
EPOCH TASK SCHEDULING IN DISTRIBUTED SERVER SYSTEMS

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
Email: karatza@csd.auth.gr

KEYWORDS
Simulation, Distributed Systems, Scheduling,
Performance.

ABSTRACT

In this work we study a special type of task scheduling
referred to as epoch scheduling in a distributed server
(processor) system. With this policy, processor queues
are rearranged only at the end of predefined intervals.
The time interval between successive queue
rearrangements is called an epoch. The objective is to
examine if epoch scheduling can perform close to STF
method and achieve fairer service than that of STF. A
simulation model is used to address performance issues
associated with epoch scheduling. Simulated results
indicate that epoch scheduling is a good method to use.

INTRODUCTION

Scheduling in distributed server systems has been a
major research goal for many years. However, it is not
always possible to efficiently execute parallel jobs. To
do so, it is necessary to divide programs into tasks,
assign the tasks to processors and then schedule them on
distributed processors.

Many research papers exist in this research area. For
example, few of them are (Abawajy and Dandamudi
2003; Dandamundi 1994; Dandamudi 2003; Harchol-
Balter, et al. 2002; Harchol-Balter et al. 2003; Gong and
Williamson 2003; Karatza 2000a; Karatza 2000b;
Karatza 2002; Karatza and Hilzer 2003; McCann and
Zahorjan 1995; Nikolopoulos and Polychronopoulos
2003; Sabin et al. 2003; Weissman, et al. 2003), and
many others.

Most research into distributed system scheduling
policies has focused on improving system throughput
where scheduling overhead is assumed to be negligible.
However, scheduling overhead can seriously degrade
performance.

FCFS (First Come First Served) is the simplest
scheduling method and it is fair to individual jobs but
often it results in sub-optimal performance. This method
results in no overhead. Many scheduling algorithms
have been proposed that achieve higher performance by
taking into account information about individual
requests.

It is well known that STF (Shortest Task First or
Shortest Time First) usually performs best but it has two
disadvantages: 1) It involves a considerable amount of
overhead because processor queues are rearranged each
time new tasks are added. 2) It is possible to starve a
task if its service time is large in comparison to the
mean service time.

In this work we study epoch scheduling. With this
policy, processor queues are rearranged only at the end
of predefined intervals. The time interval between
successive queue rearrangements is called an epoch. At
the end of an epoch, the scheduler recalculates the
priorities of all tasks in the system queues using the STF
criterion. This type of epoch scheduling is different
from epoch scheduling that is studied in (McCann and
Zahorjan 1995). In their paper, only policies that
provide co-scheduling are considered. Also, in the same
paper all nodes are reallocated to jobs at each
reallocation point.

In our work we consider that a parallel program has a
simple fork-join structure. We do not consider co-
scheduling. Rearrangement of queues takes place at the
end of predefined intervals, instead of node reallocation
to jobs. Epoch scheduling has been also studied in
(Karatza 2001; Karatza 2003). The differences between
this paper and each of those two papers are the
following: In (Karatza 2001) a closed queuing network
model is considered with a fixed number of jobs, while
in this paper we consider an open queuing network
model with various job arrival rates. In (Karatza 2003)
the jobs are not parallel and therefore the queues contain
jobs, while in this paper each job is parallel and
consists of independent tasks which are assigned to
queues. Therefore, (Karatza 2003) examines job sche-
duling, while this paper examines task scheduling.

The results of this study apply to both loosely coupled
multiprocessor systems and networks of workstations
connected to support parallel applications.

The objective is to study whether we can find an epoch
that can perform close to STF but minimizes as much as
possible the disadvantages of STF. That is we are
interested to find an epoch which combines good
performance and that minimizes the number of queue
rearrangements and achieves fairer service than that of
STF. Performance is examined for different epoch sizes.

Various workloads are examined. To our knowledge,
such an analysis of epoch scheduling has not appeared
in the research literature for this type of system
operating with our workload models.

The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation. In studies like this, it is
usually necessary to use synthetic workloads because
real workloads cannot be simulated efficiently enough
and real systems with actual workloads are not available
for experimentation. Also, useful analytic models are
difficult to derive because subtleties that exist between
various disciplines are difficult to model and because
the workload model is quite complex.

This paper is an experimental study in that the results
are obtained from simulation studies instead of from the
measurements of real systems. Nevertheless, the results
presented are of practical value. Although we do not
derive absolute performance values for specific systems
and workloads, we do study the relative performance of
the different algorithms across a broad range of
workloads and analyze how changes in the workload
can affect performance.

For simple systems, performance models can be
mathematically analyzed using queuing theory to
provide performance measures. However, in the system
presented in this paper, fork-join programs and
scheduling policies with different complexities are
involved. For such complex systems, analytical
modelling typically requires additional simplifying
assumptions that might have unforeseeable influence on
the results. Therefore, research efforts are devoted to
finding approximate methods to develop tractable
models in special cases, and in conducting simulations.

The precise analysis of fork-join queuing models is a
well known intractable problem. For example, (Kumar
and Shorey 1993) derived upper and lower bounds for
the mean response time when jobs have a linear fork-
join structure.

We chose simulations because it is possible to simulate
the system in a direct manner, thus lending credibility to
the results. Detailed simulation models help determine
performance bottlenecks in architecture and assist in
refining the system configuration.

The structure of this paper is as follows: Next section
specifies system and workload models, it describes
scheduling strategies, and it presents the metrics
employed while assessing performance of the
scheduling policies. Model implementation and input
parameters are described in the section after, where also
experimental results and performance analysis are
presented. The last section contains conclusions and
suggestions for further research.

MODEL AND METHODOLOGY

System and Workload Models

This paper uses a simulation model to address
scheduling performance issues. An open queuing
network model of a distributed server system is
considered. P = 16 homogeneous and independent
processors are available, each serving its own queue. A
high-speed network connects the distributed nodes. The
configuration of the model is shown in Figure 1.

2

1

P

λ

FCFS
STF
Epoch=5
Epoch=10
Epoch=15

task
split

.

.

2

1

P

λ

FCFS
STF
Epoch=5
Epoch=10
Epoch=15

task
split

.

.

Figure 1: The Queuing Network Model

An important aspect of distributed system design is
workload sharing among the processors. This includes
partitioning the arriving jobs into tasks that can be
executed in parallel, assigning the tasks to processors
and scheduling the task execution on each processor.
The workload considered here is characterized by three
parameters:

. The distribution of job arrival.

. The distribution of the number of tasks per job.

. The distribution of task execution time.

We assume that there is no correlation between the di-
fferent parameters. For example, a job with a small
number of tasks may have a longer execution time.

Job inter-arrival times are exponential random variables
with a mean of 1/λ.

Jobs consist of a set of n ≥ 1 tasks that can be run in
parallel. The number of tasks that a job consists of is
this job’s degree of parallelism. It is assumed that the
tasks are uniformly distributed in the range of [1..P].
We have chosen the uniform distribution because is one
of the distributions that are used for this kind of models.
Each task is randomly assigned to a processor queue.
Tasks are processed according to the current scheduling
method. No migration or pre-emption is permitted.

On completing execution, a task waits at the join point
for sibling tasks of the same job to complete execution.
Therefore, task synchronization is required, and that
synchronization can seriously degrade parallel
performance. The price paid for increased parallelism is
a synchronization delay that occurs when tasks wait for
siblings to finish execution.

The number of tasks of a job j is represented as t(j). Due
to the probabilistic assignment of tasks to processor
queues, more than one tasks of the same job may be
assigned to the same processor. Therefore, if p(j)
represents the number of processors required by job j,
then the following relation holds:

p(j) ≤ t(j) ≤ P

Job service demands are exponentially distributed with
a mean of 1/µ.

Notation used in this paper appears in Table 1.

Job Scheduling Policies

In this work we examine only non-pre-emptive sche-
duling policies. We assume that the scheduler has
perfect information when making decisions, i.e. it
knows the execution time of tasks. Next we describe the
scheduling strategies employed in this work.

First-Come-First-Served (FCFS). With this strategy,
tasks are assigned to a queue in the order of their arrival.
This policy is the simplest to implement.

Shortest Task (Time) First (STF). This policy assumes
that a priori knowledge about a task is available in form
of service demand. When such knowledge is available,
tasks in the processor queues are ordered in a decreasing
order of service demand.

Epoch – x: With this policy, processor queues are
rearranged only at the end of predefined time intervals
called epochs. The size of an epoch is x. At the end of an
epoch, the scheduler recalculates the priorities of all
tasks in the system queues using the STF criterion.

We study the performance of the Epoch – x policy in
relation to STF method for different epoch sizes. The
goal is to obtain: 1) performance comparable to that of
STF, 2) large decrease in the number of queue rearran-
gements (small overhead), 3) large decrease in the
maximum job response time (fairness in individual job
service).

It should be noted that a priori information is not often
available and only an estimate of task execution time
can be obtained. However, it has been reported in the
literature (for example in (Dandamudi 1994)) that
simulation results have shown that estimation error in
processor service times can marginally affect system
performance.

Performance Metrics

Parameters used in simulation computations (presented
later) are shown in Table 1.

Table 1: Notations

λ Mean arrival rate of jobs

µ Mean processor service rate

E Estimation error in service time

U Mean processor utilization

RT Mean Response Time of jobs

MRT Maximum Response Time of jobs

Synch Task synchronization time

NQR Number of Queue Rearrange-
ments

RT Ratio The ratio of RT when SRT or
Epoch-x method is employed
versus RT of the FCFS policy

MRT Ratio The ratio of MRT when SRT or
Epoch-x method is employed
versus MRT of the FCFS policy

Synch Ratio The ratio of task synchronization
time when SRT or Epoch-x
method is employed versus Synch
of the FCFS policy

NQR Ratio The ratio of NQR when the
Epoch-x method is employed
versus NQR of the STF policy

RT represents overall performance, while MRT
expresses fairness in individual job service.

SIMULATION RESULTS AND DISCUSSION

Model Implementation and Input Parameters

The queuing network model described above is
implemented with discrete event simulation (Law and
Kelton 1991) using the independent replication method.
For every mean value, a 95% confidence interval is
evaluated. All confidence intervals are less than 5% of
the mean values.

We have chosen mean processor service time

1/µ = 1,

which means mean service rate per processor µ = 1.
Since the processors average 8.5 tasks per job, when all
processors are busy, an average of 1.882 jobs are served
each unit of time. This implies that the mean job inter-
arrival time must be larger than 1/1.882 = 0.531 in order
that the system will not be saturated. For this reason we
examined the following mean inter-arrival times:

1/λ = 0.6, 0.625, 0.650, 0.675, 0.7,

which means mean arrival rate:

λ = 1.67, 1.6, 1.54, 1.48, 1.43.

Epoch length x was taken as 5, 10, 15. We chose epoch
length 5 as a starting point for the experiments because
the mean processor service time is equal to 1, and also
because with this epoch size the number of queue
rearrangements were smaller than in the STF case.
Therefore we expected that larger epoch sizes would
result in even smaller NQR.

Performance Analysis

Figures 2-8 present the performance metrics versus 1/λ.
Mean processor utilization U is 0.89, 0.85, 0.82, 0.79,
0.76, for 1/λ = 0.6, 0.625, 0.650, 0.675, 0.7 respectively
(Figure 2).

0,6 0,625 0,65 0,675 0,7
1/λ

0

0,2

0,4

0,6

0,8

1

FCFS STF Epoch=5
Epoch=10 Epoch=15

U

Figure 2. U versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

5

10

15

20

25

FCFS STF Epoch=5
Epoch=10 Epoch=15

RT

Figure 3. RT versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

0,2

0,4

0,6

0,8

1

STF/FCFS Epoch=5/FCFS
Epoch=10/FCFS Epoch=15/FCFS

RT Ratio

Figure 4. RT ratio versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

5

10

15

20

25

FCFS STF Epoch=5
Epoch=10 Epoch=15

Synch

Figure 5. Synch versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

0,2

0,4

0,6

0,8

1

STF/FCFS Epoch=5/FCFS
Epoch=10/FCFS Epoch=15/FCFS

Synch Ratio

Figure 6. Synch ratio versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

2

4

6

8

10

12

STF/FCFS Epoch=5/FCFS
Epoch=10/FCFS Epoch=15/FCFS

MRT Ratio

Figure 7. MRT ratio versus 1/λ

0,6 0,625 0,65 0,675 0,7
1/λ

0

0,05

0,1

0,15

0,2

0,25

Epoch=5/STF Epoch=10/STF
Epoch=15/STF

NQR Ratio

Figure 8. NQR ratio versus 1/λ

In Figure 3 it is shown that from all methods examined
FCFS method yields the largest response time. This is
the reason in all cases RT ratio is smaller than one
(Figure 4). RT ratio increases with increasing mean
inter-arrival time which means that the superiority of the
STF and Epoch-x methods over FCFS is larger at larger
loads (that is at smaller mean inter-arrival time). This is
because fewer jobs are in the queues when 1/λ is large
than when is small, so there are then fewer opportunities
to exploit the advantages of the STF and Epoch-x
methods.

RT generally increases with increasing epoch size, but
the increase is not significant. For this reason RT ratio
slightly increases with increasing epoch size.

In all cases examined, epoch scheduling for epoch size 5
yields slightly smaller RT than STF. Epoch-10 yields RT
which is very close to the RT of the STF case.
Epoch=15 performs either close (at larger loads) or a
little worst (at smaller) loads than the STF method
(Figures 3, and 4). However, even with this epoch size
the difference in performance between epoch scheduling
and STF is not significant.

Figure 5 shows that with all scheduling methods task
synchronization time is decreasing with decreasing load.
This is because it is more probable at large loads than at
small loads for the first task of a job that finishes
execution to wait for a long time some sibling tasks that
are still waiting in processor queues.

It is also shown in Figure 5 that the largest Synch incurs
with the FCFS method. This is because it is more
probable when the FCFS policy is employed than when
one of the other scheduling strategies are used, some
small tasks to wait behind some large tasks in processor
queues. A consequence of this may be long syncroni-
zation delay of sibling tasks. On the other hand, the STF
method causes delays to large tasks, but the simulation
results reveal that these delays influence Synch in a
smaller degree than the delays caused by the FCFS
policy. Synch is larger in the STF case than in the epoch
scheduling case, as in the later case priority is given to
small tasks on a periodic basis only.

In Figure 6 it is shown that the difference in Synch
between FCFS and each of the remaining methods is
generally larger at larger loads. This is because
regarding synchronization delay of sibling tasks, the
advantages of STF and epoch scheduling over FCFS are
better exploited when there are many job tasks in the
system than when there are few.

In Figure 7 it is shown that in all cases the STF method
yields the largest MRT, while the smallest MRT is
produced by the FCFS method. In all cases, epoch
scheduling yields smaller maximum response time as
compared to the STF method. Therefore, in all cases

epoch scheduling is fairer than STF. Furthermore,
Figure 7 shows that in all cases epoch scheduling is
fairer when epoch size is large than when is small.

MRT ratio is decreasing with increasing mean inter-
arrival time. This is due to the fact that when STF or
epoch scheduling is employed, more job tasks go out of
order for longer time when the load is large than when
is small. Therefore, larger MRT can be produced at large
loads than at small ones.

Figure 8 presents the NQR ratio. It is shown that for all λ
the decrease in the number of queue rearrangements due
to epoch scheduling is very high. Therefore significant
reduction in the number of queue rearrangements can be
achieved when epoch scheduling is employed instead of
STF. In the same Figure is also shown that for each
epoch size NQR ratio is nearly the same for all values of
λ. The NQR ratio is about 0.2, 0.10, and 0.07 in the
Epoch=5, 10, and 15 cases respectively. For each λ,
NQR ratio decreases with increasing epoch size which
means that NQR is smaller when epoch size is large than
when is small.

In order to study the impact of service time estimation
error on the performance of the STF and Epoch-x
methods, additional simulation experiments where
conducted. In those experiments task execution time
estimated was assumed to be uniformly distributed wit-
hin ± E% of the exact value. We set estimation error at
±10%. The results showed that the estimation error did
not significantly affect performance. This is in
accordance with other results in the literature related to
estimation of service time (Dandamudi 1994). For this
reason in this paper we present the results for the exact
service times only. This means that we consider
estimation error set at ±0%.

CONCLUSIONS AND RECOMMENDED FUTURE
RESEARCH

This paper studies task scheduling policies in a
distributed server system. Simulation is used to generate
results used to compare different configurations.

Simulation results reveal that epoch task scheduling is a
good policy to choose. For the epoch lengths that we
examined this policy performs very close to STF.
Furthermore and more importantly, it involves much
less overhead and is also fairer than STF.

It is also shown that all of the epoch lengths have merit.
For all loads that we examined large epochs result in
fairer service for individual jobs, and involve less
overhead than short epochs. On the other hand, response
time is shorter with short epochs. However, for the
epoch lengths that we examined, response time does not
differ significantly at different epochs.

This paper represents a case study where the number of
tasks per job is bounded by the number of distributed

servers in the system (the uniform distribution is used).
As a future research we plan to consider the exponential
distribution for the number of tasks per job, so that we
can study the performance of epoch scheduling when
the number of job tasks can be larger than the number of
processors.

REFERENCES
Abawajy, J.H. and S. Dandamudi. 2003. “Scheduling Parallel

Jobs with CPU and I/O Resource Requirements in Cluster
Computing Systems”. In Proceedings of the 11th
IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunications Systems (Mascots’03) (Orlando, FL,
Oct.12-14). IEEE Computer Society, Los Alamitos, CA,
336-343.

Dandamudi, S. 1994. “Performance Implications of Task
Routing and Task Scheduling Strategies for Multi-
processor Systems”. In Proceedings of the IEEE-
Euromicro Conference on Massively Parallel Computing
Systems (Ischia, Italy, May 2-6). IEEE Computer Society,
Los Alamitos, CA, 348-353.

Dandamudi, S. 2003. Hierarchical Scheduling in Parallel and
Cluster Systems. 1rst edn. Kluwer Academic/Plenum
Publishers, New York.

Harchol-Balter, M.; K. Sigman; and A. Wierman. 2002.
“Asymptotic Convergence of Scheduling Policies with
Respect to Slowdown”. In Proceedings of IFIP
Performance 2002 (Rome, Italy, Sept.22-27).
Performance Evaluation 49, Elsevier B.V., Amsterdam,
The Netherlands, 241-256.

Harchol-Balter, M.; B. Schroeder; N. Bansal; and M. Agrawal.
2003. “Size-based Scheduling to Improve Web
Performance”. ACM Transactions on Computer Systems
21, No.2, Association for Computing Machinery, New
York, N.Y., 1-27.

Gong, M. and C. Williamson. 2003. “Quantifying the
Properties of SRPT Scheduling”. In Proceedings of the
11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunications Systems (Mascots’03) (Orlando, FL,
Oct.12-14). IEEE Computer Society, Los Alamitos, CA,
126-135.

Karatza, H.D. 2000a. “Scheduling Strategies for Multitasking
in a Distributed System”. in Proceedings of the 33rd
Annual Simulation Symposium (Washington, D.C.,
Apr.16-20). IEEE Computer Society, Los Alamitos, CA,
pp. 83-90.

Karatza, H.D. 2000b. “A Comparative Analysis of Scheduling
Policies in a Distributed System using Simulation”.
International Journal of Simulation: Systems, Science &
Technology 1, No.1-2 (Dec.), UK Simulation Society, 12-
20.

Karatza, H.D. 2001. “Epoch Scheduling in a Distributed
System”. In Proceedings of the Eurosim 2001 Congress,
(Delft, Netherlands, Jun. 26-19). Eurosim, Delft,
Netherlands, 1-6.

Karatza, H.D. 2002. “Task Scheduling Performance in
Distributed Systems with Time Varying Workload”.
Neural, Parallel & Scientific Computations 10, No. 3,
Dynamic Publishers, Atlanta, GA, 325-338.

Karatza, H.D. 2003. “A Comparison of Load Sharing and Job
Scheduling in a Network of Workstations”. International
Journal of Simulation: Systems, Science Technology 4,
No. 3&4, UK Simulation Society, Nottingham, UK, 4-11.

Karatza, H.D. and R.C. Hilzer. 2003. “Parallel Job Scheduling
in Distributed Systems”. Simulation: Transactions of the
Society for Modeling and Simulation International 79,
No.5 (May), Sage Publications, Thousand Oaks, CA, 287-
298.

Kumar A. and R. Shorey. 1993. “Performance Analysis and
Scheduling of Stochastic Fork-Join Jobs in a
Multicomputer System”. IEEE Transactions on Parallel
and Distributed Systems 4, No.10, IEEE Piscataway, NJ,
1147-1162.

McCann, C. and J. Zahorjan. 1995. “Scheduling Memory
Constrained Jobs on Distributed Memory Parallel
Computers”. In Proceedings of the 1995 ACM Sigmetrics
Conference (Ottawa, Canada, May 15-19). The
Association for Computing Machinery, New York, 208-
219.

 Law A. and D. Kelton. 1991. Simulation Modelling and
Analysis. 2nd Ed., McGraw-Hill, New York, USA.

Nikolopoulos, D.S. and C.D. Polychronopoulos. 2003.
“Adaptive Scheduling Under Memory Constraints on
Non-Dedicated Computational Farms”. Future Generation
Computer Systems 19, Elsevier, Amsterdam, 505–519.

Sabin, G.; R. Kettimuthu; A. Rajan; and P. Sadayappan. 2003.
“Scheduling of Parallel Jobs in a Heterogeneous Multi-
Site Environment”. In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science
2862, D. Feitelson, L. Rudolph, and W. Schwiegelshohn
(Eds.). Springer-Verlag, Berlin Heidelberg, 87-104.

Weissman, J.B.; L.R. Abburi; and D. England. 2003.
“Integrated Scheduling: the Best of Both Worlds”. Journal
of Parallel and Distributed Computing 63, Elsevier
Science, New York, USA, 649–668.

AUTHOR BIOGRAPHY

HELEN D. KARATZA is an
Associate Professor in the Department
of Informatics at the Aristotle Uni-
versity of Thessaloniki, Greece. Her
research interests include Computer
Systems Performance Evaluation,
Parallel and Distributed Systems Sche-

duling, and Simulation. Dr. Karatza is an Associate
Editor of SIMULATION: Transactions of the Society
for Modeling and Simulation International, and a
member of the Editorial Board of the International
Journal of Simulation: Systems, Science & Technology,
and Simulation Modelling Practice and Theory Journal.
Her email address is: karatza@csd.uth.gr and her Web-
page can be found at http://www.csd.auth.gr/~karatza.

	c0: Proceedings 18th European Simulation Multiconference
Graham Horton (c) SCS Europe, 2004
ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

