
KEYWORDS

THE CONNECT FRAMEWORK: A SIMULATION TOOL
FOR NETWORKS OF COMMUNICATING OBJECTS

Gerd Kock
Fraunhofer Institute for Computer Architecture and Software Technology

Kekuléstr. 7, D 12489 Berlin, Germany
E-mail: gerd.kock@first.fraunhofer.de

Object Orientation, Modelling, Simulation, .NET

ABSTRACT

The CONNECT Framework presented in this pa-
per is a simulation tool supporting the modelling
of networks of communicating objects. It is im-
plemented on the base of the .NET Technology.
From the programmers point of view, it extends
the C# language by a few attributes and offers a
few classes. The paper introduces the new con-
structs and demonstrates their use by giving two
examples. The first example is the Game of Life,
and the second one, with special emphasis on sig-
nal based communication, is the Backpropagation
Network.

INTRODUCTION

A modelling pattern found in areas like Arti-
ficial Neural Networks (Rojas 1996), Scientific
Computing (Heath 2002), Swarm Intelligence
(Kennedy and Eberhart 2001) and others requires
working with arrays of communicating objects.
Modelling large arrays of objects in a homoge-
neous manner is a non trivial problem. In some
cases it is the index of an object that deter-
mines the processing (e.g. state-based manipula-
tion or communication), in other cases all objects
of an array are processed in a uniform way. A
provision of special linguistic constructs for han-
dling such arrays would allow for more elegant
and error-proof modelling and programming of a
whole range of different applications.

Modern software development usually takes place
in some object oriented environment like the
.NET Framework (Beer et al. 2003) or the Java
2 Enterprise Edition (Perrone et al. 2003). Con-
sidering the modelling pattern mentioned above
in the context of such environments, we have to
look at the concepts of classes and arrays, as
any object is an instance of a class type, and
as arrays are important means for establishing
networks. The CONNECT Framework combines
features from both of these concepts, and is an
implementation for the .NET platform. The im-

plementation uses the fact, that C# supports re-
flection, and that it is one of the first languages,
which can be extended with the help of so called
attributes (Drayton et al. 2003).

For any given type T, a corresponding layer type
Layer_T can be generated, and these layer types
reflect features of class and array types. To give
an example consider class Unit:

[unit]
public class Unit {
[item]
public double myVar;
[item]
public void MyFun(double x) {...}

}

Attribute [unit] turns the class into a unit type,
where attribute [item] turns the field myVar into
an item field and the method MyFun() into an
item method. The interface of the generated layer
type Layer_Unit looks as follows:

public class Layer_Unit : Layer {
// constructor
public Layer_Unit(params int[] dim);
// indexer
public Unit this [params int[] ix]
{ get; set; }

// lifted field
public Layer_Double myVar { get; }
// lifted method
public void MyFun(System.Double x);

}

With the aid of the constructor and the indexer
layer objects can be instantiated and used similar
to array objects. For example, let us create a two
dimensional base layer:

Layer_Unit ulayer;
ulayer = new Layer_Unit(m,n);

The item field myVar (or item method myFun())
with index [i,j] can be accessed as follows:

ulayer[i,j].myVar = 3.14;
ulayer[i,j].MyFun(3.14);

[unit] public class Life {

[item] public int state;

[item] public Life[] vector;

[item] public void InitState(Random r) { state = r.Next(2); }

private int next;

[item] public void NextState()

int sum = 0;

for (int i = 0; i < vector.Length; i++) { sum += vector[i].state; }

if (sum < 2 || sum > 3) { next = 0; }

else if (sum == 3) { next = 1; }

else { next = state; }

}

[item] public void UpdateState() { state = next; }

}

Figure 1: The unit type Life

But layer types are not identical to array types.
If they are generated from unit types, the pub-
lic fields and methods being marked by attribute
[item] are “lifted” to the interface of the layer
type. If, for a given layer instance, the lifted iden-
tifiers are used to access the layer, actually all
corresponding fields or methods of the layer el-
ements are addressed. In the case of methods,
this is a kind of shorthand for a loop. Invoking a
lifted method results in invoking the underlying
unit method for all elements of the given layer:

ulayer.MyFun(3.14);

A lifted field is an item layer (e.g. ulayer.myVar
has type Layer_Double), which opens up the
possibility to invoke methods defined for layer
types. For example, the overloaded method
Set(), which can be used to initialize all layer
elements with the same constant:

ulayer.myVar.Set(3.14);

Accessing lifted items can be combined neatly
with the fact, that the underlying unit items can
also be accessed by index. This is used by the
CONNECT Framework to offer powerful means
for connecting (or setting) the item fields of lay-
ers. The parameters of the corresponding meth-
ods are, on the one hand, lifted item fields, and
on the other hand, relations or functions over in-
dices.

The next section presents the CONNECT Frame-
work components. After that, it is explained in
detail how layer items can be connected, and the
Game of Life is used to demonstrate this process.
Then the focus is switched to signal based com-
munication, Here, as an example, the Backprop-
agation Network is given. The concluding section

summarizes the lessons learned from the two ex-
amples and relates the CONNECT Framework to
previous work of the author. At the end, a de-
scription of further research can be found.

CONNECT FRAMEWORK COMPONENTS

The CONNECT Framework consists of a library
and a command line tool. Using the frame-
work for the modelling of an application can be
sketched as follows.

At first, the unit types of the application have
to be identified. Let file app.units contain the
source code of these types (class Unit, . . .). Ex-
cept for the attributes [unit] and [item] this is
usual C# code.

Then, the command line tool can be used to
generate all implied layer types (Layer_Unit,
Layer_Double, . . .), and to put them into file
app.layers. The generation process relies on the
types provided by the CONNECT library.

The rest of the application’s source code can use
the unit types as well as the generated layer types.

The CONNECT library includes class Layer (the
base class of all layer types), signal classes for
simple types like int, double etc., and class
Generator. Signal classes are explained below.
Class Generator contains methods for generating
layer or signal types. These methods are provided
for the rare cases, where the command line tool
or the predefined classes do not suffice.

CONNECTING LAYER ITEMS

For discussing the way, in which objects can be
connected, let us start with unit type Elem:

[unit]
public class Elem {

public class LifeNetwork {

private Layer_Life layer;

public LifeNetwork (int n, int m) {

layer = new Layer_Life(n, m);

layer.vector.Connect(layer, new Relation(IsNeighbour));

}

public void InitPopulation() {

Random r = new Random();

layer.InitState(r);

}

public void NextGeneration() {

layer.NextState();

layer.UpdateState();

}

private bool IsNeighbour(int[] x, int[] y) {

if ((x[0]!=y[0] || x[1]!=y[1]) && (Math.Abs(x[0]-y[0])<=1) && (Math.Abs(x[1]-y[1])<=1))

return true;

else

return false;

}

}

Figure 2: Using the layer type Layer Life

[item] public Elem transpose;
[item] public Elem[] line;

}

Our goal is to organize Elem objects into a square
matrix,

Layer_Elem matrix = new Layer_Elem(n,n);

such that the item layers matrix.transpose
and matrix.line correspond to the transpose or
lines, respectively, of that matrix. For a given
line i and for all j and k, the one dimensional ar-
rays matrix[i,j].line and matrix[i,k].line
would contain the same objects.

To establish the requested connections, a function
and a relation over indices are needed:

int[] transpose(int[] ix) {
int[] val = { ix[1], ix[0] };
return val;

}

bool line(int[] ix, int[] iy) {
if (ix[0]==iy[0]) return true;
return false;

}

The CONNECT Framework includes special
types for such functions and relations:

Function fun = new Function(transpose);
Relation rel = new Relation(line);

Now, the layer methods Set() and Connect()
can be applied:

matrix.transpose.Set(matrix, fun);
matrix.line.Connect(matrix, rel);

To explain the meaning of Set(), let ix be
an index, for which transpose(ix) is de-
fined. Then matrix[ix].transpose is set to
matrix[transpose(ix)].

To explain the meaning of Connect(), let iy be
another index, and let the result of line(ix,iy)
be true. Then matrix[ix].line is extended
by one component, and this component is set to
matrix[iy].

THE GAME OF LIFE

The first example is the famous Game of Life
(Gardner 1970). The complete modelling can be
found in Figures 1 and 2. Figure 1 shows the
definition of unit type Life, and Figure 2 shows,
how the generated type Layer_Life can be used
to define a class LifeNetwork.

A unit of type Life has two public item fields and
three public item methods.

Item state is used to signal, whether a unit is
alive (state==1) or dead (state==0), and the one
dimensional array vector is used to get the corre-
sponding states of the immediate neighbours —
where item method NextState() assumes, that
the vector has been set accordingly.

Method InitState() is used to randomly set the
state, method NextState() checks, how many
of the neighbours are alive, and uses the result
to set the private variable next, and method
UpdateState() updates the state.

In class LifeNetwork, a private layer of type
Layer_Life can be found. The constructor cre-
ates a two dimensional layer, and establishes
the necessary connections. In this, the relation
IsNeighbour() is used. For indices ix and iy
the result IsNeighbour(ix,iy) is true exactly
in the case, that ix and iy are the indices of im-
mediate neighbours.

The meaning of the methods of type LifeNetwork
is straightforward: InitPopulation() initializes
the network, and NextGeneration() computes
the next generation.

SIGNAL BASED COMMUNICATION

In the example given above, a Life unit com-
municates by reading the state of neighbouring
units with the help of item field vector (see Fig-
ure 1). In a sense, the field vector allows a Life
unit to access the “outside world”.

However, it might be advantageous to communi-
cate just by sending and receiving signals, with-
out accessing the state of other units. To support
this procedure, the CONNECT Framework offers
the possibility to generate signal classes. More
precisely, for any given type T, classes Fanout_T,
IVector_T, and OVector_T can be generated.
(For simple types like double, the signal classes
are part of the CONNECT library.)

The signal classes represent fanout signals, input
and output vectors. To give an example, let us
start with three unit types based on the signal
classes generated from type double:

[unit] public class FUnit {
[item] public Fanout_Double y;

}

[unit] public class IUnit {
[item] public IVector_Double ivec;

}

[unit] public class OUnit {
[item] public OVector_Double ovec;

}

We consider the layers flayer (of type
Layer_FUnit), ilayer (type Layer_IUnit) and
olayer (type Layer_OUnit). At first, n fanout
signals are created and initialized:

flayer = new Layer_FUnit(n);
for (int i = 0; i < n; i++)

flayer[i].y.Value = i;

Then, n input and output vectors are created:

ilayer = new Layer_IUnit(n);
olayer = new Layer_OUnit(n);

Initially, these vectors are empty. However, input
vectors can be connected with fanout signals and
output vectors analogous to the way described
above. Let Full be the relation, which includes
all index pairs, i.e. for all pairs (ix,iy) we have:

Full(ix, iy) == true

This relation is used for establishing connections:

Relation full = new Relation(Full);
ilayer.ivec.Connect(flayer.y, full);

As all index pairs belong to the relation Full, the
result of this connect statement is, that for all
0 <= i,j < n the input vector ilayer[i].ivec
is connected with fanout signal flayer[j].y.
This means, the input vector is extended by one
component, and this component is set to the
fanout signal. After that, all input vectors have
n components and, as the connections are estab-
lished in ascending order, we have:

ilayer[i].ivec[j] == j

Modifying the fanout signals

for (int i = 0; i < n; i++)
flayer[i].y.Value = -i;

has an immediate consequence:

ilayer[i].ivec[j] == -j

Now, the input vectors are connected to the out-
put vectors:

ilayer.ivec.Connect(olayer.ovec,full);

Again, the connections are established in as-
cending order. For all 0 <= i,j < n the input
vector ilayer[i].ivec is connected with out-
put vector olayer[j].ovec. Here, both vec-
tors are extended by one component, and the
new component of input vector ilayer[i].ivec
refers to the new component of output vector
olayer[j].ovec. This results in n+n components

for each input, and n components for each output
vector.

By default, the new components of the output
vectors are set to zero. So we have:

ilayer[i].ivec[n+j] == 0

If we assign other values to the output vectors,

olayer[i].ovec[j] = i*i;

we have:

ilayer[i].ivec[n+j] == j*j

THE BACKPROPAGATION NETWORK

The Backpropagation (BP) Network is capable
of learning a functional mapping x �→ y. In this,
network input x = (x1, . . . , xi) and network out-
put y = (y1, . . . , yo) are vectors of numbers. The
BP Network can be applied in areas such as sen-
sor processing, pattern recognition, data analysis,
and control (Rojas 1996).

Such a network consists of one input, one or more
hidden, and one output layer. In the forward
pass, the input layer is used to present the net-
work input x to hidden layer 1. For n ≥ 1, hidden
layer n does some processing and presents its re-
sults to hidden layer n+1 or, finally, to the output
layer. The output layer does an analogous pro-
cessing to compute the network output y.

The output of a network depends on the weights,
where each hidden and output unit is associated
with one bias weight and one weight for each in-
coming signal.

For a given set of training data {(x, t)} such a net-
work is able to learn the mapping x �→ t where
t = (t1, . . . , to) is a target vector. Learning means
to adapt the weights correspondingly. In general,
learning a good mapping of the given targets is
not the only goal of training. Another goal is
that the network is able to “generalize”, i.e. af-
ter training it should be able to map an input x,
which has not yet been seen so far, in a “sensible”
way to an output y.

During training, the result y = (y1, . . . , yo) of
mapping a sample x = (x1, . . . , xi) is compared
with the associated target t = (t1, . . . , to). The
backpropagation algorithm essentially is a gradi-
ent descent method minimizing the quadratic er-
ror measure

∑o
i=1(ti − yi)2 (seen as a function

of the weights). Learning can be done either in
online or in batch mode. Within online learning,

the weights are adjusted each time, a training ex-
ample has been presented; within batch learning,
weight adjustment takes place only after all train-
ing examples have been seen. Once a network is
trained, a recall is done in one forward pass.

Now we consider, how the CONNECT Frame-
work can be used to program a Backpropagation
Network (implementing online learning). In Fig-
ure 3 the unit types Input, Hidden, and Output
can be found, and Figure 4 contains the class
BPNetwork, which is based on these types.

The only item of type Input is a fanout signal y,
which is used to present the network input to hid-
den layer 1. The types Hidden and Output both
are derived from class BPUnit, which contains all
common elements:

• a fanout signal y used to present the result
to the next layer or as network output, re-
spectively;

• an input vector x for collecting the fanout
signals of the preceding layer, and an associ-
ated bias b and weight vector w;

• an output vector outErr used to send back
error signals.

All layers (except for the input layer and hid-
den layer 1) send back error signals to the pre-
ceding layer. It is important, that error signal
outErr[i] is send to the unit, where input x[i]
stems from. Specifically, the size of error vector
outErr either is 0 (for hidden layer 1) or has to
coincide with the sizes of the vectors x and w.

The item methods AdjustVector() and
InitWeights() are used during network
initialization. For each incoming signal, a weight
component is established, and all weights are
initialized with random numbers in between 0
and 1.

Item method Forward() performs the computa-
tion, which is done in the forward pass. Actu-
ally, the so called net input net = w * x + b
is mapped by the sigmoid function. In this,
w * x is the vector dot product and the result
of Sigmoid(net) is 1 / (1 + exp(-net)).

Item method Backward() is used for learning.
The parameters are the so called learning rate eta
and a value delta, which depends on the given
target and is computed differently for hidden and
output layers. Based on the given parameters, at
first the error signals for the previous layer are
set, and then the weights are modified.

[unit] public class Input {

[item] public Fanout_Double y = new Fanout_Double();

}

public class BPUnit {

[item] public Fanout_Double y = new Fanout_Double();

[item] public IVector_Double x = new IVector_Double();

[item] public double b;

[item] public double[] w;

[item] public OVector_Double outErr = new OVector_Double();

[item] public void AdjustWeightVector() { w = new double[x.Length]; }

[item] public void InitWeights(Random r) {

b = r.NextDouble();

for (int i = 0; i < x.Length; i++) w[i] = r.NextDouble();

}

[item] public void Forward() { y.Value = NN.Sigmoid(w * x + b); }

public void Backward(double eta, double delta) {

for (int i = 0; i < outErr.Length; i++) outErr[i] = delta * w[i];

b = b + eta * delta;

for (int i = 0; i < x.Length; i++) w[i] = w[i] + eta * delta * x[i];

}

}

[unit] public class Hidden : BPUnit {

[item] public IVector_Double inErr = new IVector_Double();

[item] public void Backward(double eta) {

double delta = y * (1-y) * inErr.Sum;

base.Backward(eta, delta);

}

}

[unit] public class Output : BPUnit {

[item] public double t;

[item] public void Backward(double eta) {

double delta = y * (1-y) * (t-y);

base.Backward(eta, delta);

}

}

Figure 3: The unit types for the Backpropagation Network

In the derived types Hidden and Output the value
delta is computed and passed to the Backward()
method of type BPUnit. In one case (type
Output) the value depends on the difference be-
tween target and network output (t-y), and in
the other case (type Hidden) it depends on the
sum of incoming error signals (inErr.Sum).

In Figure 4, a Backpropagation Network with
two hidden layer is presented. At first, we find
the private layer fields input, hidden1, hidden2,
and output. The constructor creates a network
with i input and o output units, establishes the
necessary connections between the layers, and
performs the corresponding adaptations of the
weight vectors.

Method InitWeights() initializes the weights
randomly, method Forward() implements the
forward and method Backward() implements the

backward pass. Note the details of the Forward()
and Backward() methods.

The parameter x of network method Forward() is
the network input, which is assigned to the fanout
layer input.y. Then, method Forward() is called
for hidden layers 1 and 2, and finally for the out-
put layer. At the end, the fanout layer output.y
is returned as network result.

The parameters eta and t of network method
Backward() are the learning rate or target vector,
respectively. The target vector is assigned to the
item layer output.t. Then, method Backward()
is called for the output layer, and for hidden lay-
ers 2 and 1. At the end, function sqdist() com-
putes the quadratic error, which is returned as
the result.

public class BPNetwork {

private Layer_Input input;

private Layer_Hidden hidden1, hidden2;

private Layer_Output output;

public BPNetwork(int i, int h1, int h2, int o) {

input = new Layer_Input(i);

hidden1 = new Layer_Hidden(h1);

hidden2 = new Layer_Hidden(h2);

output = new Layer_Output(o);

hidden1.x.Connect(input.y, new Relation(Full));

hidden1.inErr.Connect(hidden2.outErr, new Relation(Full));

hidden2.x.Connect(hidden1.y, new Relation(Full));

hidden2.inErr.Connect(output.outErr, new Relation(Full));

output.x.Connect(hidden2.y, new Relation(Full));

hidden1.AdjustWeightVector();

hidden2.AdjustWeightVector();

output.AdjustWeightVector();

}

public void InitWeights() {

Random r = new Random(1);

hidden1.InitWeights(r); hidden2.InitWeights(r); output.InitWeights(r);

}

public double[] Forward(double[] x) {

double[] y = new double[output.Length];

for (int i = 0; i < input.Length; i++) input.y[i].Value = x[i];

hidden1.Forward(); hidden2.Forward(); output.Forward();

for (int i = 0; i < output.Length; i++) y[i] = output.y[i];

return y;

}

public double Backward(double eta, double[] t) {

for (int i = 0; i < output.Length; i++) output.t[i] = t[i];

output.Backward(eta); hidden2.Backward(eta); hidden1.Backward(eta);

return sqdist(output.t, output.y);

}

}

Figure 4: The Backpropagation Network

CONCLUSIONS

The Game of Life (Gardner 1970) and the Back-
propagation Network (Rojas 1996) have been
used to demonstrate how the CONNECT Frame-
work can be employed for modelling applications.
The examples show that this can be done in a
compact and elegant way, such that the resulting
C# programs almost have the character of spec-
ifications.

Modelling a network of communicating objects
can be done by considering a given application
from two points of view. On the one hand, one
can consider the functionality of the objects of
that application, and in this can take the neces-
sary communication structure as given. And on
the other hand, one can take the functionality of
the objects as given, and can concentrate on the
global aspects of connecting objects and invoking
complete layers of them.

The predecessor of the CONNECT Framework is
the Neural Network (NN) description language

CONNECT, which had been developed in the
nineties. A compiler translating CONNECT
specifications into C++ classes is the software
kernel of the NeuroLution system, which inte-
grates hardware and software components (Kock
et al. 1999).

The NN language CONNECT allows for flexible
definitions of networks of simple processing units,
each of them communicating with the others by
sending simple signals, and can be applied to de-
sign neural networks, cellular automata as well as
other simple distributed systems (Fabiunke and
Kock 1999). But communication is restricted to
simple signal types, and it is not possible to con-
nect (or set) other than signal items.

The NN language CONNECT is a specific domain
language, where the CONNECT Framework ac-
tually is a simple extension of the C# language
by the two attributes [unit] and [item]. Using
these attributes allows for solutions, the abstrac-
tion level of which is high and makes it simple to

reuse them. As the modelling language is C#,
there is no restriction on the domain of possible
applications.

FURTHER RESEARCH

The two examples given in this paper stem from
the area of swarm intelligence (Kennedy and
Eberhart 2001) or Artificial Neural Networks
(Rojas 1996), respectively. For the latter do-
main it already has been proven, that many net-
work models can be programmed easily by using
the CONNECT Framework. The corresponding
specifications written in the Neural Network de-
scription language CONNECT (Kock et al. 1999)
can be translated easily into corresponding C#
programs — which use the CONNECT Frame-
work. Other possible application domains are Sci-
entific Computing (Heath 2002) and Web Services
(Alonso et al. 2004).

All domains mentioned above will be studied, and
key applications will be developed to trigger fur-
ther implementation and theoretical issues.

There are several implementation issues. One
goal is to bring the current implementation
into a product version state. Also, the use of
threads and a distributed implementation will
be considered. With respect to the generics
of C# 2.0, a future version of the CONNECT
Framework will include parameterized types
Layer<Type>, Fanout<Type>, IVector<Type>
and OVector<Type> — as an alternative for the
Generator class mentioned above. Finally, an
implementation for the Java platform will be con-
sidered.

Two kinds of “theoretical” issues occur. At first,
the “final” form of the interface has to be fixed;
this refers to the work out of layer methods for
accessing and connecting layers, or to the ques-
tion, whether beside Connect() methods there
also should be Disconnect() methods, etc. Sec-
ondly, the meaning of networks consisting of in-
terconnected layers mainly depends on the mean-
ing of unit and layer types and on the meaning
of layer methods, which globally access and (dis-
)connect layer items; it might be helpful to de-
velop some mathematical means for treating the
formal semantics of such networks.

AUTHOR BIOGRAPHY

GERD KOCK studied Mathematics and Econ-
omy (University of Münster). For a few years,
he worked for Siemens in Munich. His doctoral
thesis was in Computer Science (Technical Uni-
versity of Karlruhe). Since 1992, he acts as se-

nior researcher at the Fraunhofer Institute for
Computer Architecture and Software Technology
(Fraunhofer FIRST) in Berlin. For many years,
he worked in the areas of Programming Lan-
guages, Compilers and Software Technology. In
cooperation with industry, he developed software
concepts for a Neural Network simulation tool.
He gave lectures and seminars at many places,
e.g. at the Humboldt University of Berlin and at
the Technical University of Berlin.

REFERENCES

Alonso, G.; F. Casati; H. Kuno; and V. Machiraju.
2004. Web Services. Concepts, Architectures
and Applications. Springer.

Beer, W.; D. Birngruber; H. Mössenböck; and
A. Wöß. 2003. Die .NET-Technologie.
dpunkt.verlag.

Bonabeau, E. and C. Meyer. 2001. “Swarm Intelli-
gence: A Whole New Way to Think About Busi-
ness”. Harvard Business Review (May), 107–
114.

Drayton, P.; B. Albahari; and T. Neward. 2003. C#
in a Nutshell. O’Reilly.

Fabiunke, M. and G. Kock. 1999. “A Con-
nectionist Method to Solve Job Shop Prob-
lems”. Second International Conference on In-
telligente Processing and Manufacturing of Ma-
terials (IPMM’99), Big Island, Hawaii, July
1999.

Gardner, M. 1970. “Mathematical games: The fan-
tastic combinations of John Conway’s new soli-
taire game ”life””. Scientific American, 120–
123.

Heath, M.T. 2002. Scientific Computing: An Intro-
ductory Survey. McGraw-Hill.

Kennedy, J. and R.C. Eberhart. 2001. Swarm Intel-
ligence. Morgan Kaufmann Publishers.

Kock, G.; T. Fischer; W. Eppler; H. Gemmeke; and
T. Becher. 1999. “NeuroLution: Integrated
Hardware and Software for the Development of
Neural Network Applications”. Systems Analy-
sis – Modelling – Simulation 35, No. 4, 447–481.
Gordon And Breach Science Publishers.

Perrone, P.; S.R. Venkata; and T. Schwenk. 2003.
J2EE Developers’s Handbook. SAMS.

Rojas, R. 1996, Neural Networks - A Systematic In-
troduction. Springer.

Winder, R. and G. Roberts. 2000. Developing Java

Software, 2nd Edition. Wiley.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

