from the events 
distribution in SecT.  

2. Secondary Tier (SecT) – an unsorted singly linked 
list. Acting as an overflow list to contain far-future 
events, SecT buffers events that do not affect the 
PriT. This reduces the number of events in the PriT 
and thus, on the average, the number of events in 
each bucket decreases as simulation time 
progresses. Since the performance of tree-based 
priority queues depends on the height (or number of 
levels), reducing the number of events in PriT will 

eventually lead to a reduction in the height of the 
tree in the buckets in PriT. This leads to a superior 
overall performance. 

The Demarco Algorithm 
Though the Demarco is a multilist-based structure alike 
the CQs, Demarco marks the first departure from the 
CQs’ resize triggers and sampling heuristics to obtain 
structure parameters such as the number of buckets and 
the bucketwidth. Instead of the static methodologies 
used in the CQs, Demarco employs a dynamic approach 
of updating its structure parameters by making PriT 
structure parameters (i.e. bucketwidth and number of 
buckets) to be dependent on the events distribution in 
SecT. Since the Demarco proceeds in cycles, the 
structure parameters of PriT gets renewed according to 
the most current events and are not affected by the past 
events. This process removes the need to have costly 
resize operations found in the CQs. This becomes more 
vivid when the enqueue and dequeue operations are 
described. 
 
The Demarco structure keeps a set of variables to 
function and they are defined as follow: 
PriT_Start – Used for calculating the bucket-index of 

the event which is to be enqueued in PriT. It is set to 
SecT_Min during each Demarcation process, where 
by events are transferred from SecT to PriT. 

PriT_Num – Number of events in PriT. 
PriT_Bw – Bucketwidth of PriT. 
PriT_Index – Bucket-index of the first non-empty 

bucket bucket in PriT. 
SecT_Cur – Minimum timestamp of an event that can 

be enqueued in SecT. This value will be set equal to 
SecT_Max at each transfer of events from SecT to 
PriT. 

SecT _Min – Minimum timestamp in SecT. 
SecT _Max – Maximum timestamp in SecT. 
SecT _Num – Number of events in SecT. 

The Demarco Algorithm – Dequeue Operation 
At the onset, all enqueued events are placed in SecT in a 
FIFO manner without time-order thus leaving PriT 
being empty. On the first dequeue operation, PriT is 
constructed and thereafter, all the events are transferred 
from SecT to PriT. The bucketwidth of PriT, an 
important structure parameter, is dynamically assigned 
using equation (1).  

PriT_Bw = Bucketwidth = 
_

SecT_Max - SecT_Min

SecT Num
   (1) 

The number of buckets to be created in PriT is set to be 
SecT_Num, giving an average of one event per bucket 
on the assumption that the event distribution is a 
uniform distribution. Though in practical scenarios this 
may not be true, the Demarco will still perform well 
because the enqueue of events into PriT is O(log(nB)) 
per event whereby nB is the number of events in a 
bucket. For most scenarios, nB << N, where N is the 
total number of events in the Demarco structure. 



 

After the construction of PriT, the events in SecT are 
transferred to PriT. Transferring of an event into PriT is 
alike enqueuing an event into PriT which utilizes the 
tree-based priority queue’s native enqueue algorithm. 
Thereafter, the highest priority event would be in the 
first bucket in PriT (where PriT_Index = 0 and that 
PriT_Start = SecT_Min have been initialized). On each 
dequeue, the highest priority event would be removed 
from the first bucket in PriT by employing the tree-
based priority queue’s native dequeue algorithm. 
Subsequently, when the first bucket is empty, it is 
invalidated and the second bucket is then considered, 
where at the same time, parameter PriT_Index is 
incremented by one. If the second bucket is empty, 
PriT_Index is incremented again until a non-empty 
bucket is found and the current highest priority event is 
dequeued. After all the events in PriT are dequeued, i.e. 
all the buckets are empty, the demarcation cycle repeats 
itself with SecT treating the next dequeue to be alike the 
first dequeue as mentioned. 

The Demarco Algorithm – Enqueue Operation 
For each enqueue operation, Demarco checks if that 
event timestamp is greater than SecT_Cur. If so, the 
event is simply placed at the end of the linked list in 
SecT. If the event is not inserted in SecT, then the event 
is enqueued in PriT. On enqueuing in PriT, the bucket-
index of the bucket where this event is to be inserted in 
PriT is: 

Bucket_index = 
timestamp - PriT_Start

PriT_Bw

 
 
 

   (2) 

and the event is enqueued according to the tree’s native 
enqueue algorithm.  

PERFORMANCE MEASUREMENT 
TECHNIQUES 
The performance of priority queues are often measured 
by the average access time of the enqueue and dequeue 
operations under different load conditions. The 
parameters to be varied for each priority queue 
performance benchmark are: the access pattern, the 
priority increment distribution and the queue size. The 
access pattern models used are the Classic Hold and 
Up/Down. They emulate the steady-state and the 
transient phase of a typical simulation respectively. The 
various priority increment distributions tested are as 
shown in Figure 1 and the queue size ranges from 100 
to 1 million. These benchmark scenarios had also been 
commonly applied in (Jones 1986; Rönngren et al. 
1993; Rönngren and Ayani 1997; Oh and Ahn 1998). 
The experiments were carried out on an AMD Athlon 
MP 1.2GHz dual-processor server running the priority 
queues sequentially. Required memory was pre-
allocated. All code was written in the C programming 
language. 10 runs of each experiment were done. 
 
The Camel(x,y) distribution is used to model bursty 
traffic in computer and communication networks which 
represents a highly-skewed distribution. The parameters 

used for Camel(x,y) result in two humps with x 
probability mass being concentrated in the two humps. 
The duration of the humps makes up y of an interval, 
where x and y are (0,1). Change(A,B,x) is a compound 
distribution that combines priority distribution A and B, 
with x priority increments being alternately drawn by A 
and B. In our experiments, Camel(0.999,0.001) and 
Change(Exp(1),Triangle,2000) are used. 

 

 
Figure 1: Priority Increment Distributions 

EXPERIMENTAL RESULTS 
The objectives of this section are firstly to present the 
performance of tree-based priority queues with and 
without Demarco. Secondly, we compare Demarco 
priority queues with the current fastest multilist-based 
queues – CQ and DCQ. Lastly, we would like to 
determine Demarco priority queues’ generality and 
sensitivity in the six priority increment distributions 
using the Classic Hold and Up/Down models, as well as 
when the queue size increases from 100 to 1 million. 
Note that a logarithmic scale has been used for the 
queue-size axis which leads to logarithmic complexity 
for linear plots. 

Steady-State Phase Experiments 
Figures 2(a) to 2(f) show the results obtained under the 
Classic Hold experiment which is commonly employed 
to test the steady-state performance of the priority 
queues. Note that the obvious knee seen in the graphs is 
due to the declining cache performance and occurs 
when the queue size is about 10,000. This phenomenon 
is also observed in the graphs in (Rönngren and Ayani 
1997) where the experiments were done on SUN and 
Intel architectures.  
 
Figures 2 show vividly that the performance of 
Demarco structures, i.e. Demarco-Skews and Demarco-
Splays, outperform the tree-based priority queues; Skew 
Heap and Splay Tree, where by Demarco-Skews/-
Splays is made up of a Demarco structure where each 
bucket in PriT of Demarco may contain a Skew 
Heap/Splay Tree. At larger queue sizes, the 
performance speedup that Demarco offers is more than 
three times. Figures 2(a) to 2(d) show that the 
performance of the Demarco structures are comparable 
to the expected O(1) complexity multilist-based priority 
queues, i.e. CQ and DCQ.  Furthermore, Figures 2(e) 
and 2(f) demonstrate clearly that the Demarco structures 
outperform the CQs which have erratic performance for 
skewed distributions such as the Camel and Change.  
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Figure 2: Performance Graphs for Classic Hold Model Experiments. 
 

Transient Phase Experiments 
The Up/Down model which tests the performance of 
priority queue structures during transient periods when 
the queue size fluctuates frequently, reveals the 
weaknesses of the CQs. Figures 3(a) to 3(d) show that 
the CQs experience several peaks and these suggest 
strongly that the resize operations found in the CQs can 
be costly since the CQs resize whenever the queue size 
fluctuates by factors of two. The form of triggers found 

in the CQs are clearly inflexible because even though 
the CQs can be performing well with its existing 
operating parameters, but because of their static 
triggers, they still have to resize whenever the queue 
size fluctuates by factors of two. Figures 3(e) and 3(f) 
again demonstrate that the CQs are sensitive to skewed 
distributions. The Demarco structures outperform all the 
priority queues in all these experiments.   
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Figure 3: Performance Graphs for Up/Down Model Experiments. 
 

Overall Performance Comparison 
This section illustrates numerically the performance 
speedup of the Demarco structures over the normal 
single tree-based priority queues. In addition, we 
compare the relative performance of the Demarco 
structures and tree-based priority queues versus the 
multilist-based CQ and DCQ. 
Table 1 shows that the speedup offered by the Demarco 
structure is more than two times, average over all queue 
sizes and distributions. Table 2 illustrates the relative 
performance of all the priority queues considered. The 
Demarco-Skews and Demarco-Splays outperform their 

tree-based counterparts and are generally more stable 
than the CQs. 
 

Table 1: Speedup Offered by the Demarco Structure 
Normalized Over a Single Tree-Based Priority Queue – 

Comparison by Priority Increment Distribution 
Distribution Demarco-Skews Demarco-Splays 
Rectangle 2.99 2.61 
Exponential 2.62 2.66 
Triangle 3.01 2.46 
NegTriangle 2.99 2.66 
Camel 2.05 1.31 
Change 1.91 1.39 
Average 2.60 2.18 



 

Table 2: Relative Average Performance for All Distributions  
(Normalized Respect to Fastest Access Time where 1.00 is the Fastest) 

 

Model Queue Size Demarco-Skews Demarco-Splays Skew Heap Splay Tree CQ DCQ 
100 1.07 1.14 1.31 1.61 1.59 1.00 
1000 1.15 1.26 1.76 2.15 1.00 1.41 
10000 1.00 1.10 1.55 1.70 5.32 1.23 
100000 1.00 1.12 3.27 2.59 1.20 1.81 
1000000 1.00 1.11 4.44 3.61 1.90 NA* 
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Average 1.04 1.15 2.47 2.33 2.20 NA* 
100 1.00 1.09 1.01 1.12 2.17 2.38 
1000 1.00 1.06 1.25 1.42 1.56 1.75 
10000 1.00 1.08 1.16 1.27 19.55 15.96 
100000 1.00 1.10 1.93 1.95 NA* NA* 
1000000 1.00 1.10 2.67 2.63 NA* NA* 

 
U
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ow
n 

Average 1.00 1.09 1.60 1.68 NA* NA* 
Total Average 1.02 1.12 2.04 2.01 NA* NA* 

* NA is meant that some of the access times are too high in at least one or more distributions. Thus the results are not considered in this comparison. 

 
Generality and Sensitivity of Demarco Structures 
Figures 4(a) and 4(b) show the generality and 
insensitivity of Demarco-Skews under the various 
distributions and queue sizes (Demarco-Splays has 
similar graphs and is thus not included). Though the 
performance of Demarco-Skews may differ by as 
much as twice for different distributions, the 
complexity is still considered near O(1). Furthermore, 
the graphs show that it is stable for all the distributions 
unlike the CQs which is near O(n) for skewed 
distributions. This superior performance is made 
possible because of the four essential principles 
mentioned.  
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Figure 4: Performance Graphs for Demarco-Skews 

CONCLUSION 
Demarcate Construction is a new form of tree-based 
priority queues which employs the demarcation 
process. These new priority queues offer an average 
speedup of more than twice over the single tree-based 
counterparts and outperform the current expected O(1) 
Calendar Queues in many scenarios. Its generality in 
small to large queue sizes (100 to 1 million events), 
insensitivity to priority increment distributions and low 
overhead costs, make it a superior priority queue for 
many applications such as the pending event set 
structure in discrete event simulators. 
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