
SWARM Simulation of Multi-Agent Fault Mitigation in Large-Scale,

Real-Time Embedded Systems

Derek Messie
Jae C. Oh

Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244

Email: dsmessie@syr.edu, jcoh@ecs.syr.edu

KEYWORDS

SWARM, BTeV, Emergent Behavior, Subsumption
Architecture, Fault Mitigation

ABSTRACT

This paper presents a SWARM multi-agent simulation
of fault mitigation within BTeV, a large-scale, real-
time embedded system. The Real-Time Embedded
Systems (RTES) group collaborates on designing
real-time embedded intelligent software to ensure data
integrity and fault tolerance within BTeV, a triggering
and data acquisition system for particle-accelerator-
based High Energy Physics experiments at Fermi
National Laboratory. The hardware layout spans
2,500 digital signal processors and approximately
2,500 Linux computers. Adaptive and small in foot-
print, very lightweight agents were designed to apply
both reactive and proactive rules to accomplish fault
tolerance within the system. The scale and real-time
requirements of this system make it ineffective to
design a traditional expert system that relies on
centralized processing to determine appropriate rule
actions for every possible system state. Instead, a
decentralized approach based on Rodney Brooks’
subsumption architecture is presented. A SWARM
simulation is used to investigate emergent behavior
of the multi-layered, distributed approach to fault
mitigation within the RTES/BTeV environment.

INTRODUCTION

This paper describes the design and implementation
of a SWARM simulation of multi-agent fault mitiga-
tion within BTeV, a large-scale, real-time embedded
system. BTeV is a particle accelerator-based High
Energy Physics (HEP) experiment studying matter-
antimatter asymmetries in the decays of particles con-
taining the bottom quark. The Real-Time Embedded
Systems Collaboration (RTES) was formed with the
purpose of designing real-time embedded intelligent
software to ensure data integrity and fault-tolerance
within the BTeV data acquisition system. Multiple

levels of adaptive Very Lightweight Agents (VLAs) are
one of the primary components responsible for fault
mitigation within this environment. The VLA de-
sign was implemented and presented in a prototype of
the RTES/BTeV system at the SuperComputing 2003
(SC2003) conference.

Given the number of components and countless fault
scenarios involved, it would be impossible to orga-
nize various levels of VLAs using an ‘expert system’
that applies mitigative actions triggered from a central
processing unit acting on rules capturing every pos-
sible system state. Rather, this project uses Brooks’
(Brooks 1986) multi-layer, decentralized subsumption
architecture from mobile robot design, and adapts it to
achieve specific global behavior within the BTeV fault
mitigation system. The SWARM simulation is used
for studying the scaling qualities of emergent behavior
resulting from the subsumption approach.

This paper is divided into six sections. Section 2
provides some background about the BTeV experiment
and the RTES collaboration. Section 3 presents a brief
overview of Brooks’ subsumption architecture, and de-
scribes the details of the subsumption model for multi-
agent fault mitigation within RTES/BTeV.

Section 4 describes the SWARM multi-agent simula-
tion of the RTES/BTeV environment, including details
on the system components and fault scenarios modeled,
VLA subsumption fault mitigation rule firing, and sim-
ulation time steps.

Next steps for the project are provided in section 5,
followed by a conclusion in section 6.

RTES/BTeV

Overview

BTeV is a particle accelerator-based High Energy
Physics (HEP) experiment currently under develop-
ment at Fermi National Accelerator Laboratory. The
goal is to study charge-particle violation, mixing,
and rare decays of particles known as beauty and
charm hadrons, in order to learn more about matter-
antimatter asymmetries that exist in the universe to-



Figure 1: BTeV pixel detector layout.

day (Kwan 2002). The project is sponsored by the
National Science Foundation.

The BTeV experiment will exist inside a particle
accelerator where the collision of protons with anti-
protons can be recorded and examined for detached
secondary vertices from charm and beauty hadron de-
cays. The layout for the BTeV detector is shown in
figure 1.

The experiment uses 30 planar silicon pixel detectors
to record interactions between colliding protons and
antiprotons in the presence of a large magnetic field.
A schematic view of the pixel detector is shown in fig-
ure 2. These detectors, along with readout sensors are
embedded in the accelerator, which are connected to
specialized field-programmable gate arrays (FPGAs).
The FPGAs are connected to approximately 2,500 dig-
ital signal processors (DSPs).

The interactions resulting from the collision of pro-
tons and antiprotons are carried via custom circuitry
hardware to localized processors that reconstruct the
3-dimensional crossing data from the 30 silicon pixel
detectors in order to examine the trajectories for de-
tached secondary vertices (Nordstrom 2003). These
detached vertices are indicators of the likely presence
of beauty or charm decays.

BTeV will operate at a luminosity of 2x1032cm−2s−1

corresponding to about 2 interactions per 7.6 MHz
beam crossing rate (Kwan 2002). Average event sizes
will be around 200 Kilobytes after zero-suppression of
data is performed on-the-fly by front-end detector elec-
tronics. Every beam crossing will be processed, which
translates into the extremely high data rate of approxi-
mately 1.5 Terabytes of data every second, from a total
of 20x106 data channels.

A three tier hierarchical trigger architecture will be
used to handle this high rate. Data from the pixel de-
tector and muon detector will be sent to the level 1

trigger processor, where an accept or reject decision
will be made. The level 1 vertex trigger processor will
perform pattern recognition, track, and vertex recon-
struction on the pixel data for every interaction (Kwan
2002). It has been estimated that 99% of all minimum-
bias events will be rejected by the level 1 vertex trigger,
while 60-70% of the events containing beauty or charm
decay will still be accepted for further evaluation.

Level 2 and 3 will be implemented on a cluster of
CPU nodes, and data that makes it past the level 1
filter will be assigned to one of these level 2/3 proces-
sors for further analysis. Data that survives level 2 will
be passed to level 3 algorithms to determine whether
or not it should be recorded on archival media (Butler
2002). It is estimated that level 2 will decrease the data
rate by a factor of 10, and level 3 will further reduce
the incoming rate by a factor of 2. Once data is filtered
through all three levels, and additional data compres-
sion is performed, it is expected that the resulting data
rate will be approximately 200 Megabytes per second.

The events that are actually accepted within this sys-
tem occur very infrequently, and the cost of operating
this environment is high. The extremely large streams
of data resulting from the BTeV environment must be
processed real-time with highly resilient adaptive fault
tolerant systems (Butler 2002). For these reasons, a
Real-Time Embedded Systems Collaboration (RTES)
was formed with the purpose of designing real-time em-
bedded intelligent software to ensure data integrity and
fault-tolerance within this data acquisition system.

Each of the 2500 DSPs are assigned a unique Very
Lightweight Agent (VLA) responsible for a specific set
of proactive and reactive fault mitigation rules. Figure
3 shows one such VLA, along with the two other com-
ponents (Local Manager , Physics Application(PA))
found at every DSP.

The group of components found at each DSP are
referred to as individual Workers. Multiple Workers
are grouped into a single Farmlet of nodes. Sim-
ilarly, proceeding up the chain, regional managers

Figure 2: Schematic drawing of the pixel detector.



Figure 3: BTeV Level 1 Worker

are assigned groups of Farmlets. Individual Farmlet
VLAs are capable of communicating with each of
the associated Worker VLAs under them. Likewise,
regional VLAs communicate directly with all Farmlet
VLAs within their region.

Very Lightweight Agents (VLAs)

Multiple levels of very lightweight agents (VLAs) as
described in (Tamhankar et al. 2003) are one of the
primary components responsible for fault mitigation
across the BTeV data acquisition system.

The primary objective of the VLA is to provide the
BTeV environment with a lightweight, adaptive layer
of fault mitigation. One of the latest phases of work
at Syracuse University has involved implementing indi-
vidual proactive and reactive rules for specific system
failure scenarios.

A scaled prototype of the level 1 RTES/BTeV envi-
ronment was presented at the SuperComputing 2003
(SC2003) conference. The prototype hardware con-
sisted of a 7-slot VME crate with 4 fully populated
motherboards and 16 DSPs. The DSPs were Texas
Instruments C6711 with 64MB of RAM each, running
at 166 MHz. Graphical Modeling Environment (GME)
software was used to model the RTES/BTeV data aqui-
sition system (Bapty et al. 2003). GME was developed
by the Institute for Software Integrated Systems (ISIS)
at Vanderbilt University as part of research investigat-
ing core technology for model-integrated computing,
and applications for software integrated systems.

Reactive and proactive VLA rules were integrated
within this level 1 prototype and served a primary
role in demonstrating the embedded fault tolerant
capabilities of the system.

Challenges

While the SC2003 prototype was effective for demon-
strating the real-time fault mitigation capabilities of
VLAs on limited hardware utilizing 16 DSPs, one of
the major challenges is to find out how the behavior of
the various levels of VLAs will scale when implemented

across the 2500 DSPs projected for BTeV. In particu-
lar, how will agent rules within each VLA interact as
they are activated in parallel at multiple layers of the
system, and how will this affect other components and
the overall behavior of a large-scale, real-time, embed-
ded system such as BTeV.

Given the number of components and countless fault
scenarios involved, it would be impossible to design
an ‘expert system’ that applies mitigative actions
triggered from a central processing unit acting on
rules capturing every possible system state. Rather,
one alternative is to use Rodney Brooks’ multi-layer,
decentralized subsumption approach for mobile robot
design, and adapt it to achieve specific layers of global
behavior within large-scale fault mitigation systems.

SUBSUMPTION MODEL FOR
MULTI-AGENT FAULT MITIGA-
TION

Layers of Subsumption

The phrase subsumption architecture was first used by
Brooks (Brooks 1986) to describe a bottom-up ap-
proach for mobile robot design that relies on multiple
layers of distributed sensors for determining actions.
Until that time, designs relied heavily on a central-
ized location where most, if not all, of the decision
making process took place. In fact, only initial sensor
perception and motor control were left to distributed
components. As a result, the success and adaptability
of these systems was almost entirely dependent on the
accuracy of the model and actions represented within
the central processing unit (Brooks 1991).

In contrast, Brooks proposed that there should be
essentially no central control. Rather, there should be
independent layers each made up of a large number of
sensors, with each layer responsible for distinct behav-
ior. Communication and representation is developed in
the form of action and inaction at each of the individ-
ual layers, with certain layers subsuming other layers
when necessary. In this way, layer after layer is added
to achieve what Brooks refers to as increasing levels
of competence. This in turn breaks the problem down
into what Brooks describes as‘desired external manifes-
tations’, as opposed to slicing the problem on the basis
of ‘internal workings’ of the solution as was typically
done in the past.

Figure 4 shows the levels of competence that Brooks
defined for his mobile robots. In order to implement
the subsumption design across a multi-agent fault mit-
igation system, the first step is to clearly define the
distinct layers of subsumption that may be required
to achieve the effective fault mitigation behavior de-
sired. Just as Brooks’ provided, a description that dis-
tinguishes each layer needs to be outlined, along with
detail on the specific roles and responsibilities of each.

Figure 5 defines these layers for the system fault
mitigation implementation presented in this paper.



0. Avoid contact with objects (moving or stationary).
1. Wander aimlessly around without hitting things.

2. ”Explore” the world by seeing places in the dis-
tance which look reachable and heading for them.

3. Build a map of the environment and plan routes
from one place to another.

4. Notice changes in the ‘static’ environment.
5. Reason about the world in terms of identifiable ob-

jects and perform tasks related to certain objects.
6. Formulate and execute plans which involve chang-

ing the state of the world in some desirable way.
7. Reason about the behavior of objects in the world

and modify plans accordingly.

Figure 4: Layers of competence for mobile robots as
defined by Brooks.

The first layer (layer 0) is responsible for simple
reactive rule activation within each component of the
system. Just as layer 0 for mobile robots is responsible
for the rudimentary task of avoiding objects, layer
0 here takes the most basic actions as defined in
the local reactive rule base of each corresponding
component. At this layer, incoming messages from
connected components are typically reacted to by
either sending simple remediary actions to problem
components, or by forwarding error messages to higher
level components within the system. The roles and
responsibilities for each of the higher layers is also
provided.

Implementation

In (Brooks 1986), layers 0 and 1 were implemented, and
work had just begun on designing rules that would be-
gin to address attributes of the levels of competence
associated with layer 2. Similarly, the fault mitigation
simulation described in this paper has implemented
layers 0 and 1, along with a limited number of rules
addressing layer 2.

The first step in this approach was to define individ-
ual VLA rules within the system that will contribute to
meeting the responsibilities assigned to the lower layers
of the subsumption architecture. Basic fault mitigation
rules that address levels 0 and 1 define both reactive
(level 0) and proactive (level 1) rules for the system.
Ten of the error scenarios that are simulated in this im-
plementation are listed in figure 6, and figure 7 lists the
specific fault mitigation rules activated in each case.

Actions triggered from rules deemed to contribute to
higher levels of competence are given priority at each
individual component, and in this way subsume lower
level rules when conflicts arise. At each layer, rules are
experimented with and adjusted to compliment emerg-
ing behavior that contributes to meeting the fault mit-
igative responsibilities of each layer.

The general procedure for adding higher levels of
competence is described by Brooks (Brooks 1986).

0. Act on local reactive rules.
1. Monitor local components and activate local proac-

tive rules.
2. Analyze and act on statistics gathered from rule

firing.
3. Map the local state of the environment.
4. Reason about the system in terms of accumulated

statistics and the state of connected components.
5. Formulate and execute actions which involve

changing the state of the system in some desir-
able way.

6. Reason about the behavior of components in the
system and modify plans accordingly.

Figure 5: Layers of competence for fault mitigation
within BTeV.

Layers of the control system that correspond to specific
levels of competence are built, and new layers are
added to the existing set in order to move to the next
higher level of overall competence. A complete control
system that accomplishes level 0 is first implemented.
It is debugged thoroughly, and is not altered from that
point on. Another separate layer of control is then
built on top of the zeroth level, and is called control
level 1. It is capable of accessing and examining data
from the level 0 interface, essentially suppressing the
normal data flow at level 0. This layer, along with
the behavior of level 0, achieves level 1 competence.
However, level 0 continues to run unaware of the layer
above that may or may not have interfered with its
data paths. This process is repeated to achieve higher
and higher levels of competence.

SWARM

Overview

The primary focus of this simulation is on effective
ways to implement the multi-agent subsumption ap-
proach within a complex system such as BTeV so that
qualities of emergent fault mitigation behavior can be
evaluated. A high volume of rules at various levels will
be used in order to evaluate the interaction and be-
havior of the VLAs and other components across 2500
DSPs. This requires a simulation environment that will
allow abstract representation of some of the complex
integration within BTeV. However, for the results to
be of any use at all, this abstraction must be done in
a way that still accurately models the actual behavior
of the components involved. The level of success of the
results are directly dependent on this accuracy.

SWARM (http://www.swarm.org), distributed un-
der the GNU General Public License, is software avail-
able as a Java or Objective-C development kit that
allows for the multi-agent simulation of complex sys-
tems. It consists of a set of libraries that facilitate
implementation of agent-based models.

The basic architecture of SWARM provides for the



Figure 6: 10 BTeV Error Scenarios

simulation of collections of concurrently interacting
agents (Daniels 2000). It provides an environment
that can model various components of the BTeV
system, assigning dynamic states to each agent, which
can then be altered in time steps following various
user-specified rules (Burkhart 1997). Both proactive
and reactive rules are triggered after the current state
of a given agent(or component) is evaluated against
the state of other connected agents(or components).

SWARM Simulation of RTES/BTeV

Since the VLA is the primary focus for evaluating and
acting on a number of sample fault mitigation scenar-
ios, VLAs across the system are simulated. Another
main component of the simulation is the Physics Ap-
plication (PA). Since it is central to many of the defined
fault scenarios, it is vital that the state and behavior
of the PA is simulated accurately. The PA is located at
the Worker level, where the local manager and Worker
VLA (WVLA) also reside. All three of these compo-
nents are modeled. In addition, Farmlet managers and
Farmlet VLAs (FVLAs), as well as corresponding re-
gional managers and regional VLAs (RVLAs) are also
simulated.

A sample screen shot of the RTES/BTeV SWARM
Simulation is shown in Figure 8. This particular con-
figuration has defined 6 Workers per Farmlet, 10 Farm-
lets per region, and groups consisting of 7 regions. This
provides a simulation of 2,520 DSPs, just over the ac-

Figure 7: Fault Mitigation Rules Activated for 10 Error
Scenarios

tual target number projected for RTES/BTeV. Each
Farmlet column is made of 6 boxes, with each box rep-
resenting 1 Worker within the Farmlet. The Farmlet
is represented by the yellow box located slightly above
the column of 6 Workers, and simulates the actions
taken by the Farmlet manager and Farmlet VLA. The
centered green box at the top of the region simulates
the regional manager and regional VLA.

Random fault scenarios activate specific system error
messages at individual Worker, Farmlet, and regional
nodes. The frequency with which each particular fault
occurs is user-defined. This enables the system to sim-
ulate multiple fault scenarios in parallel, allowing for
the demonstration of how simultaneous errors occur-
ring at various levels within the system are processed.
Errors introduced across the system are detected both
proactively and reactively by individual components
within the model, and are indicated within the simula-
tion when the color of a given box turns red. A log of
the sequence of errors occuring at each component is
tracked, and can be viewed by clicking on the box rep-
resenting the particular node of interest. In addition
to a real-time status screen available for each Worker,
Farmlet, region, and group node, a full error log tracks
all error messages occurring at each time step across
the system.

Individual proactive and reactive VLA rules are re-
sponsible for fault mitigation within the simulation at



Figure 8: RTES/BTeV SWARM Simulation

each node. Every Worker VLA has a unique set of
rules that it follows at each time step. Each rule is
assigned a layer within the subsumption model with
which it is associated. Rules assigned to higher lay-
ers that are responsible for higher levels of competence
as defined earlier, subsume rules associated with lower
layers. Likewise, every Farmlet, region, and group
VLA has a unique set of rules that it follows, with
higher layer rules subsuming lower ones.

As mentioned earlier, since scalability issues are a
primary concern, the results must detect the degree to
which any exhibited behavior is tied to specific sys-
tem configurations. The SWARM model includes dy-
namic variables that can be modified to reflect various
hardware layout configurations, such as the number of
Workers per Farmlet, the number of Farmlets per re-
gion, and the number of regions per group.

Determining how to appropriately simulate time
steps within any multi-agent simulation typically
proves challenging. It is a particularly difficult issue in
this case since the behavior of a large-scale, real-time,
embedded system must be modeled. Since the primary
goal is to simulate the interaction of component rules
at various levels within the system, it suffices to
demonstrate this interaction without explicitly cap-
turing many of the exact processing rates and timing
issues involved. Again, it is the general interaction of
the rules at the various layers of subsumption that the
implementation is primarily interested in simulating.

NEXT STEPS

After implementing all of the basic reactive and
proactive rules of layers 0 and 1, the next step is to
continue to evaluate and act on the rule firing statistics
gathered at various levels of the system as defined for
layer 2. From there, higher layers of the subsumption

model will be implemented in order to continue to
classify characteristics of observed emergent behavior.
It is expected that each layer that is implemented will
provide further insight into effective strategies and
techniques that can be used for adjusting individual
agents towards desired behavior.

CONCLUSION

A SWARM multi-agent simulation is used to model
BTeV, a large-scale, real-time, embedded system. The
subsumption model detailed provides a framework for
implementing specific levels of competence for multi-
agent systems in incremental steps. The SWARM
simulation of the RTES/BTeV environment provides
an effective way for experimenting with local agent
rules throughout the system to evaluate the impact
each have on these individual layers. In this way, more
may be understood about the specific qualities and
structure of local rules and actions at these various
layers that lead to global fault mitigative emergent
behavior.

REFERENCES

Brooks, R.A., ‘Intelligence Without Representation’,
Artificial Intelligence, 47, 1991, 139-160.

Brooks, R.A., ‘A Robust Layered Control System
for a Mobile Robot’, IEEE Journal of Robotics and
Automation, RA-2, (April 1986).

Bapty, T. et. al, ‘Modeling and Generation Tools for
Large-Scale, Real-Time Embedded Systems’. IEEE
Conference on the Engineering of Computer Based
Systems (ECBS), Huntsville, Alabama, (April, 2003).

Burkhart, R., ‘Schedules of Activity in the SWARM
Simulation System’. Position Paper for OOPSLA
Workshop on OO Behavioral Semantics. (1997).

Butler, J.N., et. al, ‘Fault Tolerant Issues in the BTeV
Trigger’. FERMILAB-Conf-01/427, (December 2002).

Daniels, M., ‘An Open Framework for Agent-based
Modeling’. Applications of Multi-Agent Systems in
Defense Analysis, a workshop held at Los Alamos
Labs. (April 2000).

Kwan, S., ‘The BTeV Pixel Detector and Trigger
System’. FERMILAB-Conf-02/313, (December 2002).

Nordstrom, S., A Runtime Environment to Support
Fault Mitigative Large-Scale Real-Time Embedded
Systems Research, Master’s thesis, Graduate School of
Vanderbilt University, May 2003.

Tamhankar, S., Oh, J., Mosse, D., ‘Design of Very
Lightweight Agents for Reactive Embedded Systems’.
IEEE Conference on the Engineering of Computer
Based Systems (ECBS), Huntsville, Alabama, (April
2003).


	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)


