

Requirements to a physical design support tool for microsystem technology

Andreas Wagener, Jens Popp, Kai Hahn, Rainer Brück

Institute of Microsystem Technology, University of Siegen
Hölderlinstr. 3, D-57068 Siegen, Germany

E-mail: wagener@rs.uni-siegen.de

KEYWORDS

Microsystems, MST, MEMS, process configuration, process
flow, process management, process optimisation, design flow,
design verification, databases, EJB, Java WEB Start.

ABSTRACT

This paper describes the requirements and the realisation
concepts for a design tool supporting the design stages related
to the fabrication process of microsystem technology.

Based on investigations performed by the authors the needs
of potential users in the MEMS (Micro-Electro-Mechanical
Systems) designer community were specified. Analysing
current design flows, methods and tools are presented that
support the concurrent and interdependent specification of
physical design as well as process sequences. Furthermore an
appropriate general software architecture for new approaches
in microsystems electronic design automation (EDA)
software is presented.

INTRODUCTION

Recent developments and products containing microsystem
technology give a clear indication of the importance of this
domain. Micromachining provides the interfaces between real
world parameters and microelectronic information
processing. Using microstructure fabrication methods result
generally in smaller products with higher performance at
lower costs. Often only MEMS can meet the functional
specification of applications. In this context microsystems or
at least microstructured components contribute a substantial
added value in many innovative products such as medical
equipment, home office applications or automobiles. Market
analysists expect MEMS to be the key technology for the
next decade.

The design task for microstructures can be split into different
levels. On the higher levels designers specify the
functionality of a complete microsystem or of its components
using various kinds of simulation such as FEM (finite
elements method). On the lower levels, the physical design
levels, the technology related issues become more and more
important. Unlike in microelectronics there is a strong
dependency between the layout design and the fabrication
technology. Many design properties (e.g. the size of
structures in the third dimension) can only be realised
choosing specific process parameters like materials, process
steps or process resources.

EDA in microsystem technologies requires a complete set of
new software tools, both for layout and process flow. The
process flow is static in microelectronics and can be

summarized in the design rules. In microsystem design we
need all approaches and tools known from microelectronics.
Because the process flow is now application specific it is
essential to include the process step configuration to the
layout tools.

In the past some prototypes of software dealing with this
problem were introduced [Gogoi 1994, Hahn 1999]. It turned
out that the requirements of the engineers were not
sufficiently met by these tools. For obtaining a practical and
usable tool it is inevitable to talk with engineers and analyse
their real needs. An intensive investigation phase formed the
start of the project. The requirements to a physical design
support tool for microsystem technology are summarized in
three different domains:

• Supporting adequate workflows based on the
MEMS-specific design flows

• Matching the functional requirements by providing
tools like process flow editors or specific database
structures

• Providing the appropriate software environment for
an easy access from different platforms

The paper will describe in detail the requirements as well as
the implications with regard to the realisation of the new
tools.

DESIGN FLOW

In microsystem technology you can roughly distinguish
between three design flows: Top-Down, Bottom-Up, and
Meet-in-the-Middle. Each design flow has its own purpose,
which will be described below.

The Top-Down approach is used for developing “standard”
applications. In the beginning the engineer analyses the
requirements of the microsystem. With the aid of these
requirements he can build up a behavioural model
(schematic) of the system. The model is simulated and
crosschecked with the predefined requirements. If it is
necessary the model will be refined. This procedure is iterated
until the model matches the requirements. The next step is the
synthesis of the model. The behavioural model has to be
transponed into a 3D-model of the system. In some cases
software tools can do this automatically. But mostly it has to
be done by hand. In both cases – automatically or manually –
a component library is required. This library has to be very
comprehensive to get adequate results. Especially the design
and structure of the different layers from different materials is
very difficult to handle.

After synthesis the 3D-model is simulated with FEM (finite
elements method). The results of the simulation helps the

designer finding the critical component structures in the
model. Possibly the model has to be improved or the
schematic has to be refined.

At last, when the 3D-model is correct, the process steps of the
fabrication have to be specified. Normally the majority of
steps are determined by the choice of materials in the
synthesis. But the combination of the different materials and
process steps to produce the layers can cause a lot of
problems.

For the development of new processes or process variations
for new products engineers use the Bottom-Up approach.

This is the standard method for process engineers. Driven by
the need for a new process parameter studies are undertaken.
Usually existing processes are stepwise varied in one or more
parameters. The settings as well as the results are all logged
manually. This procedure continues until the desired process
characteristics are met. Actually, this heuristic approach is
more appropriate for designing processes than complete
microsystems. For process steps development, the approach
often stops at this point of the design flow. The currently less
common version is proceeding and analysing the developed
process sequence. Based on the process analysis, the cross
sections and the mask information a 3D-model of the target
structure is generated, which will then go through a new FEM
simulation. Obviously several iterations are necessary to get a
satisfying 3D-model that fulfils all requirements. The output
of the analysis of the 3D-model is a behavioural model of the
microsystem.

Meet-in-the-Middle is a combination of the two other
approaches. As described before, the purpose of developing
new processes can be seen as a kind of service for supporting
the microsystem designer with a large library of processes.
Especially in research projects not only the system and its
behaviour will be developed anew. Because of the usage of
new materials or new combinations of materials the parallel
development of the system and the fabrication processes is
essential. On one hand the behaviour of the system is

specified on the other hand suitable processes and process
sequences are developed. Combining the specification and
the results of the process design leads to the 3D-model
required for verification.

Our work focuses on a support tool for the Bottom-Up
approach, because there is the biggest need for effective
support.

CAD WORKFLOW

The workflow for developing microsystems is - as described
before - a highly iterative process. Especially the lack of
ready-to-build and standard components in microsystem
technology forces the engineers and developers using trial-
and-error-methods, as described in detail in the cycle model
[Hahn 1999]. To decrease the number of cycles and thus
increase the time to market the design flow must be
optimised.

As example a supposable workflow with a supporting
software is shown in figure 2. The engineer has a vague idea
of the system derived from the requirements. He sketches a
draft of the system to elaborate the process sequence. In
figure 2.1 there is an example of such a draft: A silicon
cantilever on a silicon substrate. The software recognizes the
airgap under the cantilever and suggests a sacrificial layer; in
this case silicon oxide (SiOx) is used. The problem of the
airgap is solved but now there is a stiction problem, since
silicon does not adhere on SiOx very well. The software
recommends a stiction layer. Now the layer sequence in
figure 2.3 is producible. At last the sacrificial layer has to be
removed. This can be achieved by etching a gap (figure 2.4)
and isotropical etching of the SiOx.

SIMULATION

Having a look at the workflow described before three views
on the system can be seen. The layer view shows the structure
and cross-section (x-y-coordinates) of the system and the
arrangement of material layers. The process flow view shows
the sequence of process steps to fabricate these layers, and the
mask view provides the lateral view (x-z-coordinates) to the
layer and the process steps.

Figure 2: Workflow Example
Figure 1: Design Flow Model

 These three views together describe the microsystem
sufficiently and must be managed properly. Providing three
different editors this can be achieved. Those editors can be
combined to get to a set of consistent and linked
representations of the system. Every modification in one view
automatically reflects a change to the other views.

Such requirements can be fulfilled by maintaining the view
independent of the design data. Each view uses the same data
pool (Figure 3). Specific algorithms simulate the behaviour of
each process step and map it to the layer view. Vice-versa a
change in the layer view effects changes in one or more
process steps. The algorithms utilise a knowledge base, which
is mandatory and can be realised by a database as described
below. The editors in combination with the database must
support versioning due to the highly iterative development
process. The benefit of versioning is not only the chance to
undo changes but also the possibility of reusing the
intermediate steps for other projects.

Each change of the flow has an impact on the consistency of
the process flow. While simulating the process sequence the
consistency can be checked. Also the profile of the cross
section changes (Figure 2). To assure that the processes and
thus the microsystem complies with the requirements the
profile must be simulated, too. Using the knowledge and rules
stored in databases the consistency and the profile can be
checked and the user gets feedback about the changes. The
feedback looks like the feedback described in the CAD
workflow example.

Indeed the quality of simulation depends on the available
process information. The more information about processes
and interactions is stored the better the forecast of the real
profile becomes. With the increasing knowlegdge base also
the possibility to have several sequence solutions for one
microsystem becomes more likely. This can be an advantage
in this respect of optimising the process flow. Setting
preferences the sequence can be optimised by cost,
production time, or specific material parameters like stress or
thickness.

SOFTWARE ARCHITECTURE

A key issue for each software project is the system
architecture and the target platform. Both issues influence the
decision on software tools and programming language.

In the case of MEMS design more often than not many
people have to work together to create a good product. For
instance there are the engineers who are responsible for the
machines, the mask designer and the process designer. All of
them have to have access to a common base of data and tools.
There is also a wide variety of hard- and software platforms
in use – various Windows and Unix Systems. To make it
even more complicated the same user may use different
systems at different locations depending on the work he has
to do.

Another important point is the security of data. Some
companies outsource their production to foundries due to the
enormous costs linked with manufacturing MEMS. On the
one hand the foundries want to minimise costs and have to
find partners on the other hand they do not want to share their
knowledge about the processes. Keeping the knowledge in a
database within the foundry would solve this problem. Via
distributed software clients could access check algorithms
that utilise the data. So it would be possible for costumers to
check their design without knowing too much about the
processes.

Taking all these points into account a distributed client-
server-architecture is necessary. To minimize the porting
overhead for the different platforms the programming
language of choise is Java.

Looking at client-server programming among the different
concepts in use the three- or multi-tier architectures became
prominent in the last few years. Basically such systems are
divided into a database, an application server and a front-end
or client software. The database is the common pool of data
for all applications. Normally a relational or (lately) object-
relational database is used. Due to the wide standardisation
efforts in this area the database management system is
exchangeable. Purely object-oriented databases lack this
standardisation and were therefore not chosen for the project.
The second layer is the application server. The server is
responsible for the retrieval and processing of the data. All
(or most) of the application logic should be located here. The
final layer is the front-end or client application. The task of
this part is the presentation of the processed data to the user.
Only a small part of logic should be situated in the client
application. It is possible to split up the tiers (for instant
multiple layers for application logic). The following
paragraphs will describe each part.

As mentioned above it is necessary to store a large amount of
data during the process development because fewest
interactions between parameters in MEMS processing can be
described with an adequate formalism. To achieve acceptable
time in storing and retrieving this data a professional database
management system is mandatory. While every database
vendor has its speciality, the common base of how to store
and retrieve data and how to map a database model is
standardised for relational databases. This enables the
interchange ability of databases in multi-tier architecture. The
object oriented databases still lack the standardisation. Once
they reach the maturity of relational databases they will
become a real alternative for multi-tier architectures due to
the fact that most data to be stored are modelled as objects in
an object-orientated language.

Figure 3: Model -View

To map data from real world into databases the so-called ER-
Model (Entity-Relationship) is used. It describes entities as
representation of real world objects and the relationship
between those. An extract of the ER-diagram used to
represent the problem domain can be seen in Figure 4. The
whole model has more then 50 tables.

The second layer in the three-tier architecture is the
application server. The main field of usage of application
servers today is e-commerce. This is due to the fact that
application servers deliver a high performance environment
for business logic. Basically an application server is a
container and management system for software modules for
instance Enterprise Java Beans (EJB). The database
connection, the lifecycle of the software components and the
communication with other application servers or client
software are managed by the server.

The basic idea behind the use of application server with EJBs
is to provide an infrastructure that is scalable, transactional
and multi-user secure. With growing demands new servers
can be added. Software written using this technology is

written once and can be deployed on any server (at least if
they comply with the specification). Standard components
(e.g. equation solvers) can thus be reused in different
application areas without the need for rewriting it.

The front end or client software is necessary to communicate
with the user. In common software is not static but will be
continuously improved. Updates and upgrades change the
source code of an application. Since the software will be used
in enterprises it is obviously that a lot of installations of the
client can be found. All these installations have to be kept up-
to-date. There are different possibilities to achieve this goal.
A new kind of technology provided by Sun: Java Web Start
[Sun 2002] was chosen. Web Start combines the advantages
of an application and a browser applet but do not adopt the
disadvantages of them. The distribution of the client-software
is managed by a web-server (Figure 5). The user opens a
web-page and downloads a XML-file with detailed
information about the software. This XML-file will be
checked and interpreted automatically by the Web Start
client, which is included in the newest Java Development Kit
(JDK). Now Web Start knows the location where the
Software can be found. The client will be downloaded. Here
is another advantage of Web Start. The user needs not to
install the software manually. The code is cached inside the
Web Start environment but appears like a stand-alone
application. Each time the software is started a lookup is
made. This lookup checks the version of the software against
the version in the web. If the software in the web is newer
than the installed it will be downloaded automatically.

USER INTERFACE

Another problem you have to deal with on client side is the
user interface. To achieve acceptance among the target user
an intensive user needs analysis was made. In the first step
the storage of process data was the main field of interest.

Figure 4: ER-diagram

GeometryGeometryParameterParameter

ProfileProfile

StructureStructure

ComponentComponent

LayoutRulesLayoutRules

ProcessSequenceProcessSequence

LayerLayerProcessStepProcessStep

ProcessparameterProcessparameterResultparameterResultparameter

ValueValueValueValue

InteractionInteraction

Post-
/Preprocessing

Post-
/Preprocessing

MaterialMaterial

Parameter/UnitParameter/Unit

Figure 5: Distribution

Since the specification of new process flows is often
insufficiently supported by CAD tools, standard office tools
like word processing, spreadsheets, drawing software and
presentation tools are in use. These tools are stand-alone
solutions and not adequate to archive complex process
descriptions. Most important they provide no common
interface to database systems. In this sense the tools are less
proper for knowledge gathering and for automatic knowledge
exchange with tool support. On the other hand this software
is easy to use and the users are familiar with it.

To make a transition to new software as easy as possible the
user interface has to have a familiar look and feel.
Representation of data in tables and some of the function of
spreadsheet software (like presenting data in diagrams) will
allow the user to adapt easily to the new environment.

DATA EXCHANGE

The aim of the physical design tool presented is to compose
process flows and to extract valuable information (stress,
temperature budget, layout rules) for further use in CAD or
FEM tools. To enable this a standard exchange format is
needed.

Like Java as a platform independent programming language,
XML (Extensible Markup Language) [W3C 2002] is an
application independent language for describing structured
data. XML is a flexible and powerful markup language. It
provides a simple but standard way to describe and delimit
data. There are many tools available to parse, check and
create XML files. One of the reasons why XML is so popular
is surely its flexibility. XML serves as a meta language and
provides mechanisms to build up powerful descriptions.
XML’s great advantage is its self-describing nature. The
information is grouped and bordered by tags. Also people
who were not familiar with XML before can read the listings
very easily.

As a subset of XML we propose a process description
markup language PDML for microsystems [Wagener 2002].
Like XML PDML is actually object-oriented but as
mentioned above approaches to use an object-oriented
database were discarded for different reasons. A first version
of PDML has been presented in [Kleinert 2002, Wagener et.
al. 2002].

CONCLUSION

Using the described design flow, CAD workflow and
software architecture a new kind of tool can be created. This
software complements tools for system analysis and layout of
a MEMS product. Supplying the existing CAD tools with a
kind of dynamic process libraries can improve the overall
design process and decrease the time to market. The proposed
methods of software engineering make the software scalable
to user needs and easier to maintain. With the new standard
exchange format for process design the interoperability is
ensured. Data extracted from the tool can be used for layout
check, FEM and other simulation tools.

REFERENCES

Brück, R and K. Hahn. 1997. “An Approach to Layout and Process
Verification for Microsystem Physical Design. Microsystem
Technologies”. In Proceedings of the 1997 Microsystem Tech-
nologies conference. 82-90.

Brück, R. and K. Hahn. 1998. “MEMS Process/Design and
Optimization using Economical Constraints”. In Proceedings of
the 1997 Microsystem Technologies conference, 479-484.

Brück, R. and C. Schumer. 1999. “Internet MEMS Design Tools
based on component technology”. In Proceedings of the 1999
Design, Test and Microfabrication of MEMS/MOEMS
conference.

Gogoi, B.; R. Yuen, and C. H. Mastrangelo. 1994. “The automatic
synthesis of planar fabrication process flows for surface
micromachined devices”. In Proceedings of the 1994 IEEE
Micro Electromechanical Systems Conference, Oiso, Japan.

Hahn, K. 1998. “Die Prozessbeschreibungssprache LIDO-PDL,
Handbuch zur Sprachbeschreibung”. Research Reports,
University of Dortmund.

Hahn, K. 1999. “Methoden und Werkzeuge zur fertigungsnahen
Entwurfsverifikation in der Mikrotechnik”. Ph. D. Thesis.
Department 12, University of Siegen.

Kleinert, A. 2002. “Entwicklung einer Prozessbeschreibungssprache
für die Mikrosystemtechnik auf Basis von XML”. Diploma
Thesis. Department 12, University of Siegen.

Schneider, C.; R. Brück, K. Hahn, et. al. 1999. “Component Based
Distributed Design Tools for Microsystem Technology“. In
Proceedings of Sensor 1999. Nuremberg, Germany.

Wagener, A. 2001. “System- und Anforderungsanalyse für ein
Prozessdesign-Werkzeug in der Mikrosystemtechnik”. Diploma
Thesis. Department 12, University of Siegen.

Wagener, A.; J. Popp, K. Hahn et. al. 2002. “PDML – A XML-
Based Process Description Language”. In Proceedings of the
2002 European Concurrent Engineering Conference (ECEC),
Modena, Italy.

World Wide Web Consortium (W3C). 2002. “Extensible Markup
Language (XML)”. http://www.w3c.org/XML/. (August 2002)

Sun Microsystems Inc. 2002. “Java Web Start Homepage”.
http://java.sun.com/products/javawebstart/. (September 2002)

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

