
FROM π-CALCULUS SPECIFICATION TO SIMULATION
OF A MOBILE AGENT USING JINI

Andreea Barbu and Fabrice Mourlin

University of Paris 12, LACL,
61. avenue du Ǵeńeral de Gaulle

94010 Cŕeteil, France
barbu@univ-paris12.fr, fabrice.mourlin@wanadoo.fr

KEYWORDS: π-Calculus, process algebra, mobile
agents, Jini

Abstract

This paper presents a formalism related to mobile agents.
It describes the higher orderπ-calculus, an extension
of the π-calculus who was introduced by R. Milner and
later developed by Sangiorgi. This formalism defines
a mathematical framework that can be used to reason
about mobile code; it varies greatly in its expressiveness,
in the mechanism it provides to specify mobile code
based applications and in its practical usefulness for the
validation and the verification of such applications.
In this paper we show how this formalism can be used
to represent the mobility and communication aspects
of a mobile code environment calledHoPiTool. We
developed theHoPiTool, which is a Jini-based tool to
implement mobile agents who respect an initial higher
order π-calculus specification. We will also introduce
the structure of theHoPiTool with its most important
elements.

1. INTRODUCTION - WHAT IS AN AGENT
IN OUR FRAMEWORK?

Mobile agents are omnipresent in today’s software ap-
plications and Java is a significant language to develop
these agents. For a few years, Java Intelligent Network
Interface (Jini) [1] has been more and more essential on
the framework market, allowing the development in dis-
tributed networks. Jini is a tool based on Java and its en-
ables us to realize, in a rather simple way, shared applica-
tions. Just as robots automate many aspects of manufac-
turing a computer, Jini automates and abstracts distributed
applications’ underlying details. These details include the

low-level functionality (socket communication, synchro-
nisation) necessary to implement high-level abstractions
(such as service registration, discovery, and use) that Jini
provides. Jini was designed assuming that the network is
not reliable. Things join the network and leave the net-
work. There is no central control. Also, Jini blurs the
distinction between hardware and software, dealing only
with services. The objective of this work is first to de-
scribe the modelling of mobile agents and second to im-
plement a Java Tool, which is able to generate Jini code
from ourπ-calculus specification. Mobile agents or trans-
portable agents are codes, which move on the network to
fulfil a mission. For a better understanding of their behav-
ior and to validate properties of them, such as for example,
their return on their starting machine, it is necessary to for-
malize these aspects. A first realized study [2] leads to
a higher orderπ-calculus formalisation. We use the for-
mal language higher orderπ-calculus for the specification
of the mobile agent and we chose the Java/Jini framework
for its development. It is very significant to accentuate the
higher order aspect because, to be able to develop a mo-
bile agent, we need a language, which is able to express it
like an essential characteristic. A mobile agent is a piece
of code, which achieves a task required by an user. It must
have a certain mobility to be able to move between var-
ious computers. After a correct specification of our mo-
bile system, we can generate Jini code with the help of our
HOPiTool and the generated files can communicate with
each other in a network.
In a distributed environment, we can have one-to-many
agent-hosts as well as one-to-many agents. To be an active
agent platform, a given node in the system must have at
least one active agent-host. Figure1. describes the frame-
work components. This component scheme can be mapped
easily to the the Jini model. Jini, at the highest level, pro-
vides the infrastructure that enables clients to discover and
use various services. Jini also provides a programming
model for developers of Jini clients and services.

Figure 1. The software architecture of our framework

1.1. Case study

Our objective is to simulate aMOBILEAGENT
that wants to get a job from a service collector called
EMPLOY ER. TheMOBILEAGENT operates in a
ROUTE system composed by a finite number of agent
hosts, which we callOFFICES. EachOFFICE is
able to make jobs and routes available by registering
these to theEMPLOY ER system. TheEMPLOY ER
contacts theMOBILEAGENT to give him a cer-
tain job to do (in our case it will becollect) and a
route map calledMapchannel. With this information,
theMOBILEAGENT contacts directly theOFFICE,
moves and gets the desired information from him (import
of SQL orders into its bag). AMOBILEAGENT can
ask also for services and contact manyEMPLOY ERS.
It is possible to have more than oneEMPLOY ER ser-
vice for a bigROUTE system. We can specialize many
EMPLOY ERS in order to make the offers of services
manageable. To simplify matters we will not discuss this
option in our paper. TheMONITOR is a waiting room,
where all theMOBILEAGENTS wait for some jobs.
TheMONITOR is also the starting and the ending ma-
chine for theMOBILEAGENTS. After carrying out
the job, an acknowledgementack will be sent back to the
monitor. The higher order aspect in our case study is repre-
sented through theMOBILEAGENT that contains the
job to do (collect), the route map (Mapchannel) or even
another agents. Figure2. depicts this simulation. In the
context of our mobile agent framework, the agent host(s)
provides Jini ”collect” services. The mobile agent(s) is the
Jini client. It can have a lease for on particular node and
this one can be modify during the action of the agent. Our
”collect” service provides a set of SQL statements which
have to be executed later on a database. Jini services reg-
ister with one or more Jini lookup-services by providing a
service proxy for perspective clients. In turn, clients query

Figure 2. Our Route System

the lookup service(s) for particular services. For detail in-
formation about Jini structure look at [1, 3].

2. SPECIFICATION PART

The recent developments of data processing in a net-
work confront the field of analysis and checking of paral-
lel systems with new and complex questions. One concept
which is the core of this evolution is that of mobility (of
code, and more general of calculus over a network whose
communication topology is dynamically changing).
A specification language must be powerful enough to ex-
press the mapping of a simulation model to any proto-
col on any target mobile architecture. The Pi-calculus
expresses the move of data but also of code. This of-
fers a solid base to make use of the Jini [3] generation.
The Higher Order paradigm is a construct where mobility
is achieved by allowing agents to be passed as values in
a communication. The prototypical calculus in the first-
order paradigm is theπ-Calculus that was introduced by
Milner, Parrow and Walker in [6] and later refined by Mil-
ner [5] with the addition of sorts and of communication
of tuples (Polyadicπ-Calculus). Theπ-Calculus is a way
of describing and analyzing systems consisting of agents
which interact among each other, and whose configuration
or neighborhood is continually changing. The Higher Or-
der π-Calculus (HOπ) is an extension of the first order
π-Calculus introduced by D.Sangiorgi [7]. This calculus
enriches theπ-Calculus with explicit higher order com-
munications. In the HOπ-Calculus not only names, but
also agents of arbitrarily high order, can be transmitted. A
higher-orderπ-Calculus process is given by the following
syntax:
P ::=

∑
αi.Pi | P1|P2 | P1 + P2 | ν x.P | [x = y]P |

D〈K̃〉 | X〈K̃〉
α ::= x(Ũ) | x〈K̃〉
WhereX is an agent (process) variable,〈K̃〉 stands for any
tuple of agent or (channel) name, and〈Ũ〉 stands for any
tuple of variable or (channel) name. The constantsD are

defined asD
def
= (Ũ)P . Constants are to be seen as func-

tions whose parameters can be processes or other functions
and:

• x̄(K).P can send the name or processK via the name
x and continue asP .

• x(U).P can receive any name or variableU and con-
tinue asP with the received name substituted forU .

• in the compositionP1|P2, the two components can
proceed independently and interact via shared names
or processes.

• ν x.P is called the restriction and means that the
scope of namex is restricted toP .

• in the sumP1 + P2 eitherP1 or P2 can interact with
other processes.

• The matching[x = y]P denotes the activation of a
process which is selected by other processes on de-
pend of a condition([x = y]).

The difference between first-order and higher-orderπ-
Calculus resides in the fact that parameters can be channels
and/or processes in the higher-orderπ-Calculus, while in
firs-orderπ-Calculus only channels can be passed as pa-
rameters.
Example: inx〈P 〉.Q|x(X).X, once the interaction be-
tween the two processes has taken place, the resulting pro-
cess isQ|P . Indeed, processx(X).X was waiting forX
to be sent along channelx, i.e., it was waiting for a process
X defining its subsequent behavior.
The operational semantics is given in terms of a labeled
transition system. There are three labels for the transitions:
the silent stepτ , the input actionx〈K̃〉 and the output ac-
tion x〈K̃〉.
Output action:xK̃.P

x̄〈K̃〉−→ P means that after having sent
messagẽK (tuples of channels or processes) over channel
x, processxK̃.P behaves likeP .

Input Action: x(K̃).P
x〈Ũ〉−→ P{Ũ/K̃} means that if mes-

sageŨ (tuples of channels or processes) is sent over chan-
nel x, then the processx(K̃).P , waiting for a process or
channel name onx, receives it and instantiates the process
or channel name tõU , it then behaves likeP , where all
occurrences of̃K are replaced bỹU . 〈.〉 stands for real pa-
rameters, while(.) stands for formal parameters.

Interaction between two processes:

P
(νK̃)x̄〈K̃〉−→ P ′, Q

x〈K̃〉−→ Q′

P |Q τ−→ νK̃(P ′|Q′)

K̃ ∩ fn(Q) = ∅means that if an output action causesP to
becomeP ′, and the corresponding input action causesQ to
becomeQ′, thenP andQ in parallel becomeP ′ andQ′ in
parallel, and the private (bound) processK̃ emitted byP
becomes a private (bound) process ofP ′|Q′.
Equivalences: Bisimulation usually identifies processes
with the same external behavior. Higher-order bisimula-
tion identifies higher-order processes if their interactions
with the environment are the same and if their internal pro-
cesses are bisimilar.
The case study HOπ specification is given below:
ROUTE =

ν (out, outAH , outA, ack, service)

OFFICE(out, mapchannel, collect)

|EMPLOY ER(out, outAH , outA)

|MOBILEAGENT (outA, service, ack)

|MONITOR(outAH , ack)

OFFICE(out) =

ν(mapchannel, collect, agent) out(mapchannel, collect)

. mapchannel(agent). OFFICE(out, mapchannel, collect)

EMPLOY ER(out, outAH , outA) =

ν(channel, service) out(channel, service)

. outAH(channel)

. outA(channel, service)

. EMPLOY ER(out, outAH , outA)

MONITOR(outAH , ack) =

νx outAH(x) . x(MOBILEAGENT) . ack

. MONITOR(outAH , ack)

MOBILEAGENT (outA, service, ack) =

ν(ch, serv) outA(ch, serv) . ack

.MOBILEAGENT (outA, service, ack)

We specified as follows:

1. ROUTE : describes our whole system with all the
components.

2. OFFICE : represents service-hosts, which make
available different services (jobs) and notify their
availability to theEMPLOY ER service.

3. MOBILEAGENT : represents our mobile agents
that are able to migrate to anOFFICE in order to

apply a job. The job is:collect a database information
and add it to its ”bag”.

4. EMPLOY ER plays a kind of reference book of all
the tasks or jobs which are available on the local net-
work.

5. MONITOR is the waiting platform for the mobile
agents.

We use gates likeout, outA, outAH to specify the commu-
nication channel between the agents, employers, offices
and monitor. In this specification the mobility is described
by the channel parameters.

3. IMPLEMENTATION PART

The specification and validation platform architecture is
functionalities directed. The Figure3. below emphasizes
not only the functionalities but also the dependencies of
data. The blocks represent the functional entities, whereas
the ochre forms are strategic data.

Figure 3. from Specification to Implementation

OurHoPiTool consist theoretically of five parts:

• The graphic editor for the specification.
The objective is to represent by respecting the Unified
Modelling Language (UML) notation, a specification
where mobility is an essential characteristic. We
propose five visualization windows for our editor:

– an XML visualization of our specification,
where the XML file will be validate by the given
HOπ DTD

– aπ-calculus visualization

– an HTML visualization in order to be able to
show the documentation of each mobile agent

– an UML visualization like collaboration dia-
grams.

– a Java/Jini source code visualization

From these charts, files of textual description are gen-
erated with the XML format (under control that the
diagrams are sufficiently complete). The internation-
alization(we use the given methods by Java) of the
graphic interface aspects is an essential constraint.
To developed global software, one of the great com-
mandments of internationalization is to separate text,
labels, messages, and other locale-sensitive objects
from the core source code. This helps to maintain
a single source code base for all language versions of
our product. It also facilitates translations because all
localizable resources are identified and isolated.
The major idea is to have a rigorous framework to
control two important stages: the generation of test
scenario and the generation of code.

• The generation of test scenarios
From XML files describing aπ-calculus specification,
which means an ensemble of mobile agents commu-
nicating through the services that they specified, the
goal of this functionality is to generate test scenarios
respecting the criterions given by the specification.
These criterions are compared to the specification not
operational, but denotational. The objective is to build
tests which are used by the Certifier entity. Also, this
test-set must answer to constraints of coherence, that
means to satisfy a common goal such as: ”execute
all the sequences”. In other words our first goal is to
build structural ”white box” and not functional tests
called more commonly ”black box”.
Each output file describes a script of tests and also the
essential measurement points for the work executed
by the Certifier.

• The generation of the mobile code
This functionality is initiated by the graphic inter-
face and it allows to obtain a code prototype from
valid HOπ specifications. From XML files describ-
ing aπ-calculus specification a whole of source files
is generated in order to obtain a prototype. The aim
is to gain ability to do simulations and prototype val-
idations through the tests which we defined before.

More, HTML documents describing the documenta-
tion are generated by our tool, which takes in con-
sideration the comments written within the specifica-
tion. A specification consists of agents declarations.
The whole of agents can be divided into two cate-
gories: mobile and non mobile. This constraint can
be detected when an agent is send over a communi-
cation channel to an another agent. The mobile as-
pects take shape through the use of a technical frame-
work called Java Intelligent Network Interface (Jini)
from Sun. The fundamental element is the utilization
of Remote Method Invocation (RMI), which allows
us to consider the network like object oriented. The
services and clients in a Jini architecture can be in-
tegrated easier within the object interface. Jini dis-
poses also of identifications and collect services, that
is a import future when we want to develop a mo-
bile agent system. The security questions will be treat
through Java Cryptography Architecture (JCA) Norm
from Sun.

• The certifier
This entity takes a Java prototype as entry but also
a whole of test-scripts. Every test is apply over the
prototype in order to determine if the prototype val-
idates this test. We can distinguish two cases: the
prototype satisfies the test and this simulation will en-
rich the data base or the prototype doesn’t satisfy the
test, an anomaly is lifted and a log file is saved. The
log files are used in a ”post-mortem” analysis phase,
which is the basis of the Software Validation and Ver-
ification Report (SVVR). The analysis is not a part of
our project.

• Execution under control
Every execution of a generated prototype is realized
under control. Every anomaly compared with the ac-
quired experience is done through a call-back alert
from the sites where the conflict was detected.

Our more important technical choices are the Java 1.4.2
Swing Framework, input, output in XML (with external
validation in form of a DTD file), Java Intelligent Network
Interface Jini 1.2., Remote Method Invocation (RMI),
Oracle 9i. We use Extensible Markup Language (XML) to
define and describe the higher order specification of our
mobile agent. OurHOPiTool reads and generates Jini
code from the XML file.
In our tool the XML file is read and parsed by a Sim-
ple API for XML (SAX) parser and an instance of
AgentFactory class is created for each input XML file.
A Document Type Definition (DTD) document describes
how these XML files should be structured and the agent
factory needs to have some knowledge of this DTD
in order to know how to handle. OurAgentFactory

corresponds therefore to a Java code generator from an
XML input file, which formally describes aπ-calculus
language specification.
We decided to use SAX instead of Document Object
Model (DOM) because SAX requires little memory, it
does not construct an internal representation (tree struc-
ture) of the XML data. Instead, it simply sends data to the
application as it is read.
We defined a basic Document Type Definition (DTD) that
describes the higher orderπ-calculus syntax and it is used
to validate the XML file of our case study. This DTD
states that an agent XML file contains a series of agents
which play together in a mobile system. Each agent has
a name, a number of arguments and a definition of his
form and his objective. Based on the DTD we edit an
XML file, which defines our case study, the world system,
introduced before. We have defined each agent with the
correspondents attributes and arguments. Based on this
XML description of our mobile system and with help of
our HOPiTool we are able to generate Jini code for a
further communication of the agents in a network.
We use intensively design pattern such that:
AbstractFactory pattern,Composite pattern,Template
pattern and so on. This way of coding is an insurance
for a better productively and maintainable code. We have
defined four packages:hopitool.gui, hopitool.lang,
hopitool.parsing and hopitool.unification. The
hopitool.lang package provides an interface that de-
scribes the requirements for all the construction of
Higher Orderπ-calculus language. Several classes like:
Call, Sequence, Parallel, Send, Receive, Choice,
Restriction, Zero represent the instruction set in HO-
π-Calculus and the communication gates are represented
by the classChannel. The PiCalculusHandler class
contains the semantics of the Higher Orderπ-calculus
language. The communication and the call of agents use
parameters and expressions. The semantics of this data
transfer is based on an unification algorithm [4]. In the
current version of our tool we use a first order unification
algorithm because all the agent names are considered as
bound variables.
The second packagehopitool.unification contains
several classes for aTemplate design pattern or the
unification concept. TheAbstractTerm class represents
the root class of aComposite design pattern. This
pattern is applied for modelling a higher orderπ-calculus
term. Its structure is always finite but its depth and its
arity are not constant. We implement a finite first order
unification to check the association between two terms.
This operation is very useful for aCall statement and also
for every communication, it means forSend andReceive
instructions.
The Template design pattern is also used because it

allows us to delay a more complex algorithm for a higher
order unification. This kind of concept is essential when
an agent asks for a unknown service, but where its
signature is already known by this agent. That algorithm
is under development because, some constraints have to
be checked before to compute this algorithm.
Further the classTerm represents a non terminal node of
a term in anAbstractTerm instances. It is used to model
all functions or agents in an Higher Orderπ-calculus
term. It is used for the unification step of terms. The class
V ariable represents a general variable in a specification.
Instances of that class are built during the analysis of the
input XML file. It concerns : all the terms which appear in
a Higher Orderπ-calculus expression and all the Higher
Orderπ-calculus parameters of local declared names. It is
used for the unification step of terms.
The class diagram for the creation of all the objects are
given below. TheFactory classes are responsible for the
creation of this classes, and the behavior is given by the
class itself.
The hopitool.parsing package contains all the classes
used for the analysis and the management of the symbol
table. Some classes are used to a validating check. This
classes represents the data structure of some lines of the
parsing table. It contains all the data which describe this
information in the specification language.
Thehopitool.gui package contains all the viewers which
belong to the graphical part of the tools. The graphical
user interface (called GUI) has several features: each win-
dow created withHOPiTool has the five tabs presented
in the first part of the ”Implementation Part”. Some dialog
boxes are used for diagnostics such as a dialog for each
previous tab, a help manual for developer, a start guide
for the specifier. All entities are internationalized and
some external text property files are already prepared for
English, French, German and Spanish. This package is
divided into several sub packages which corresponds to the
views. Also, it is easier to add another one. In the current
version, the GUI is used to display some information
about the specification. When the user click on a tab the
update of the corresponding view is computed. A given
specification is observable only in aHOPiTool window.
In the next version each view will support interactions
from the user. All modifications have to be propagated on
to the other views.

4. CONCLUSION

This work underlines the connection between the con-
straints of specification of higher orderπ-calculus and the
mobile generation of code for the communicating systems.
Our approach is validated by the construction of a proto-

type respecting the same constraints as in the specifica-
tion. However, theHOPiTool represented here, is only
a part of our implementation an only the ”GUI”, ”gener-
ation of mobile code” modules are yet implemented. The
generated Jini code is in our case study the generation of
for java classes:OFFICE class,EMPLOY ER class,
a MOBILEAGENT class and aMONITOR class.
These classes can communicate with each other in a net-
work. An example for a framework for agent-based system
in Jini is given by S. Li in [3] and it is calledParadigma.
With help of this framework we can implement our Jini en-
vironment.
Also we are working on a test generator, which creates test
sequences from initialπ-calculus specification. Our inten-
tion is to obtain a test set, which will validate the generated
code fromHOPiTool. The test generator is configured
with several criterions, which are essential to stop recur-
sive unfolding in the agent definition.
The validation engine will be the final step of our study: it
is an observer of the effects of the tests on the Jini proto-
type, generated byHOPiTool. Our intention is therefore
to create an environment that allows the implementation of
a mobile system of agents in Jini proceeding from a cor-
rect specification of the system given by the higher order
π-calculus specification.

5. References

[1] Arnold, K.; A. Wollrath, B. O’Sullivan, R. Schei-
fler and J. Waldo. 1999 ”The Jini Specification”,
Addison-Wesley.

[2] Barbu, A. and F. Mourlin. 2003 ”Higher Orderπ-
Calcul Specification for a Mobile Agent in Jini”.
In W. Dosch, editor, 4th International Confer-
ence on Software Engineering, Artificial Intelli-
gence, Networking, and Parallel/Distributed Com-
puting (SNPD’03). pages 250-256, ACIS.

[3] Li, S. and al. 2000 ”Professional Jini” published by
WROX Press Inc. ISBN 1861003552

[4] Lloyd, J. W. 1987 ”Foundations of logic program-
mic”. Symbolic Computation - Artificial Intelli-
gence. Springer Verlag.

[5] Milner, R. 1999 ”Communicating and Mobile Sys-
tems: theπ-Calculus”.Cambridge Univerity Press.

[6] Milner, R.; J. Parrow and D. Walker. 1993 ”A calcu-
lus of mobile processes, part I/II”.Journal of Infor-
mation and Computation, 100:1-77.

[7] Sangiorgi, D. 1992 ”Fromπ-Calculus to Higher-
Orderπ-Calculus – and back”, In Proc.TAPSOFT
’93., LNCS 668, Springer Verlag.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

