
HADES – A Highly Available Distributed Main-Memory Reliable
Storage

Matthias Meixner, Alejandro Buchmann
Datenbanken und Verteilte Systeme

Department of Computer Science, Technische Universität Darmstadt
Hochschulstraße 10, 64289 Darmstadt, Germany

E-mail: {meixner,buchmann}@informatik.tu-darmstadt.de

Abstract

Fast persistent storage is a requirement in many applica-
tions in which slow disk access times become the bottle-
neck. This paper describes HADES, a main memory stor-
age system, that uses a fault tolerant partitioning scheme
to reliably store data in main memory of a distributed
computer system and is, therefore, able to improve per-
formance. It presents the principles involved, discusses
performance evaluation and compares HADES to other
systems.

1 Introduction

We are starting to see new applications that make high de-
mands on data storage systems regarding both availability
and access time. Examples are highly available systems
using IP take-over and publish/subscribe systems.

1.1 IP take-over

One practical way of achieving high availability in dis-
tributed systems is IP take-over (Fetzer et al., 2003). A
service is bound to an IP address and port number. If the
service fails, the client tries to reconnect, which is de-
tected and another server takes over the IP address and
continues to provide the service.

dependable
storage
system

Server

IP Address

Server

IP Address

Client

Figure 1: IP take-over

To process client requests correctly, most services need
to keep some state. When a server crashes, state stored in
memory is lost. One way of dealing with this problem is
to source out state information to stable storage and treat
the service as if it was stateless (figure 1).

The response time of this system heavily depends on
the performance of the storage system. Each operation
that changes the state that is associated with a client must
go to the storage system before replying to the client so
that another server could resume the operation in case of a
failure. In this application it is of capital importance that
the storage system is highly available, since the availabil-
ity of the whole system depends on it.

1.2 Publish/Subscribe Systems

Publish/subscribe systems are used to build large dis-
tributed systems in which the components are loosely
coupled (Eugster et al., 2003; Carzaniga et al., 2000):

• A component does not need to know which other
components exist. It just needs to know about the
format and structure of events that it is interested in.

• Components can be added and removed without di-
rectly affecting other components.

Components communicate vianotifications that signal
the occurrence of an event. Clients subscribe to notifica-
tions.Within theevent notification system event brokers
use this information to forward notifications from pro-
ducers to consumers. Filters are used to avoid flooding
and limit the forwarding to those consumers interested in
certain notifications. Furthermore, filters may aggregate
information (e.g. calculate min/max values over a period
of time) or transform information (e.g. convert degrees
Fahrenheit into degrees Celsius). Figure 2 gives an ex-

Filter2 Filter3Filter1Producer Consumer

Figure 2: Flow of data in an event based system

ample of the flow of data from a producer to a consumer
showing only the active components that are relevant for
this flow of information. In this system there cannot be an
end to end error correction, since a connection between
the producer and the consumer does not exist and the pro-
ducer does not know the identity or even the number of
consumers. Therefore, within this system notifications
may be lost or duplicated.



distributed transaktion simple Transaktion

persistent
storage

Filter2 Filter3Filter1Producer Consumer

ST1 ST2 ST3

Figure 3: notifications and transactions

This property is not suitable for applications that de-
pend on an “exactly once” delivery of notifications, e.g.
applications that count the occurrence of certain events.
The same applies to event aggregation that needs to store
intermediate results without losing them. This problem
can be solved by using transactions and persistent inter-
mediate storage (figure 3). Notifications are passed on
by transferring them from one persistent storage to an-
other within a transaction. The atomicity of the transac-
tion guarantees an exactly once delivery and the persis-
tent storage guarantees that no notification is lost in case
of a failure.

Using this approach poses some challenging require-
ments on the storage system: the end to end delay de-
pends on the time needed for the data access required by
the transaction, since the next filter in the path cannot start
processing the data until the preceding operation has been
committed. Therefore, the data access time is critical to
the performance of the whole system. If the storage sys-
tem goes down, the flow of notifications is interrupted
until the storage system is restarted. To minimize this ef-
fect a storage system is needed that additionally provides
high availability and reliability.

1.3 Common requirements

Both applications described above impose similar re-
quirements on the storage system: the performance heav-
ily depends on the access time which is dominated by la-
tency. The amount of data to be stored is relatively small
but data is modified frequently. For performance reasons
we can assume that all data should be stored within the
same LAN. Both applications require high availability of
the storage system.

Conventional storage systems are not suitable to be
used within these applications: the use of hard disks
would be a bottleneck since even the fastest available
disks have an access time of more than5ms. Flash ROM
storage systems cannot be used due to the frequent mod-
ification of data: flash memory has a limited number of
write cycles, e.g.100000 for Intel StrataFlash Memory
(J3). DRAM based solid state disks do not have this lim-
itation, but their cost is 2 orders of magnitude higher than
that of conventional disks. For example for the price of
an Athena-2 plus disk of 800MB one would easily get 8
complete computers with 8 GB of main memory in total.
Furthermore, a single disk cannot provide high availabil-
ity, therefore at least two of them are needed plus some
RAID system that manages redundancy.

1.4 Aim of this paper

The aim of this paper is to describe how fault tolerant
partitioning schemes can be used to provide fast reliable
storage and improve the performance of the applications
presented above. In section 2 we describe the implemen-
tation of HADES, a data management system, that offers
fast access time and high availability through the use of
fault tolerance. In section 3 we give a performance eval-
uation and in section 4 we discuss the features that dis-
tinguish HADES from existing systems. Finally we give
a short summary and outlook in section 5.

2 HADES architecture

HADES follows the principle of achieving persistence by
redundantly storing data in main memory of at least two
nodes of a cluster. If a node fails, there is still a copy and
data can be accessed without downtime. After a failure
has been detected, redundancy is restored so that another
failure can be masked.

2.1 Fault model

The fault model in HADES is based on isCrash (Gärtner,
1999), i.e. a computer operates flawlessly or not at all.
While redundancy is reestablished after a failure, no other
node in the cluster may fail. Node failures are detected
using a distributed heartbeat based fault detector.

It is assumed that cluster nodes fail independently
of each other. Therefore, all nodes should be guarded
against power failure using an uninterruptable power
source. A redundant network interconnection prevents
that the connection to more than one computer is lost in
case of network problems. Since all nodes are within
the same LAN this does not pose a big problem. One
simple solution is to use one switch per node and redun-
dantly connect these switches. The spanning tree proto-
col used in the switches deactivates redundant links and
reactivates them in case of a failure. A failure of a switch
is equivalent to the failure of one single node, a network
split does not occur.

2.2 Addressing

One of the main problems is to efficiently address data in
the cluster. Network addresses cannot be part of an ad-
dressing scheme, since the location where data is stored
may change in case of a node failure. The addressing
scheme needs to support redundancy in a way that makes
it possible to access the data even after a crash of one
node. It must support the reestablishment of redundancy
after a crash, i.e. it must be able to change the node where
it expects to find data. The addressing scheme should
provide an efficient data access, i.e. in normal operation
no more than one request should be required to read or
write data.



server
primary

server
secondary

A
A
B
B
A
A

B
B

A
A

B
B

0
1
2
3
4
5

slice
server
primary

server
secondary

A

B

B

B

A
A

B

A

A

A

B
B

0
1
2
3
4
5

slice

R
ee

st
ab

lis
hi

ng
of

 re
du

nd
an

cy

server
primary

server
secondary

A
A
B
B
C
C

B
B
C
C
A
A

0
1
2
3
4
5

slice

lo
ad

 re
ba

la
nc

in
g

Figure 4: Data distribution: second stage

HADES solves this problem using the following ad-
dressing scheme: data is stored in pages that are num-
bered in ascending order (0, 1, 2, . . .). Unlike disk blocks
or MMU-pages, pages in HADES are not of fixed length
and may have an arbitrary size. Therefore, we can as-
sume that one page holds one record without degrading
the resource utilization.

HADES uses a two stage mapping from pages to
nodes. The first stage maps page addresses toslice ad-
dresses, which is equivalent to a horizontal fragmentation
of data:

slice number = page numbermod slice count

The slice count is constant and does not change even
when nodes join or leave (fail) the cluster. It is specified
at start time and it should be at least as high as the num-
ber of servers in the cluster considering possible future
extensions. A higher number of slices results in a more
uniform load distribution and offers better extensibility
but at the same time generates a higher communication
overhead.

The second stage uses a mapping table to map slice
numbers to cluster nodes. It assigns a primary and sec-
ondary server to each slice. The secondary server acts as
a backup server that can seamlessly take over the tasks
of the primary server in case of a failure. The mapping
adapts to achieve a uniform load distribution: each node
is assigned not more than2 × � slice count

number of nodes� slices
(The factor of2 is due to assigning a slice to two servers:
primary and secondary server). When recalculating this
distribution, after a node has failed or a new node has
been added, HADES regards former data distributions
and minimizes changes, thereby reducing the amount of
data that needs to be copied to other nodes. Figure 4 gives
an example of this: after a failure of node C data stored
in slices 0 and 1 does not need to be copied, only data
in slices 2-5 is copied to restore redundancy (highlighted
in grey). A final swap of primary and secondary servers
is used to achieve further load balancing between their
roles as primary and secondary server. This mapping ta-
ble is calculated and distributed by an elected coordinator,
therefore problems with consistency cannot arise.

This addressing scheme offers several advantages: the
first mapping stage is fixed and, therefore, it does not
need to be transmitted to other nodes. Themapping ta-
ble of the second stage needs to be updated only in case
of a change of nodes due to node failure or insertion, in

particular it does not require an update when inserting or
deleting data. The mapping table is small (it has only
slice count entries) and, therefore, it can be easily dis-
tributed to all other servers and clients. Using this map-
ping table clients are able to determine the storage lo-
cation of data. Therefore, in normal operation only one
request is required to access data.

2.3 Data consistency

As soon as several copies of data exist, there is always
the problem of consistency: which copy of data is valid
and may be accessed? To be used as a replacement for
other storage systems, HADES provides similar guar-
antees regarding consistency: only write accesses may
change data. While this sounds simple, it is not as the
following example illustrates:

ClientA writes page1 which resides on serverX. This
page is read by clientB. If serverX fails before synchro-
nizing page1 with the backup serverY a subsequent read
request of clientB will read the previous content of page
1. In this case clientB sees a change of data back to the
old content although there was no write access. This must
not happen.

To avoid these types of problems HADES uses one pri-
mary server for each slice (which may be different for
different slices) that is responsible for maintaining data
consistency. Clients communicate only with the primary
server. This server coordinates read and write accesses
and synchronization of data with the secondary server:
write accesses are acknowledged only after the data has
been successfully copied to the secondary server, read re-
quests only read already synchronized data and, if nec-
essary, they are delayed until the synchronization of the
accessed page has been completed. The delay time is up
to no more than half the time required for a write access
(about0.3ms), i.e. delaying the request does not lead to
performance problems.

If the primary server fails, the secondary server takes
over the role of the primary server and the vacant role of
the secondary server is assigned to one of the remaining
nodes of the cluster. Note that nodes may play several
different roles at the same time, e.g. primary server for
one set of slices and secondary server for another set.



2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of servers

Ti
m

e 
in

 m
s

512 Bytes
2 Bytes

Figure 5: Writing data

2.4 Transactions

HADES has two modes of operation: with and without
support for transactions. Using the mode without trans-
actions, HADES can be used as a fast highly available
replacement for hard disks. Using the mode with sup-
port for transactions HADES provides classicalACID
properties (atomicity, consistency, isolation and dura-
bility (Gray, 1979)) to coordinate the simultaneous ac-
cess of several clients or the support of reliable pub-
lish/subscribe. Transactions are controlled by an elected
coordinator and backup coordinator. If a client crashes,
transactions are automatically aborted.

HADES uses shadow paging (Lorie, 1977): changes
are stored within separate memory regions and in case
of a commit only a pointer needs to be switched. Since
one page only contains one record, concurrency problems
that result from storing several records in one block do
not exist.

HADES supports distributed transactions spanning
several clusters. This is realized by attachingexternal
transactions to a normal transaction running on a differ-
ent cluster thus forming one distributed transaction span-
ning several clusters. Control passes to the transaction
to which an external transaction was attached. External
transactions differ from normal transactions in that they
cannot abort on their own in case of a failure of a client
but only as part of the distributed transaction. This is re-
quired to prevent race conditions that only abort parts of
the distributed transaction while others are committed if a
client fails shortly after sending commit in the presumed
commit two phase commit protocol used.

When an external transaction is attached to another
transaction, the cluster containing the latter transac-
tion becomes transaction coordinator for this distributed
transaction and is responsible for either aborting or com-
mitting all parts of the transaction. The transaction coor-
dinator is also responsible for initiating the abort of the
distributed transaction in case of a failure of the client.
Since HADES uses a complete cluster as transaction co-
ordinator and the failure of one node does not affect the
availability of the cluster as a whole, the use of two phase

20 50 100 200 500 2000 5000 20000

0
2

4
6

8
10

12

Page size in Bytes

B
an

dw
id

th
 in

 M
B

yt
e/

s

pipelined write
pipelined read
writeSet
readSet
interface bandwidth

Figure 6: Bandwidth

commit (Gray, 1979) is sufficient and three phase commit
(Skeen, 1981) is not needed since no blocking can occur.

External transactions are created and attached to an-
other transaction using only one atomic step. Therefore,
there is no risk of client failure between the creation and
attaching of the external transaction.

2.5 Optimizations

Operations in HADES are not limited to read/write. More
complex operations and operations that operate in paral-
lel on whole slices can be added to reduce network traffic
and improve speed. One good example is searching data:
instead of reading all the data and searching on client
side, the search request is transmitted to the cluster and
performed locally.

3 Performance results

A cluster of 10 identical computers with AMD Athlon
XP2000+ and 1 GBytes of main memory running
HADES on top of Linux at user level was used as a test
environment. The computers were connected using fast
Ethernet.

Several performance measurements of different oper-
ations and different configurations were done. Due to
space limitations we selected some representative results.

Write operation
This operation was performed using page sizes of 2 and
512 bytes and using a different number of servers. The
result using 512 bytes can be directly compared to hard
disk accesses. For each number of servers 100 write ac-
cesses were performed and the time of each single access
was measured. HADES reaches access times of about
0.6ms (figure 5) and is therefore, about one order of mag-
nitude faster than the access time of the fastest hard disks
that currently reach about5.4ms (IBM/Hitachi Ultrastar:
3.4ms seek time,2ms latency).



2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of servers

Ti
m

e 
in

 m
s

same page
ascending pages
pause

Figure 7: Transaction: read - modify - write

Bandwidth
Although not as important as the other operations for
our target applications HADES supports optimizations
of bandwidth: pages may be read and written in paral-
lel (pipelined) or in sets of several pages. Figure 6 gives
the results obtained using a single client using no transac-
tions. Even for moderate page sizes of about 1024-2048
bytes the transfer speed is quite close to the maximum
speed offered by the network interface.

Transactions
The scenario given in the introduction in which infor-
mation is disseminated in reliable mode was evaluated.
Within a transaction data is read, modified and written
back. The transaction terminates with commit. Three
cases were considered:

1. Always the same page is read and written. The next
transaction, therefore, possibly needs to wait until
all locks of the previous transaction are cleaned up
and released.

2. A different page is read and written each time.
Therefore, locks do not have any influence, but com-
pleting the cleanup of the preceding transaction may
still consume some computing power.

3. A small pause is inserted between transactions,
therefore, each transaction may use the full comput-
ing power.

The first two cases correspond to a system operating
near full load, whereas the last one corresponds to a sys-
tem that has some reserves left. HADES reached times
around1.5ms for the whole transaction (figure 7), i.e. the
whole transaction can be completed faster than one third
of the time required by one single access to hard disk.

Tablescan
Searching is a task that can be easily parallelized and
therefore can utilize the parallel computing power of
a cluster. This performance test used a table with
2.000.000 random entries (each of 48 bytes). A selection
was performed that is equivalent to the following SQL-
expression:

2 3 4 5 6 7 8 9

0
10

20
30

40

Number of servers

M
io

. r
ec

or
ds

 p
er

 s
ec

on
d

5 Slices
13 Slices
18 Slices
30 Slices
60 Slices

Figure 8: Tablescan performance

SELECT COUNT(*) FROM benchmark WHERE
Category=’a’;

The measurement was performed using several slice
counts to see the effect of the number of slices. Figure 8
gives the obtained results. Overall HADES scales quite
well as long as there are enough slices to evenly distribute
the load. Uneven load distribution can be seen as levels
in figure 8. These levels result from the server with the
highest load dominating the required time. The follow-
ing example will illustrate this effect: when distributing
6 slices to 4 or 5 nodes, in both cases at least one node
will be assigned 2 slices whereas the others will be only
assigned one slice. The node assigned 2 slices will dom-
inate the performance and therefore there will be no per-
formance gain when going from 4 to 5 nodes. Altogether,
the measured performance numbers indicate that the op-
timal number of slices should be around 3-4 times the
expected number of servers.

4 Comparison with other systems

There are several systems thatseem to be suitable as a
storage architecture for the applications presented or look
similar to HADES, but they all lack at least one important
property.

4.1 Conventional Database Management
Systems

Conventional Database Management Systems (DBMSs)
store data on hard disks. Therefore, these systems are
limited by the disk access. Although these systems try to
reduce the effect of disk accesses by caching, they cannot
totally suppress slow disk access times. Write accesses
cannot be safely cached, data is stored safely only after
it has actually been written to disk or the log has been
flushed to disk. Notably short transactions consisting of
few writes suffer most from disk accesses, since they can-
not take advantage of the high bandwidth of modern disks
but mainly depend on the access time, which is only very
slowly improving compared to bandwidth and density.



To demonstrate this effect we did some performance
evaluations using PostgreSQL and BerkeleyDB. Post-
greSQL needed about100ms to insert a single data item
and BerkeleyDB about51ms (using a standard IDE hard
disk). So both were about two orders of magnitude slower
than HADES. We also measured the search performance.
PostgreSQL reached about0.9 Mio. scanned records per
second and BerkeleyDB – since BerkeleyDB only sup-
ports searching for keys but not for data we had to im-
plement the searching within the application – reached
about0.4 Mio. scanned records per second compared to
at least8 Mio. records per second that were achieved by a
HADES cluster of two nodes. This is due to the fact that
PostgreSQL and BerkeleyDB are designed to take into
account that data is stored on disk whereas HADES can
directly access data in main memory.

Even main memory DBMSs are affected by hard disk
access times: although main memory databases like e.g.
PRISMA/DB (Apers et al., 1992) store data in main
memory, they use hard disks for logging just like other
databases do. Pre-committing and group commit (DeWitt
et al., 1984) allow to improve throughput, but they cannot
improve commit latency. Therefore, also in this case hard
disk access limits the response time of transactions.

4.2 RAID

Using RAID systems is the standard way of improving
disk bandwidth (Patterson et al., 1988). However RAID
systems cannot improve latency. Since small reads and
writes are dominated by latency RAID systems cannot
improve performance in our case.

4.3 Distributed checkpointing

If a node fails in a distributed system all intermediate re-
sults are lost and the (probably expensive) computation
needs to be restarted. To avoid a restart from the very be-
ginning some systems regularly take checkpoints (snap-
shots) of the distributed system state and are therefore
able to continue the computation starting from the last
complete checkpoint. Similar to HADES, RDSM (Ker-
marrec, 1997) and (Plank and Li, 1994) keep all infor-
mation in main memory. Different from HADES these
systems can only guarantee persistence as soon as a new
checkpoint has been taken and all modifications since
then are lost. To reach the same degree of persistence
of HADES using these systems a checkpoint would have
to be taken as part of each write access, which would be
prohibitively expensive.

4.4 Distributed hash table

Distributed hash tables (DHTs) try to redundantly store
and locate information in a WAN using peer to peer tech-
niques. Examples are Chord (Stoica et al., 2001), Pas-
try (Rowstron and Druschel, 2001), Tapestry (Zhao et al.,
2001) and CAN (Ratnasamy et al., 2001). While both

HADES and DHTs store data in a network of comput-
ers this is already where the similarities end, since the
design goals were totally different. Chord, for exam-
ple, was designed with scalability in a WAN in mind
whereas HADES was tuned for access time in a LAN.
HADES requiresO(1) messages to access data com-
pared toO(log N) messages required by Chord. Chord
uses a probabilistic approach for load balancing. While
this works on a large scale it may lead to a very un-
even distribution on a smaller scale. Therefore, HADES
uses explicit load balancing, which can guarantee an even
distribution of data. HADES supports both atomic in-
sert/update and transactions none of which is supported
by Chord. So although HADES and Chord might look
similar at first sight, they have very different properties
and fields of application. The same applies for other DHT
systems.

Another example is the LH*m scheme (Litwin and
Neimat, 1996). It extends linear hashing to a scalable dis-
tributed data structure: each bucket is stored on one com-
puter per site. Two sites are used, one being the backup
of the other. For load balancing also the clients are di-
vided into two groups having computers from one site
as primary servers and computers from the other site as
secondary servers. Since LH*m does not support atomic
insert/update and transactions it has problems regarding
consistency: if the same data record gets written at the
same time by clients having the primary server in differ-
ent sites, the messages for copying the data record from
one site to the other may cross each other and after this
different versions of the same object exist in the differ-
ent sites. As a result, reading the same record results in
different data, depending on which site the client belongs
to. This is not acceptable for applications we are consid-
ering.

4.5 Distributed write cache

LND (Mao et al., 2002) implements a distributed fault
tolerant write cache to reliably cache data to be able to
speed up operation by asynchronously writing data to
disk. This approach does not support transactions and
is limited to one client which represents a single point
of failure. If the client fails a recovery phase is needed,
therefore, unlike HADES, which can serve several clients
in parallel, LND is not able to provide uninterrupted ser-
vice.

5 Summary and outlook

HADES offers significant improvements regarding ac-
cess time and is, therefore, in particular useful for re-
liable publish/subscribe systems, publish/subscribe sys-
tems that aggregate events and therefore must store state,
and systems using IP take-over.

Further speed improvements can be expected by mov-
ing from Ethernet and TCP/IP to network technolo-
gies, that were designed to reach low latencies like SCI,



Myrinet or Infiniband.
Although no real-time operating system and network

was used during the performance evaluation, the perfor-
mance measures show an astonishingly low number of
outliers (figure 5). Therefore, a tuning of HADES to-
wards real-time databases seems promising.

But the mechanisms used by HADES are also very in-
teresting for a very different field of applications: sensor
networks (Akyildiz et al., 2002). Sensor networks fol-
low the idea of having very small, battery powered sen-
sor nodes, that are so cheap, that they even might be de-
ployed by throwing them from an aircraft in large quan-
tities. Since these devices are battery powered, energy
consumption is critical and determines the lifetime of the
nodes in the network. Typically most energy is used by
routing information through the network, therefore, data
aggregation and data fusion are among the most impor-
tant methods of saving energy. To do this, data needs
to be stored until aggregated within the network, but the
longer data is stored in the network the higher is the risk
of data loss. Furthermore, aggregated data is ‘more valu-
able’ than raw data and should be protected according to
its value against loss. Therefore, a reliable local storage
is needed. Persistent storage like e.g. flash memory is not
useful, since a node failure is equivalent to a node loss in
sensor networks. Therefore, redundancy is the only way
of protecting data against loss.

Of course there needs to be some tuning: HADES was
optimized to achieve high speed, whereas in sensor net-
works the optimization must be done with regard to min-
imal power and hardware requirements, e.g. by adjust-
ing HADES to use simpler network protocols than TCP
and/or by replacing parallel, interleaved operations by se-
rial operations that require less memory.

Another potential application of HADES is for support
of mobility in publish/subscribe systems, where events
and event histories must be made persistent (Cilia et al.,
2003).

References
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci,

E. (2002). A Survey on Sensor Networks.IEEE Comm.
Magazine, pages 102–114.

Apers, P. M. G., van den Berg, C. A., Flokstra, J., Grefen,
P. W. P. J., Kersten, M. L., and Wilschut, A. N. (1992).
PRISMA/DB: A parallel main memory relational DBMS.
Knowledge and Data Engineering, 4(6):541–554.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2000).
Achieving scalability and expressiveness in an Internet-
scale event notification service. InSymposium on Princi-
ples of Distributed Computing, pages 219–227.

Cilia, M., Fiege, L., Haul, C., Zeidler, A., and Buchmann, A. P.
(2003). Looking into the past: enhancing mobile pub-
lish/subscribe middleware. InProceedings of the 2nd in-
ternational workshop on Distributed event-based systems,
pages 1–8. ACM Press.

DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stobe-
braker, M. R., and Wood, D. (1984). Implementation

Techniques for Main Memory Database Systems. InProc.
of the ACM SIGMOD Conference, pages 1–8.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-
M. (2003). The many faces of publish/subscribe.ACM
Comput. Surv., 35(2):114–131.

Fetzer, C., Ḧogstedt, K., and Suri, N. (2003). Practical Aspects
of Designing an IP Take Over Mechanism. InProc. of
WORDS.

Gray, J. (1979). Notes on Data Base Operating Systems. In
Operating Systems: An Advanced Course, pages 393–481.
Springer-Verlag.

Gärtner, F. C. (1999). Fundamentals of fault-tolerant distributed
computing in asynchronous environments.ACM Comput.
Surv., 31(1):1–26.

Kermarrec, A.-M. (1997). Replication For Efficiency And Fault
Tolerance In A DSM System. InProc. of PDCS’97 Ninth
International Conference on Parallel and Distributed
Computing and Systems.

Litwin, W. and Neimat, M.-A. (1996). High-Availability LH*
Schemes with Mirroring. InConf. on Cooperative Infor-
mation Systems, pages 196–205.

Lorie, R. A. (1977). Physical integrity in a large segmented
database.ACM Trans. Database Syst., 2(1):91–104.

Mao, Y., Zhang, Y., Wang, D., and Zheng, W. (2002). LND: a
reliable multi-tier storage device in NOW.SIGOPS Oper.
Syst. Rev., 36(1):70–80.

Patterson, D. A., Gibson, G., and Katz, R. H. (1988). A case for
redundant arrays of inexpensive disks (RAID). InProc. of
the 1988 ACM SIGMOD international conf. on Manage-
ment of data, pages 109–116. ACM Press.

Plank, J. S. and Li, K. (1994). Faster Checkpointing with N+1
Parity. In24th Annual int. symposium on Fault-Tolerant
Computing, pages 288–297.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and
Schenker, S. (2001). A scalable content-addressable net-
work. In Proc. of the 2001 conf. on Applications, tech-
nologies, architectures, and protocols for computer com-
munications, pages 161–172. ACM Press.

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. InProc. of the IFIP/ACM
Intl. Conference on Distributed Systems Platforms Heidel-
berg, pages 329–350. Springer-Verlag.

Skeen, D. (1981). Nonblocking commit protocols. InProc. of
the 1981 ACM SIGMOD international conf. on Manage-
ment of data, pages 133–142. ACM Press.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakr-
ishnan, H. (2001). Chord: A scalable peer-to-peer lookup
service for internet applications. InProc. of ACM SIG-
COMM, pages 149–160. ACM Press.

Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D. (2001).
Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing. Technical Report UCB/CSD-01-
1141, UC Berkeley.


	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)


