
GSIM: A DISCRETE SIMULATOR FOR MANUFACTURING BASED
ON ACTIVITIES AND SYSTEMS INTERACTION

M. J. Oliveros; C. Rudiez; F. Torres
Dpto. de Ingeniería de Diseño y Fabricación

C.P.S., Universidad de Zaragoza
C/ María de Luna, 3, 50015 Zaragoza

Spain
E-mail mjoliver@posta.unizar.es

C. Galé
Dpto. de Métodos Estadísticos

C.P.S., Universidad de Zaragoza
C/ María de Luna, 3, 50015 Zaragoza

Spain
E-mail: cgale@posta.unizar.es

KEYWORDS
Simulator, Discrete-event, Activity, System identification,
Manufacturing.

ABSTRACT

In this paper we present a new methodology for modelling
manufacturing discrete systems. The main contribution is to
cleary differenciate the system and the activity that it
performs. Such difference allows to create relationships
between them, wich are essential for the model formulation.
Through the proposed methodology we aim to developed
an easy to use simulation tool for modelling the most usual
manufacturing systems. GSIM is a Windows based system
with an intuitive graphical interface. Moreover, all
operations are carried out without any programming. Users
introduce the required information form modelling using
the menus and dialog boxes. We consider that the simulator
proposed combines the advantages of a general purpose
simulation language and a data-driven simulator.

INTRODUCTION

Simulation modelling tools are powerful instruments that
allow analysis and evaluation of Manufacturing Systems by
helping in both the identification of opportunities and the
making of decisions. Two problems are traditionally found
in the construction of simulation models (Law and
McComas 1992). First, we have the necessary previous
training required to use simulation software. The second
problem consists on the difficulty to make changes in the
model when it has already been created.
This new tool tries essentially to solve both problems. In
order to do that, the making process has been turned upside
down: before programming any simulation machine, it’s
important to recognise all the elements that are necessary in
the model implementation, and how are they going to be
used from a purely manufacturing elements systematisation
perspective. For this reason, the planned structure of this
new software is based on the following idea: any model
consists on systems that are able to perform activities, and
these activities are executed over the parts. At the same

time, systems are interrelated by connection rules, which
represent the way parts flow within the global system.
In section 2 the conceptual model is described and its
elements are analyzed in section 3. After the different
approaches to time advance, we propose a new approach in
section 4 wich is implemented in the manufacturing
simulator in section 5. Finally, in section 6 the conclusions
are considered.

DESCRIPTION OF CONCEPTUAL MODEL

The structure of the developed conceptual model consists of
a group of systems, so called agent systems or permanent
systems, which performS activities that are executed on
parts, traditionally called entities [Banks et al. 2000].
Moreover, thes systems interact each other by connection
rules, which represent the materials flow in the
manufacturing facilities. That is why we call the parts
patient or temporal systems, making a clear distinction
between temporal and permanent by the materials flow and
behaviour concepts.
In our model, all the systems always perform an activity,
even when they are not working, they are performing a
stopped activity. The system state evolves through time
because the activity changes that withstand. As we speak
about the state of agent systems, we will also speak about
the state of patient systems. In both cases, the value of the
state variables of each element will give us the state profile.

 ACTIV.
TYPE I

 ACTIV.
TYPE III

 RULE

ACT_25

 ACTIV.
TYPE II

SYST.AGE_01
ACTIV.

TYPE III
 ACTIV.
TYPE II

 ACTIV.
TYPE I

ACT_08

SYST.AGE_02
RULERULE

Figure 1: Description of Conceptual Model

To solve this matter, all the possible systems have been
studied and also the activities that they can execute have
been catalogued, in order to establish non-univocal
relationships from these two kinds of elements. So, the
elements of the system type of our model are independent
of the elements of the activity type, making possible that a

system can execute several activities of the same or
different type, and one activity can be executed by several
elements
The last characteristic element of an event system that
remains to be defined is the event or instantaneous
activity term. Gathering the classical event definition as the
instantaneous occurrence that may change the state of the
system, in the formalism that follows four types of
unconditional events appeared (Oliveros 2002) and other
conditioned to that ones. The unconditional ones cause that
systems begin performing activities and the state of the
systems are changed because of the transitions generated
accordingly.

ELEMENTS OF CONCEPTUAL MODEL

Systems

The first and more important step is to define the elements
that a simulation model needs to work with. By definition, a
model is always an abstraction at some level, preserving the
essential aspects of the system and leaving out the rest. So,
the semantic of the systems in the discrete even simulation
model introduced in this work, is oriented to the
productive behaviour of the main elements of a
manufacturing plant, specially in the mechanical industry.
Thus, it will not be studied elements or behaviours of
continuous systems or management systems.
The main criteria to classify the systems is the property that
each agent system modifies the parts. Because of the initial
and primordial objective in this kind of processes is to
obtain final products from raw material using
manufacturing resources that perform several tasks or
activities.
The final result is that the global system, the manufacturing
plant, is composed of subsystems, called from this point
systems. According to their material flow, these are
classified in operands and agents.

Operand system
It is the one that may flow through the permanent systems
of the system as it appears and disappears of the model, it’s
also called temporal system. In our model there is only one
system of this type.
 Part. System that moves around the model, being liable
to be modified by the rest of the elements. This
modifications will be reflected in the values that of its
attributes. It is a key element in the model evolution,
because it is the basic connection between the systems, and
it has a special relationship with activities because its
presence will determine if the system performs one or
another activity. This elements have several attributes that
characterize them and depending on the attribute modified
the activity in progress will be one or another.

Agent system
It is a permanent system that is able to perform activities or
that is necessary for the activities to be done. In our model
we classify the permanent systems as follows:
 Buffer. It modifies the time attribute of the a part.
 Machine. It modifies the structure attribute of a part.

 Transport elements. They modify the position attribute
of a part. There are two different kind of transport elements
attending to their functionality:
 Conveyor. It is a fixed loading and unloading point.
 Vehicle/Track: It is a variable loading and unloading
point. The task of these systems is to connect several
manufacturing systems in a manufacturing unit.
 Labour. System needed to perform an activity together
with other elements. In addition, it is able to perform
activities by itself.
 Parts generator. It is a system that creates all the parts
that go into the model from outside. For instance, the
external supply of raw material for production.
 Parts exit. When all the operations are finished parts
have to leave the model. This system is defined as a kind of
outgoing buffers and let us modelize the exit of parts. It
could be thought as a part sink.

Activities

An activity represents, and so it is modeled, a period of
time during systems perform an specific task. The
beginning and ending of all activities comes from an event.
All systems are always making an activity that belongs to
one of the following categories:
 Type I: waiting.
 Type II: operating.
 Type III: being stuck.
The type II activities of the permanent systems can be
classified bearing in mind the usual tasks of a
manufacturing process:
 Action activities made by the agents over the operands
 Processing.
 Moving by conveyors and vehicles.
 Placing (loading / unloading).
 Storing parts.
 Testing parts (quality control) by machines.
 Interruption activities performed by the agents over
themselves.
 Reparing breakdowns (broken down).
 Carrying out (set up).
Moreover, it is possible to establish non univocal
relationships between agents or systems and the activities
that they can perform. In Table 1 can be seen that not all the
systems may perform activities by themselves, and that
there are activities like maintenance and breakdowns that
are made over the systems and do not need parts being
present. Finally, there are also activities performed by
systems like processing, changing position, and so on.

Table 1: Relationships between Systems and Activities
SYSTEMS

MACHINESBUFFERS CONVEYORSVEHICLES

PROCESSING

TESTING

STORING

A
C
T
I
V
I
T
I
E
S

MOVING

PLACING

CARRYING OUT

REPARING

The most important fact shown in Table 1 is that the
elements of type system are independent from the
elements of type activity. Because of that a system may
perform several activities and an activity can be performed
by several systems being the effects of the same activity in
each system quite different. For example, the change of
position activity can be made by several conveyors and/or
vehicles with clear difference in the activity effects and its
characteristics.
So, in order to create and select activities the natural
process follows these rules (see figure 2):
 Checking the type of activities that the system is able to
perform.
 Defining parameters for each activity in the selected
types of activities.
 Selecting the particular activities defined that can be
made by each system.
 Choosing between the activities selected the ones that are
being executed in the model.

MOVING

Mover_01
Mover_02
Mover_03
....

REPARING

Avería_01
Avería_02
Avería_03
....

PROCESSING
Drilling
Drilling

Assembling

_01
_02

Drilling_03
....
Assembling_01

_02
....
Turning_01
Turning_02
Turning_03
.....

PROCESSING

SYSTEM_02

Turning
Turning

_01
_05

Drilling_07

REPARING

Breakdown_03
_06
_07

Breakdown
Breakdown

RELATIONSHIP BETWEEN
SYSTEMS AND ACTIVITIES

RELATIONSHIP BETWEEN:
SYSTEM, ACTIVITIES AND SCENARIO

PROCESSING

PROCESSING

PROCESSING

SYSTEM_01

SYSTEM_01, Scenario 1

SYSTEM_01, Scenario 2

Turning_01
_03
_04

Turning
Turning

Turning
Turning

_02
_03

Turning
Turning

_01
_03

REPARING

REPARING

REPARING

Breakdown_01
_02
_03

Breakdown
Breakdown

Breakdown_01
_03Breakdown

Breakdown_01
_03Breakdown

Figure 2: Selection of Activities

Once created and selected the activities, when it is possible
to execute more than one, the order of execution is
established by the usual manufacturing programming
methods. All the priority rules considered have been
described in (Ochoa and Arana 1997; Royo 2001). In
particular, the cycle time shorter (SPT) or larger (LPT),
FIFO, random and planner priority based on some attribute
are the most extensivily used in this context.

Connection Rules

A system is a group of sections related by its operations. In
order to simulate these relationships is necessary to define
the connection rules that control the flow of parts between
the systems. These rules are specified in the permanent
systems.
When selecting a rule to characterize a material flow, it is
convenient to bear in mind not only the manufacturing
process but also the transport process. For example, dealing
with lots of products, we have to distinguish between the
manufacturing and the transporting lots. The connection
rules implemented takes into account this difference. So,
these rules describe how the parts flow between the systems
and how the vehicles deal with the requests of the
manufacturing elements. In addition, the type and attributes
of the part also determine its flow.

The role played by the vehicles in the proposed model is
different from the other models in the literature. The
vehicles are defined as systems that perform a
pseudoactivity called connect. Because of that these
systems can only be executed to carry parts from one place
to another.

Events and state transitions

Each particular element is used like an isolated entity that
communicates itself with the others by detecting events an
answering to them. Events represent the stimulus that a
system can detect and that cause a state change. So, each
fact that can have an effect on the system is characterized as
an event.
The four unconditional events defined in this model are:
 Part generation. When a part is generated lively by the
generator element, its input to the model is characterize as
an event. The generated parts go to a physical store. If there
is not enough space, remains in the generator until some
space is found. The input of parts to the system cause that
elements which are waiting can take them and initialise
their cycle.
 Activity end. In the proposed model, the begining of the
activity to be perfomed is an conditional event, because it
depends on the temporal elements present in that moment in
the system. However, once an activity is being performed
the activity end is an unconditional event. This event has
different meanings depending on the activity being
executed in that particular system. For instance, in a store
occurs when the maximum store time is reached and in a
machine could be the end of a process or a loading or an
unloading or a quality control and so on.
 Set-up and breakdown. These events cause the stop of
those activities whichever there were. Afterwards, some of
the interruption activities will begin. Due to the random
behaviour related to these events, the beginning and the end
of these events are unconditional.
For instance, the diagram of transitions related to the Set-up
and breakdown event is shown in the Figure 3.

Internal event:
Interruption

Internal event::
End of interruption

External event:
Take resource External event:

Free resources

WAITING INTERRUPTION
RESOURCE

(5 - 8)

PROCESSING
INTERRUPTION

(4 - 7)

PREVIUS STATE

PREVIUS STATE

END OF
INTERRUPTION?

LAST
INTERRUPTION?

YES

YES

YES

NO

NO

NO

ENOUGH
RESOURCES?

Figure 3: Diagram of Transitions related to a machine

TIME ADVANCE: PROPOSED SOLUTION

Time advance

Due to difficulties to choosing the time interval length
properly, it is better to use an asynchronous algorithm, in
which the time interval length is variable. In the proposed
algorithm, the state of the model is examined and updated
only when an event cause a state change, that is, each time
an event occurs.

Next-event

The revision of the classical approaches to the problem
(Banks et al. 2000; Fishman 2001; Garcia 1990; Law and
Kelton 2000; McCormack and Sargent) let us establish the
following classification:
 Event Scheduling (ES) is based on an unconditional
event sequence through time, being the key element an
event list ordered by occurrence time and the priority of the
generator elements. When an event is read the related event
routine is executed, so it is necessary to implement routines
for each of the unconditional type of events that appears in
the system.
 Activity Scanning (AS) is based on the activities list of a
model and those conditions, simple or complex, that allow
an activity to begin. At each clock advance, the conditions
for each activity are checked and if the conditions are true,
then the corresponding activity begins.
 In the three-phases approach, events are considered to
be activities of duration zero time units, and the total
activities (events + activities) are divided en two categories:
unconditional and conditional.
 Process Interaction (PI) approach defines the simulation
model in terms of process. A process is a time-sequence list
of events, activities and delays, including demands for
resources, that define the life cycle of one entity as it moves
through a system.
The approach proposed in the model is based on the
following lists:
 Future event list (FEL) like the ES aproach.
 A dinamic list of systems that execute activities (DSL).
Conceptually DSL contains all the permanent systems in
the model that performs activities, because of all the
systems are always executing an activity. This list sustitutes
the usual Current Event List (CEL).
DSL is implemented as a pointer list to this type of systems
in the model, ordered by decreasing priority. That means
that the number of pointers are the same as the number of
systems in the model that could change their state and so
the list length is finite and small.
Another important difference with classical strategies is the
control of evolution of the model. This control is performed
by the systems pointed by the DSL list and not through
parts, in order to avoid the duplication of information
produced when you have to store it on each part, specifying
the activity in progress and the new possible ones.
As we said before, the DSL is sorted by decreasing priority.
It is possible that more than one system have the same
priority. The user can define priority groups, so all the
elements in a group have the same priority and the order of

revision in each group is the one defined by the user. Note
that, depending on which system is the first revised the
system evolution can be different.
The proposed strategy modifies the three phases approach,
analyzing the systems that can evolve at the moment to
different states instead of the activities that can be
performed which are fixed.
In Figure 4 this strategy is represented by a block diagram
and the pseudocode with a description of the working logic
is presented is described in Figure 5.

START

END

Initialization

OUTPUT

TERMINATE
SIMULATION?

YES

NO

TIME FLOW MECHANISM

Time = First event time of FEL

SDL SYSTEMS SCAN

EVENT SYSTEM SCAN

ACTIONS

ACTIONS

CONDITION

CONDITION

ACTIONS

CONDITION

ACTIONS

CONDITION

YES

NO

STATE
CHANGE?

Figure 4: Block Diagram of the Proposed Strategy

ALGORITM FOR THE PROPOUND SOLUTION
Perfom initialization (set beginning_time, ending_time, file
initial events into FEL and permanet systems into DSL,
initialize component state descriptors);
BEGIN

To annotate in FEL the first events;
 (The event notice consists of: event_time, event_type,

element)
Recover and clear the event with the first occurrence in
FEL;
TIME := first_event_time;
Revision_number_DSL = 1;
Operand = first_event_element;
While (TIME <= ending_time) do

If T[operando] < TIME and cond_operand_routine=true
execute activity_operand_routine;

End_If;
Repeat

change=false
For j:= highest_priority to lowest_priority

i:= index to system with priority j;
If T[i] < TIME and cond_i_routine = true

then
execute_activity_i_routine;
If change_state_i = true

then
change= true;

End_If;
End_If;

End_For;
Until change=false
Recover and clear the event with the first occurrence in
FEL;
TIME := next_event_time;

End_While
END

Note:
• Each procedure cond_i_routine evaluates the specific
conditions to change the state of the permanent system i,
and returns as a result true or false.
• Each procedure activity_i_routine models the state
transition of the element and insert, if there are any, the
unconditional events in FEL.

Figure 5: Pseudocode Algorithm to Model

GSIM: A MANUFACTURING SIMULATOR

After planning the model, a simulator tool based on it has
been programmed, called GSIM, using a general purpose
programming enviroment: C++ Builder v5.0 (see Figure 6).
Model development is completely graphical and object-
oriented. To the greatest extent possible, all inputs are
provided graphically with information being grouped by
object type and presented in a “spreadsheet-like” format for
quick and intuitive access. For example, when the modeler
defines a machine he can also define the machine’s icon,
type, intrinsic parameters, input and output rules, activities
and so on.
In the Figure 6, the logic order in the elements definition is
presented. Firstly, the systems (intrinsic characteristics an
representation), secondly the activities, and finally, the
relationships between this two elements.
In order to validate and verify the model and the simulation
tool, we followed the steps proposed by (Barceló 1996)
with several problems proposed by commercial software
and training problems in learning simulation tools.
Following, we describe the steps:

Figure 6: GSIM Environment. Forms to Data Input

 First step. The program is validated from the modelling
point of view, that is, if diverse systems can be modelled,
and the complexity of these models and their logic.
 Second step. Once the model is defined, each type of
event, the states of the systems and actions that cause, is
checked to see if the evolution is correct.
 Third step. The last step is revision of the results. This is
made getting the value of the different indicators planned in
the GSIM models and comparing them with the ones
providing by a commercial program: Witness.
Once the program has been validated, we obtain important
conclusions, specially in the Witness comparation. In some
examples we detect differences, mainly with maintenance
and breakdown activities. These differences exist as the
time between two consecutive activities is different in both
cases:

T

T = 0

∆t/2 ∆t ∆t ∆t

1 breakdownST

1 breakdownST

2 breakdownnd

2 breakdownnd

3 breakdownrd

3 breakdownrd

Time reparing
1 breakdownST

Time reparing
1 breakdownST

Time reparing
2nd breakdown

Time reparing
2nd breakdown

Time reparing
3rd breakdown

Time reparing
3rd breakdown

∆t∆t ∆t ∆t

WITNESS

GSIM

Figure 7: Differences between Witness and GSIM

For the sake of brevity, we have not presented others results
or discussion about the validity of the simulator that can be
found in (Oliveros 2002). In the thesis the simulator
validity is verified by obtaining a good level of confidence
in the representativeness of the simulation model against
real-life situations.

CONCLUSIONS

In this paper, a new methodology is proposed with the aim
of representing the productive behaviour of the elements in
an industrial installation. This model put special emphasis
on the difference between system and activity, and allow
the systems to execute different tasks, as it occurs in real
situations.
In order to take into account the difference between system
and activity, we have to designed a new programming
strategy. We consider that it is optimum among the basic
strategies on discrete events simulation programming
examined.
Finally, the new methodology and the proposed approaches
have been implemented in a simultation tool easy to be
used by inexperienced operators. Following a validation
method described in the literature, it has been demonstrated
that the performance of the simulator GSIM was the
expected.

REFERENCES

Balci, O. 1997. “Verification, Validation and Accreditation of
Simulation Models”. Proceedings of the 1997 Winter
Simulation Conference, 135-141.

Banks, J.; J.S. Carson; B.L. Nelson; and D.M. Nicol, 2000.
Discrete-Event System Simulation, 3rd Edition. Prentice Hall,
New Jersey.

Banks, J.; E. Aviles; J.R. McLaughlin; and R.C. Yuan. 1991. “The
simulator: new member of the simulation family”. Interfaces
21 (2). pp 76–86.

Barceló, J. 1996. Simulación de sistemas discretos. Isdefe,
Madrid.

Fishman, G.S. 2001. Discrete-Event Simulation. Modeling,
Programming and Analysis. Springer.

García, M.R. 1990. “Discrete Event Simulation Methodologies
and Formalisms”. Proceedings of the Winter Simulation
Conference, 1990.

Law, A.M.; and W.D. Kelton, 2000. Simulation modeling &
Analysis. 3rd Edition. McGraw Hill.

Law, A.M.; and McComas, M.G. 1992. “How to select simulation
software for manufacturing applications”. Industrial
Engineering 24 (7), 29–35.

McCormack, W.M,; and R.G. Sargent, “Analysis of future event
set algorithms for discrete event simulation”. ACM, 24, 801-
812.

Ochoa, C.; and P. Arana. 1997. Gestión de la producción.
Editorial Donostiarra, San Sebastián.

Oliveros, M.J. 2002: Simulación de instalaciones productivas de
flujo discreto mediante un modelo de categorías universales.
PhD thesis. C.P.S., University of Zaragoza, Spain.

Oliveros, M.J.; Rudiez, C.; and Torres, F. 2001: “GSIM: Un
simulador basado en la interacción de actividades y sistemas.”
Workshop en Metodología de Modelado y Simulación de
Sistemas. U.A.B.

Pidd, M. 1992: Computer Simulation in Management Science. 3rd

Edition. John Wiley.

Robinson, S. 2002. General concepts of quality for discrete-events
simulation. European Journal of Operational Reseach. Vol.
138, 103-117.

Royo, J. 2001: Optimización de la planificación de recursos y
programación de operaciones según listas de selección. PhD
thesis. C.P.S., University of Zaragoza.

Zeigler, B.P. 1990: Object-oriented simulation with hierarchical
modular models. Academic Press.

	ABSTRACT
	ELEMENTS OF CONCEPTUAL MODEL
	Systems
	The first and more important step is to define the elements that a simulation model needs to work with. By definition, a model is always an abstraction at some level, preserving the essential aspects of the system and leaving out the rest. So, the semant

	Activities
	Connection Rules
	Time advance
	Next-event
	
	ALGORITM FOR THE PROPOUND SOLUTION

	c0: Proceedings 14th European Simulation SymposiumA. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

