
AN ARCHITECTURE FOR DISTRIBUTED SIMULATION
OF WIRELESS NETWORKS

Ratan K. Guha and Oleg Kachirski

School of Computer Science
University of Central Florida

Orlando, FL 32816, USA
E-mail: {guha, oleg}@cs.ucf.edu

ABSTRACT
In this paper we describe a simulation framework

designed for simulating wireless network technologies.
We provide a detailed architecture of the framework and
illustrate all the necessary steps to develop simulations
for any particular wireless networking application. We
demonstrate the use of this framework by simulating
network intrusion detection system for wireless ad hoc
networks. We also extend the framework architecture to
multiprocessor environments and describe the
optimizations to further improve the performance of the
simulation system for large-scale simulations of
wireless networks.

INTRODUCTION

 Wireless networks today are used in almost every
organization. Researchers enthusiastically work on
developing new communi-cation protocols, algorithms
and methods. Many papers in the network research
community propose new wireless algorithms, offer
better performance, quality of service and other benefits.
Technology of choice should be carefully evaluated
before being adopted. Primary method of evaluating
wireless networks is to create a computer simulation of
a particular topology, communication mechanism or an
algorithm. Our primary objective was to create a
distributed simulation framework capable of running on
a cluster computer, targeting wireless networks. The key
requirements were flexibility, extendibility and
scalability, as our final goal was to utilize a simulation
system capable of being extended to very large
simulations. Several well-known general purpose
network simulators were considered (Heybey 1988;
Groselj 1995; Mah 1998; Keshav 1997; VINT Project
1997; Chang 1999) to create our simulation model of a
large-scale wireless network. After reviewing
documentation and running sample simulations, we
have come to the conclusion that none of the assessed
simulators would meet our requirements due to several
reasons, such as inflexible modeling of wireless nodes
to include desired functionality (i.e., mobility models
for ad hoc networks), and relying on C libraries from a
particular architecture; thus making it non-portable
between different computer architectures

WINDS Framework (Wireless Network Distributed
Simulation Framework) was developed by our

Networks Research Group at the University of Central
Florida as a research tool to provide time-saving flexible
simulation test-bed targeting a wide range of wireless
network architectures. The framework is cross-platform,
Java-based, GUI-driven and can be used as a generic
wireless network simulator for a variety of purposes,
such as routing in ad hoc networks, mobility models of
totally mobile wireless networks, etc.

 The rest of the paper is organized as follows. First,
we present the WINDS architecture design in the next
section. Framework modules are described in detail in
this section, as well as a generic simulation process. We
also list requirements and limitations of our simulation
framework. In section 3, a practical example of WINDS
framework application is given as a test-bed for our
Agent-based Intrusion Detection System for Ad Hoc
Wireless Networks (Kachirski and Guha 2002;
Kachirski and Guha 2003; Guha et al. 2002). Network
clustering algorithm and agent allocation algorithm are
presented, along with result discussion. Section 4
discusses on-going work on extending the framework to
multiprocessor environments and distributing simulation
objects efficiently to minimize inter-processor
communications. Finally, a summary and conclusions
are presented, along with plans for future development
and parallelization of WINDS framework.

WINDS DESIGN PHILOSOPHY

There was a direct need for us to develop a network
simulator that specifically targets wireless networks of
diverse configurations. Our goals were:

• Clean, easy-to-understand and modify design
• Object-oriented approach, general portability
• Use of a popular programming language
• Easy-to-use, GUI driven framework
• Adequate performance and scalability

Following these guidelines, we have developed WINDS
framework – a flexible, portable, wireless-network
oriented framework that can be used to simulate variety
of applications of wireless and hybrid networks. The
objectives of this project were to reduce redundant
software design efforts in the area of wireless network
simulation, establish a framework general enough to be
used for simulations of many wireless network-related
technologies, and provide for common base for the

experimentation of various wireless infrastructures. The
object-oriented nature of the software and the use of a
popular programming language for implementation
allow researchers to easily modify, reuse and share
whole systems or system components. Graphical
environment allows the system to be used for
demonstrational or educational purposes.

WINDS Architecture
 The architecture of WINDS (simulator and
interface) is based on a building-block approach.
Researcher implements an algorithm or a prototype
from modules that receive inputs in the form of events,
process them, and then generate outputs (events, log
entries, GUI updates). The entire wireless network is
built from objects – wireless nodes, event generator, and
communication channels. Connections between wireless
nodes are maintained by the routing object. Any type of
wireless network is supported, such as ad hoc and
infrastructure wireless networks. Object-oriented
approach is central to the generality and flexibility of
the system and allows users of our framework to reuse,
share and catalog simulation components by modifying
or replacing appropriate classes.
 Many existing wireless network simulators
(Boukerche et al. 2001; Kelly et al. 1998; Kelly et al.
2000; Liu et al. 1996) aim at supporting every aspect of
wireless communications, such as, for example, every
layer of many communication protocols used. This adds
tremendous overhead to the simulation system, often
resulting in scalability problems and slow execution
times. The WINDS framework avoids these problems,
by implementing only the key functionality of a wireless
network – supporting simulation synchronization,
wireless communications and node mobility. These

functions are implemented on an abstract level, allowing
the user to include specific wireless communication
protocols, wireless routing algorithms and other
required simulation parameters, as necessary. Another
goal of our framework development was to integrate
user interaction with simulation execution as closely as
possible. The intuitive graphical user interface reflects
any changes in the simulation execution as they happen,
in real-time, allowing the user to adjust the simulation
parameters at run-time. Another advantage of our
framework is the ability to use almost any data file as a
source of wireless communications. Data file pre-
processor converts binary packet data into the format
accepted by WINDS simulation system, converting
network addresses into plain addressing scheme used
with our simulation framework. As an example,
intrusion data from the Lincoln Laboratories IDS tests
was used to test our wireless IDS system.

 WINDS architecture consists of four key modules,
each comprised of a number of components, as
described below:

• GUI (graphical user interface)
• Simulator Core Module

- Simulation engine, Simulation objects
• Network Traffic Module

- Packet pre-processor, Packet generator
• Data Logging Module

- Data parser, CSV file generator

Figure 1 shows the WINDS architecture. Some of the
modules carry optional functionality and can be
included into the simulation as necessary. The
functionality of each module is described below.

G U I

Simulation Engine

Simulation Objects

Data

Collection

Data Parser

CSV File for

Analysis

message
passing

Simulator Core Module

Data Logging
Module

Network Traffic
Module

Packet Processor

BIN/XML Parser

Packet Data

File

Figure 1: WINDS Architecture

User

simulation
control

object
representation

Graphical User Interface Module
The graphical user interface (GUI) module shows

the simulation execution in real-time. The GUI class is
tied up to the simulation engine clock, and displays the
required information every clock cycle. GUI class
shows the simulation area with wireless node objects
moving and communicating. Certain simulation
parameters can be adjusted via GUI module. GUI
module also provides controls for simulation execution
flow. GUI module also records simulation statistics in a
log window.

Simulator Core Module
 Simulation Engine: the heart of the WINDS
framework. One of the design requirements is that
WINDS is a time-stepped simulation system. The
simulation engine runs an internal clock, the speed cycle
of which can be controlled at run-time.
Programmatically implemented as a high-priority thread,
the simulation engine runs in a loop continuously,
driving execution of all other components of the
simulation. Any events happening at a time must be
processed by simulation objects at once, within a single
simulation cycle. The simulation engine is common to
all simulation models, and cannot be modified by the
user. Simulation engine instantiates all simulation user
objects from global definitions (such as wireless nodes,
routing algorithm used, mobile base stations and
stationary routers) at runtime.

 Simulation Objects: execute independently and are
time-synchronized via the simulation engine clock. Our
framework has a few pre-defined simulation objects.
One object type is a wireless node object. Wireless
nodes are members of any wireless network simulation,
and can be either stationary or mobile. User can modify
the motion pattern by implementing a certain mobility
algorithm (or even read waypoints from a data file).
This allows simulations to be flexible and account for
many possible node mobility patterns. Each wireless
node object also includes two methods used for inter-
object communication – Send and Receive methods.
Send method is invoked when a wireless node is
transmitting packets, and has a source, destination,
protocol, port and payload as its arguments. Send
method determines all the neighbors of the current
wireless node, and broadcasts the packet to its neighbors
by invoking Receive method on each neighbor node.
Receive method first checks the packet destination, then
depending on the routing algorithm used, forwards the
packet to the destination or simply drops the packet.
This allows the user to simulate both ad hoc and
infrastructure wireless networks.

Routing protocol is another simulation object. The

routing protocol included with WINDS framework is a
simple table-driven protocol, which is implemented as a
separate routing class. To modify the routing protocol,
user must include all necessary parameters in a wireless
node object, then add their own routing protocol class.
Since the WINDS framework operates in exact same
way as a real-life wireless network, all existing wireless

routing protocols are supported. For the simulation of
totally-mobile or wireless infrastructure networks,
routing protocol is modified to route all messages via
base stations.

Network Traffic Module

Network traffic for WINDS framework is generated
by the Network Packet Processor object. The
implementation of the object is common to all the
simulations and includes reading a pre-processed data
file in XML format, and forwarding each packet to the
appropriate wireless node (source). Pre-processing is
performed on a binary data file obtained from network
packet capturing software (such as TCPDUMP).
WINDS uses a flat addressing scheme to reduce
communication overhead, and therefore all network
addresses are converted to compatible notation by the
BIN/XML Parser module before running the simulation.
Packet processor object generates packets at times
specified by scaled timestamps of each packet processed.
This speeds up simulation execution, limiting the
simulation speed only by the hardware specifications
and the maximum packet broadcast rate. Simulation can
automatically be stopped when the end of the data file is
reached.

Data Logging Module

Data logger class saves the simulation results for
future analysis. During simulation execution, results are
stored in memory and displayed in a human-readable
form via GUI data display window for performance
reasons (frequent disk I/O operations reflects negatively
on simulation performance). The representation of
results can be tailored to particulate simulation
requirements and is defined in the GUI class.

Data parser: At the end of the simulation run, these
results are first pre-processed by a data parser to format
data suitable for import into the mathematical analysis
software.
CSV file generator: The pre-processed output is saved
as a CSV file (a widely-used comma-separated data file
format) by the CSV file generator.

Simulation Process
 The simulation procedure is as follows. First, a
simulation diagram is devised by the user, which
includes the list of all objects taking part in the
simulation and interaction mechanisms between the
objects. Packet and data output formats, as well as
simulation stop conditions should also be specified at
this point. Next, the implementation is written for all of
the above objects, following the guidelines included
with the simulation framework. Data and XML parsers
should also be re-written to reflect the new data
structures. The objects are then placed in the simulator
core directory and compiled. The GUI is then started,
which then instantiates all simulation objects and
displays them on-screen (for those objects that have
visual behavior defined). Objects then can be
manipulated via graphical interface during simulation
runtime. User can get a snapshot of the simulation

environment by pausing the simulator and stepping
through simulation execution. If the network traffic
module is selected, network packets are input from the
packet data file, then converted to the appropriate
format by the parser and fed into the simulation by the
packet generator at specified times. Either actual time
stamps may be used to pro-rate packet delay to
simulation time scale, or a statistical distribution may be
used, as specified in the packet generator class. Packets
are then passed to appropriate objects via messages and
processed. All collected statistics are displayed in a log
window, which then can be saved into a simulation log
file. The results of the simulation can be pre-processed
for further analysis or graph plotting by the Data Parser
module. The supplied data parser converts log file into a
CSV file, which then can be imported into a variety of
statistical programs.

WINDS FOR IDS SYSTEM DESIGN

Our first use of WINDS architecture was to develop
a test-bed for a wireless intrusion detection system
(IDS) (Lippmann et al. 1998; Haines et al. 2001)
simulation prototype. Therefore, IDS is used as a tool to
demonstrate an implementation of WINDS architecture.
This section covers the architecture of our IDS system,
step-by-step design process, and implementation of
several IDS-related algorithms.

 Wireless node object embodies mobile agent
functionality for packet-monitoring and decision-
making agents of an IDS system, as well as mobility
pattern and clustering algorithm functionality. Send and
Receive methods of a wireless node object are utilized
to support voting scheme required by the cluster
membership decision algorithm. These methods are also
used by the network traffic generator module to
propagate packets across wireless network. Packet-
monitoring functionality is built-in the wireless node
object for this simulation. Packet-monitoring agent
processes the incoming network traffic, running it
through the CASE-based intrusion detection mechanism,
which bases its decisions on a library of XML rule sets,
covering various communication protocols. Database
lookup is performed for each network packet,
classifying the packet as part of normal or intrusion
traffic.

 Our IDS system (Kachirski and Guha 2003; Guha
et al. 2002) takes into account the specifics of wireless
networks to provide a lightweight, low-overhead
intrusion detection mechanism for wireless networks
based on mobile security agent concept. Essentially, an
agent is a small intelligent active object that travels
across network to be executed on a certain host, then
returns with results to the originator. All the decisions,
including network traversing, are left to agents. Agents
are dynamically updateable, lightweight, have task-
specific functionality and can be viewed as components
of a flexible and dynamically configurable IDS.

We have utilized mobile agents at several intrusion-

monitoring levels and processed their response in
cluster heads – special nodes that are dynamically
elected within a cluster using a real-time distributed
algorithm. One advantage of our approach is the
efficient distribution of mobile agents with specific IDS
tasks according to their functionality across a wireless
ad hoc network. Another advantage is restriction of
computation-intensive analysis of overall network
security state to a few key nodes. These nodes are
dynamically elected, and overall network security is not
entirely dependent on any particular node, as in the case
of a monolithic system. We have also proposed a load-
balancing solution that efficiently distributes traffic
monitoring and intrusion detection tasks among the
wireless nodes, improving the accuracy of intrusion
detection system without sacrificing the overall
performance of a wireless network and functionality of
each node participating in the network. At the network-
monitoring level, we have developed a case-based
approach to network intrusion detection, and
incorporated case-based reasoning engine for detecting
intrusions at the packet level in our modular IDS system.
The IDS system implementation discussed here is
targeted at ad hoc wireless networks.

WINDS FOR CLUSTER COMPUTER

The single-processor version of the simulation
system suffices for small-scale simulations of wireless
networks. However, we have had significant reduction
in performance when simulations of 200 or more
wireless nodes were in progress. Scalability is an
important factor of every simulation system, as
computer networks grow in size and become more
complex in functionality. A distributed simulation is the
answer to scalability problems. The idea of a distributed
simulation is as follows. First, the entire scope of
objects in the simulation is partitioned into several parts.
For instance, we can divide 100 simulation objects
equally between 5 processors. During simulation
execution, each of the processors performs
computations relevant to objects assigned to it.
Communication between objects is handled by the
communication broker – if two objects are handled by
the same processor, communication happens in exact
same way as in the uniprocessor system; if two (or
more) objects are assigned to different processors, inter-
processor communication takes place. Our distributed
WINDS architecture is presented in figure 2. The
distributed WINDS architecture is currently
implemented on a cluster computer with 64 processors.
Each processor has dedicated memory space, and can
access data concurrently from a replicated disk
subsystem. Inter-processor communication is achieved
via high-speed Ethernet switch.

Simulation Process
 After object definitions have been devised and
placed in a shared object directory, user starts the
simulation framework on a master processor node. This
in turn remotely starts simulation clients on each of the
processors. Initially, user adds new objects to the
simulation via graphical user interface. The objects are
associated with processors in a round-robin manner.
Instructions are sent to a respective processor from the
master processor node to create an instance of an object
and load it in memory. Object template is then read
from disk by that processor, and a new object instance is
created in its memory space. From now on, this object is
handled by a local simulation module on that processor.
Once all objects have been created, simulation run starts.
Simulation engine sends a clock pulse out to every
processor, and all communication between objects is
clock-synchronized. Simulation broker located on the
master processor keeps track of locating a specific
object and serves as a routing module for the cluster
communications. Other modules (like data logging
module) behave in the same way as described for the
single processor version of WINDS. When a packet
needs to be sent from one object to another in the course
of the simulation, communication broker on the node
containing source object first determines if both objects
reside on that node. If this is the case, then
communication is performed locally by invoking the
Receive method on destination object (same as for the

uniprocessor case). If the destination object resides on a
different processor, first a proper destination network
address of that processor is determined by consulting
simulation broker on a master processor node. Then, a
network communication is initiated between the local
processor, and the destination processor, handled by
communication brokers of both processors. When a
message is received on the destination processor, it is
parsed for parameters, and Receive method of the
destination object is called. Apart from exchanging
messages between objects, all the processors also
communicate with the master processor once every few
clock cycles to ensure consistent state of the simulation
and to report on the state of each object taking part in a
simulation (i.e., to update the GUI information for each
object). Commands are also sent from the master
processor to each processor to control simulation
execution.

Future Work - Simulation Optimizations
 One of the main reasons against distributed
implementation of many network simulators is
inefficient inter-processor communication. In the case
of a network of computers taking part in a simulation,
network delay can be a significant obstacle to the goal
of improving performance and scalability through the
distributed simulation. Other traffic exists on the
network, affecting simulator communications. Unless
network nodes are dedicated for the simulation purpose,

Master Processor (PM)

G U I

User

simulation
control

Simulation Engine
/ Clock Cycle

Simulation Broker

Processor 1 (P1)

Processor N (PN)

. . .

Clock Pulse

Inter-processor
communications
(clock-sync)

Data-logging
Module

Network Traffic
Module

Object Instances

Object Instances

Comm.
Broker

Event
Handler

Comm.
Broker

Event
Handler

- Simulator Events
- Object Info

- Object Data Exchange
- Object Migration

Figure 2: WINDS Architecture for Distributed Simulations in Multiprocessor Environments

node stability is an issue that can disrupt simulation
entirely in the event of a single node crashing during the
simulation run. Only specific computation-intensive
algorithms can benefit from distributing the simulation
among multiple processors. We have considered these
and other issues when developing distributed WINDS
framework. The optimal choice of computer hardware
was computing cluster, where all processors
communicate via high-speed switched network
connections but own independent memory space and an
instance of an operating system. This allows us to
simulate very large wireless networks of diverse
configurations.

 Still, concerns exist for certain scenarios where
inter-processor communication delay is of an issue. This
can happen when one object repetitively communicated
with objects located on a different processor, or in the
event of a lot of broadcast communications taking place.
Therefore, we have considered a number of
optimizations that target the problems associated with
the distributed simulation system. In one such
optimization, during a certain period of time, all
communication patterns are recorded, and allocation of
objects is then optimized. For example, if an object A
communicated with object B much more frequently than
other objects, and these two objects are located on
different processors, then one object is serialized and
migrates via the network to the processor managing
another object. In many cases, especially when object
functionality is sparse, the size of the object is small,
justifying such a migration. In another optimization, all
communications between objects are concatenated
together and sent as a single network packet between a
pair of processors once every few clock cycles, and then
locally time-synchronized. As we haven’t completed
implementing the entire range of planned optimizations,
little can be said here regarding the actual performance
figures.

SUMMARY

 In this paper we have described the WINDS
architecture for wireless network simulations. It has
been developed to aid our research on the agent-based
ad hoc network intrusion detection system, and later
used as a research tool that incorporates a flexible test-
bed targeting simulations of a wide variety of wireless
networks. The framework is cross-platform, easy to
learn, use and modify to adjust particular requirements.
WINDS is considered a generic wireless network
simulator for a variety of wireless communication
applications, such as wireless networks, ad hoc
networks, sensor networks, etc. We have demonstrated
the use of WINDS for several specific simulations, such
as intrusion detection system simulation in wireless ad
hoc networks. We have also extended WINDS
implementation to the multiprocessor environments
(such as a cluster computer), improving scalability of
large wireless simulations. The WINDS project is
ongoing and will be available soon in its final
implementation for use by researches worldwide.

ACKNOWLEDGEMENTS

This work was supported by the US Army Research
Office, grant number DAAD19-01-1-0502. The views
and conclusions herein are those of the authors and do
not represent the official policies of the funding agency.

REFERENCES
A. Boukerche, S. K. Das, A. Fabbri, “SWiMNet: a scalable

parallel simulation test-bed for wireless and mobile
networks”, ACM Wireless Networks, 2001, v. 7, Issue 5,
pp. 467-486.

X. Chang, “Network simulations with OPNET”, Proceedings
of Winter Simulation Conference, 1999, pp. 307-314.

B. Groselj, “CPSim: a tool for creating scalable discrete event
simulations”, Proceedings of Winter Simulation
Conference, 1995, pp. 579-583.

R. Guha, O. Kachirski, “Intrusion Detection Using Mobile
Agents in Wireless Ad Hoc Networks”, Proceedings of the
IEEE Workshop on Knowledge Media Networking,
KMN’02, pp. 153-160.

R. Guha, O. Kachirski, D. G. Schwartz, S. Stoecklin, E.
Yilmaz, “Case-Based Agents for Packet-Level Intrusion
Detection in Ad Hoc Networks”, Seventeenth International
Symposium On Computer and Information Sciences,
Orlando, FL, October 28-30, 2002

J. Haines, L. Rossey, R. Lippmann, R. Cunningham,
“Extending the DARPA Off-Line Intrusion Detection
Evaluations”, Proceedings of DARPA Information
Survivability Conference & Exposition II, Volume: 1,
2001, pp. 35-45.

A. Heybey, “MIT Network Simulator”, MIT Laboratory for
Computer Science, 1988.

O. Kachirski, R. Guha, “Effective Intrusion Detection Using
Multiple Sensors in Wireless Ad Hoc Networks”,
Proceedings of 36th HICSS Conference, 2003, pp. 57-64.

O. Kelly et. al., “Scalable parallel simulations of wireless
networks with WiPPET: modeling of radio propagation,
mobility and protocols”, Mobile Networks and
Applications, 2000, v. 5, Issue 3, pp. 199-208.

O. Kelly et. al., “Parallel simulations of wireless networks
with TED: radio propagation, mobility and protocols”,
ACM SIGMETRICS Performance Evaluation Review,
1998, v. 25, Issue 4, pp. 30-39.

S. Keshav, “REAL 5.0”, Cornell University, 1997,
http://www.cs.cornell.edu/skeshav/real/overview.html

R. Lippmann et. al., “Evaluating Intrusion Detection Systems:
The 1998 DARPA Off-Line Intrusion Detection
Evaluation”, Proceedings of DARPA Information
Survivability Conference & Exposition II, Volume: 2,
1999, pp. 12-26.

W. W. Liu et. al., “Parallel simulation environment for mobile
wireless networks”, Proceedings of the 28th conference on
Winter simulation, 1996, pp. 605-612.

 B. Mah, “INSANE Users Manual”, UC Berkeley, 1998,
http://www.employees.org/~bmah/Software/Insane

“NS-2 Simulator”, VINT Project, 1997,
http://www.isi.edu/nsnam/ns/

	ABSTRACT
	INTRODUCTION
	WINDS DESIGN PHILOSOPHY
	WINDS Architecture
	Simulation Process
	WINDS FOR IDS SYSTEM DESIGN
	WINDS FOR CLUSTER COMPUTER
	Simulation Process
	Future Work - Simulation Optimizations
	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

