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ABSTRACT

Explicit Congestion Notification (ECN) transfers a clear
indication of congestion through the network and, therefore,
gives a possibility to construct closed-loop control of
effective transmission rate. In the paper, a simulation model
of ECN-capable multicast multimedia delivery in ns-2
environment is discussed. The model includes complete
ECN-capable network infrastructure (sender, receivers,
network nodes). Special emphasis is placed on the core of the
system, the ECN-capable RTP protocol. Simulation results
confirm credibility of the model.

INTRODUCTION

Explicit Congestion Notification (ECN) relies on ability of
the network to detect congestion build-up. Opposite to the
traditional congestion avoidance methods, based on the
packet dropping, network which implements ECN is able to
react on incipient stages of congestion.
The ECN-capable IP is described in the RFC 3168
(Ramakrishnan et al. 2001). The ECN-capable IP itself isn't
able to provide congestion avoidance, it need support from
the upper (transport) layer. ECN-capable TCP congestion
avoidance (Ramakrishnan et al. 2001) uses ECN bits as a
feedback, which inform the sender about possibility of
congestion. ECN are looped at the end of connection (to the
receiver) and returned to the source in the TCP packet as so-
called ECN-Echo flag.
Explicit Congestion Notification was implemented in
Berkeley’s ns-2 simulator (Floyd 1998). Nowadays, ECN-
capability in ns-2 covers:
� IP header processing conformable to RFC 3168,
� modified RED queue mechanism; where RED gateways

set the ECN bit in the packet header, rather than
dropping the packet,

� ECN-capable TCP transport protocol.
In result, ns-2 allows simulation of reliable unicast
connections via TCP (unicast elastic traffic) and there is no
possibility of simulation of real-time multimedia transmission
(non-elastic traffic, usually multicastly distributed through
the network). The aim of the paper is to propose extensions

for ns-2, which make possible to simulate an ECN-capable
multicast multimedia delivery.
The rest of the paper is organized as follows. Section two
proposes the ECN-capable RTP transport protocol. Section
three contains an overview of the ns-2 simulator. Section
four describes the implementation of ECN-capable RTP
protocol in ns-2 environment. In the fifth section simulation
model of ECN-capable receiver-driven layered multicast is
presented, while section six analyses the simulation results.
Section seven summarizes our experiences.

THE ECN-CAPABLE RTP PROTOCOL

The RTP transport protocol is commonly used for delivery of
the multimedia streams, but there is no standardized usage of
ECN-based congestion control for RTP yet.

The RTP Transport Protocol

The RTP (Real-time Transport Protocol) version 2 (Frederick
et al. 1996) provides end-to-end delivery services for data
with real-time characteristics. Applications typically run RTP
on top of UDP transport protocol to make use of its
multiplexing and checksum services. RTP can provide data
transfer to multiple destinations using multicast distribution
(depending on underlying network).
The RTP cooperates with the RTCP control protocol. The
RTCP protocol provides feedback on the quality of data
distribution using report packets. The feedback may be
directly useful for control of adaptive encoding. RTCP also
carries a persistent transport-level identifier for an RTP
source. In multicast sessions, rate of RTCP packet must be
scaled to numbers of participants. An optional function o
RTCP is to convey minimal session control information.

The Proposition of the ECN-capable RTP protocol

ECN-capable RTP sender sets the ECN bits in the IP header
to indicate the ECN-capability of the transport protocol end-
point. Packet with ECN-Capable Transport codepoint CE(0)
(i.e. '10') are sent to the receiver(s) using unicast or multicast
transmission. If the congestion is build-up, routers on
delivery tree will set the Congestion Experienced (CE)
codepoint '11' in the IP header. In result, RTP receiver gets
the information about congestion appearing in at least one
network node along delivery tree.



The general ECN-capable receiver behaviour, recommended
in RFC 3168, suggests that response to obtained CE
codepoint must be essentially the same as response to a
single dropped packet. RTP generally reacts on packet drops
by modification of statistics in RTCP reports. Such a reaction
is too weak to ensure effective congestion avoidance.
Therefore we propose, that if receiver obtains congestion
indication (a single CE packet), the feedback to the sender
will be sent. The data receiver informs the data sender, when
a CE packet has been received, by sending a new type of
RTCP message - ECN-feedback (EFB).
EFB message conveys the information mandatory to RTCP
message, as defined in (Frederick et al. 1996), and,
additionally, includes reception report blocks (one for each
of the synchronisation sources from which this receiver has
received RTP data packets). Each reception report block
provides ECN-feedback information.
According to the location of traffic controller in end-systems,
ECN-capable congestion control can be performed in sender-
driven or receiver-driven manner. Sender-driven control can
utilise EFB message. If the EFB message is received, the
RTP sender will send via API, to the sender application, the
request of reducing effective transmission rate (e.g. through
change of compression level). Lack of congestion also can be
reported to the sender application.
Explicit congestion notification can be also send by RTP
receiver to receiver application, via API interface. Receiver
application can hold the EFB messages transfer and perform
congestion control itself (receiver-driven control).

THE BERKELEY’S NS-2 SIMULATOR

The discrete-event ns-2 simulator, developed in U. C.
Berkeley (Fall and Vradhan 2002), is an multi-protocol
network simulator, which both delivers tools for simulation
of standard network protocols (IP, IPv6, TCP, UDP, RTP,
HTTP, FTP, etc.) and offers an infrastructure for design and
deployment of new network protocols. The simulator
supports many network technologies, including LANs,
WANs, wired and wireless networks, QoS assurance, etc.
The ns-2 is an object oriented simulator, written in C++, with
an OTcl interpreter as a front-end. Typically, network
protocols are simulated using both programming languages.
Protocol processing mechanisms are usually written in C++,
while the experiment (topology, configuration, etc.) is
described in OTcl.
Protocols in ns-2 are represented by objects, which are
constructed as derived classes of the base Agent class
(written in C++). If the protocol supports session
mechanisms, the derived classes of base Session class (also
written in C++) will be constructed. Above C++ classes are
mirrored into a similar class hierarchy within the OTcl
interpreter. For example, the RTP implementation in ns-2
environment consists of three C++ classes:
� RTPAgent – RTP protocol processing mechanisms,
� RTCPAgent – RTCP protocol processing mechanisms,
� RTPSession – the RTP session management.
C++ classes are closely mirrored by corresponding objects in
the OTcl class hierarchy, respectively, Agent/RTP,
Agent/RTCP and Session/RTP.

IMPLEMENTATION OF ECN-CAPABLE RTP
PROTOCOL IN NS-2 ENVIRONMENT

The proposed ECN-capable RTP is build on the basis of the
existing RTP simulation module. Six new objects, three
written in C++ (RTPECNAgent, RTCPECNAgent,
RTPECNSession) and three written in OTcl
(Agent/RTP/ECN, Agent/RTCP/ECN, Session/RTP/ECN),
are derived from standard RTP classes described above.

The RTPECNAgent

The RTP protocol mechanisms are represented in the ns-2
simulator by the RTPAgent class. Applications can access
RTP agents via the sendmsg() function in C++ (or via the
send or sendmsg methods in OTcl). Prior to internal data
processing (mainly buffering and segmentation), new packets
are created (using the makepkt() method). Each packet
contains a monotonically increasing sequence number and an
RTP timestamp. Packets are sent to the network node via the
sendpkt() method and transferred by the network. The
upstream RTPAgent receives packets from its network node
using the recv() method. It’s worth remarking that
application data are typically represented by their size and
transmission time and they are not actually transferred in the
simulator.

class RTPECNAgent : public RTPAgent {
public:

RTPECNAgent();
virtual void recv(Packet* p, Handler*);
virtual int command(int argc,

const char*const* argv);
virtual void sendmsg(int nbytes,

const char *flags = 0);
protected:

virtual void sendpkt();
virtual void makepkt(Packet*);
RTPECNSession* session_;

};

Figure 1: The RTPECNAgent Definition.

The RTPECNAgent class overrides a number of RTPAgent
methods (see Figure 1) and introduces ECN-capability into
RTP transport protocol. The new makepkt() method creates
RTP packet and sets CE(0) codepoint in the IP header to
indicate the ECN-capability of the RTP protocol. Such a
method of the IP header processing is often used in ns-2
simulator (e.g. by the ECN-capable TCP protocol).
Packets are sent to the network node via the modified
sendpkt() method of an RTPECNAgent (the sender). Thus
ECN-capable RTP packets are sent to the receiver (or
receivers) using unicast (or multicast) transmission. As in the
case of “standard” (non- ECN-capable) transmission, the
recv() method of an RTPECNAgent (the receiver) is invoked
by upstream nodes when sending a packet.
The modified recv() method analyses ECN bits. When the
RTPECNAgent receives a data packet with the ECN bit set in
the packet header, the receiver performs one of the following
actions:



� the RTPECNAgent informs receiver application via
OTcl callback function (receiver-driven congestion
avoidance),

� the RTPECNAgent sends ECN feedback to the sender
using RTCPECNAgent class (sender-driven congestion
avoidance),

� do nothing (no congestion avoidance).
The performed action is defined by two flags in the
Agent/RTP/ECN object. The receiver_driven flag indicates
(by being set) the receiver-driven mode of congestion
avoidance and the sender_driven flag  indicates the sender-
driven one. Default values for both flags are “false” and
indicate no congestion avoidance. If both flags are set to
“true”, both sender and receiver will be notified about
possibility of congestion (not recommended, for statistical
purposes only).

The RTCPECNAgent and the RTPECNSession

The RTCP protocol monitors and controls RTP session. In
the ns-2 simulator, the RTCP protocol functionality was
divided between two objects: the RTCPAgent class and the
RTPSession class. The RTCPAgent class implements the
RTCP packet processing, while the RTPSession class
implements the RTP session management.
The RTCP protocol behaviour is based on the periodic
transmission of control packets. The packet is prepared by
the RTPSession in response to the RTCPAgent request. The
RTCPAgent class simulates the transmission and reception of
the RTCP packets using, respectively, the sendpkt() and
recv() methods.

class RTCPECNAgent : public RTCPAgent {
public:

RTCPECNAgent();
int command(int argc,

const char*const* argv);
protected:

void sendpkt();
RTPECNSession* session_;
double rtcp_efb_interval(int members,

int senders, double rtcp_bw);
int multicast_ECN_timer_;

};

class RTPECNSession : public RTPSession {
public:

RTPECNSession();
int command(int argc,

const char*const* argv);
int build_report(int bye);

protected:
int build_efb();

};

Figure2: The RTCPECNAgent and RTPECNSession
Definition.

The RTCPECNAgent class and the RTPECNSession class
(Figure 2) introduces ECN-capability into RTCP protocol.
The RTCPECNAgent class implements the new sendpkt()
method, which is able to send additional type of report – the
ECN-feedback (EFB) report. The EFB report is transmitted
to the sending RTPECNAgent, when the RTPECNAgent

receives a data packet with the ECN notification and the
sender_driven flag in the Agent/RTP/ECN object is set. The
EFB report is prepared by the RTPECNSession class on the
RTCPECNAgent request. Each RTCP report is generated by
the modified build_report() method of RTPECNSession
class. If the RTCP report is EFB report, the build_efb()
method is called by the build_report().
The EFB report sending mode depends on the type of RTP
transmission (unicast or multicast). When the RTPECNAgent
receives the ECN notification during the unicast
transmission, the EFB report is immediately send to the
sender. During multicast transmission, such a report
generation policy may cause cumulative multiplication of
EFB reports (so-called feedback implosion) and, in result,
the network at the sender site becomes congested from the
cumulative back-traffic from the receivers. Therefore, the
interval between reception of ECN notification and EFB
transmission is generated by the rtcp_efb_interval() method
from the uniform distribution on [0; φ], where φ depends on
the total number of receivers in the multicast group.

SIMULATION MODEL OF ECN-CAPABLE
RECEIVER-DRIVEN LAYERED MULTICAST

As an example of possible application of ECN-capable RTP
transmission, a simulation model of ECN-capable receiver-
driven layered multicast was developed. The exemplary
solution combines network-based explicit congestion
notification with receiver-driven layered multicast scheme.

Layered Multicast Transmission

Layered encoding assumes that high-quality data stream is
encoded into several complementary substreams (layers).
Usually layers are encoded in cumulative manner, as the
complete base stream and some supplementary streams.
Receiver-driven layered multicast scheme (Kim and Ammar
2001; McCanne et al. 1996) requires layered encoding - input
multimedia stream is compressed into several substreams
with different QoS requirements. Typically base stream (the
lowest picture quality with the minimal bandwidth require-
ments) and several other streams to improve quality are used.
Layers (substreams) are strictly synchronised and
simultaneously transmitted through the network as separate
multicast groups. Receivers can individually subscribe or
unsubscribe to the appropriate multicast group to achieve the
best quality signal that the network can deliver. Layers can
be joining/leaving only in order of their relevance.

A Proposition of ECN-Capable Receiver-Driven Layered
Multicast Multimedia Delivery

ECN-capable receiver-driven layered multicast combines
explicit congestion notification with the layered multicast
scheme. Decisions about changing group membership and, in
result, about changing effective transmission rate, are taken
based on ECN notification. Such a transmission scheme
forms a close loop control from point of congestion to the
receiver and to the point of congestion again.
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Figure 3: Block Diagram of ECN-Capable Receiver-Driven
Control System (Structural Approach).

If the dangerous of congestion appears in the network node,
ECN will be transmitted from the possible point of
congestion to the receiver (Figure 3). Based on obtained
congestion notification, the receiver takes an autonomous
decision about leaving multicast groups and, in result, about
reducing effective transmission rate.
Lack of ECN implies small possibility of congestion.
Receiver responds to lack of ECN by increasing effective
transmission rate. This is accomplished by joining the
multicast group that transmits the supplementary substream.

Implementation of ECN-Capable Receiver-Driven
Layered Multicast in ns-2 Environment

A system able to provide ECN-capable layered multicast
consists of an ECN-capable sender, set of ECN-capable
network nodes and an ECN-capable receiver.
The sender node is built using the sender application able to
perform layered transmission, connected to the node via
ECN-capable RTP protocol. Because the ECN-capable
congestion avoidance is performed in receiver-driven
manner, the sender_driven flag is set to “false”.
The ECN-capable network nodes are the part of ns-2. Each
ECN-capable network node marks packet according to RED
algorithm (instead of packet dropping). Because of non-
stability of classic RED queue (packets are marked based on
current average queue size of all streams and, in result,
receivers frequently change received layer), multilevel RED
queue is used. Thus, in congested link, high rate stream that
produce congestion is marked first, and then medium rate
stream is marked. High priority low rate base stream is
marked only when average RED queue size is very large.
Therefore, in the case of congestion, streams that minimize
network load in congested link are promoted.

# create ECN-capable RTP
set rtp1 [new Agent/RTP/ECN]
$ns attach-agent $n1 $rtp1

# create ECN-capable application
set app1 [new Application/LM/ECN]
$app1 attach-agent $rtp1
$rtp1 set receiver_app $app1

$rtp1 set reciver_driven true

Figure 4: A Fragment of the OTcl Script Defining
the ECN-Capable Layered Multicast Receiver.

The ECN-capable layered multicast receiver consists of two
components, the ECN-capable application, able to perform
layered multicast reception (Application/LM/ECN object in
OTcl – see Figure 4), and the ECN-capable RTP protocol

(Agent/RTP/ECN object in OTcl). Both components are
connected using attach-agent method for data transmission
and receiver_app method to assign callback function.
The receiver_driven flag set to “true” enables the
receiver-driven ECN-capable congestion avoidance.

SIMULATION RESULTS

Congestion in the network is observed as buffers overflow
and, in result, as packet losses. Therefore commonly used
metric to monitoring the network for congestion is the packet
loss ratio - the percentage of all packets discarded for lack of
buffer space.

Configuration of the experiment

The network topology used in simulation is shown in Figure
5. The sender is connected to the router A with a link at 10
Mbps bandwidth and 1 ms delay. Receivers R1, R2 and R3
are connected to the router B through 5 ms delay link at 2
Mbps, 0.8 Mbps and 0.4 Mbps, respectively. Router A use
the classical Drop Tail queue management. Router B use
ECN-capable RED mechanism with three levels for active
queue management. Routers are connected with a link at 2
Mbps bandwidth and 10 ms delay.
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router B 

Receiver R1

Receiver R2

Receiver R3

0.8
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2 Mbps

2 Mbps
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Figure 5: The Network Topology Used in Simulation

Layered videos are based on ten MPEG-4 traces, encoded
with high, medium and low picture quality. Video traces are
generated from movies (Jurassic Park, Mr Bean, Die Hard,
Star Trek, Star Wars, Starship Troopers), sport event
recorded from German cable TV (Formula 1), static camera
located in lecture room (cam1) or in office (cam2) and from
parking security camera (cam3). Each test sequence, used in
the experiment, consists of 15 000 video frames at 25 Hz and
represents 10 mins of video. Properties of used video traces
can be found in (Fitzek and Reisslein 2001).
The video stream is distributed from MPEG-4 sender to all
receivers (MPEG receiver 1 through 3) using multicast
layered transmission. Receiver connects to the multicast
group, which transmit the high priority stream (containing
layer 1), and, optionally, to one or two supplementary groups
(layer 2 and layer 3). Supplementary groups carry low
priority streams.

Results

Receiver R1
It was empirically proved that all high quality traces could be
transmitted via 2 Mbps link without packet drops. In result,
receiver R1, connected via 2 Mbps (non-congested) link is
able to receive full video information (layer 1 to 3).



Results obtained for receiver R1 show that transmission is
stable, no packet drops are observed. Because link isn’t
congested, ECNs are not observed.

Receiver R2
Receiver R2 is connected to router B via lightly congested
link. For a great amount of tested video sequences, R2 is able
to receive layer 2. If the video source is characterised by
low-detail, slowly dynamic content, R2 can connect to layer
3. Such a situation was observed for e.g. for cam1 video
source (typical “talking head”).

Table 1: Statistical Properties of Packet Loss Ratio Obtained
for Receiver R2

high priority stream low priority streamsvideo source min max mean min max mean
Jurassic Park 0% 1% 0.025% 0% 13% 0.2%

the others 0% 0% 0% 0% 0% 0%

For almost all test video sequences, transmission between
sender and R2 is stable, no packet drops are observed. A low
packet loss ratio is observed only for 1 in 10 video sequences
(Jurassic Park – see Table 1). Moreover, all observed packet
losses occurs only between 10 and 12 second of transmission
and they are caused by unexpected scene change (a dynamic
scene follows the slowly one). Generally, no ECNs are
observed at the high priority stream and relatively small
amount of ECN marked packet are observed for low priority
stream. In result, the ECN-capable layered multicast allows
reception of the best quality signal that the network can
deliver (layers 2 or 3) without packet drops.

Receiver R3
Receiver R3 is connected to router B through heavy
congested link. R3 is able to receive layer 1 and, if the video
trace is small enough, can connect to layer 2.

Table 2: Statistical Properties of Packet Loss Ratio Obtained
for Receiver R3

high priority stream low priority streamsvideo source min max mean min max mean
Jurassic Park 0% 4% 0.1% 0% 45% 0.99%

cam3 0% 0% 0% 0% 8.9% 0.15%
Die Hard 0% 0% 0% 0% 4.7% 0.07%
Formula 1 0% 0% 0% 0% 1.1% 0.02%
Star Wars 0% 2% 0.035% 0% 19% 0.3%
the others 0% 0% 0% 0% 0% 0%

For half of test video sequences, transmission between sender
and R3 is stable, no packet drops are observed (Table 2).
High priority stream (layer 1) is usually transmitted error-
free, only for two video sequences (Jurassic Park and Star
Wars) small packet drops are detected. Low priority stream
(layer 2 and layer 3) has incidental packet drops, but average
packet loss ratio never exceeds 1%. A small amount of ECNs
appears for layer 1 and larger for layer 2.

CONCLUSIONS

This paper presents a multimedia delivery system able to use
ECN-capability of IP protocol. The core of the proposed
multicast multimedia delivery is the extended RTP transport
protocol. The main innovation introduced to the RTP
protocol is its ability to use congestion information carried
by ECN bits. Proposed solution supports both types of
congestion control: the sender-driven and the receiver-driven
one.
On the basis of the proposed definition of ECN-capable RTP
protocol, new ns-2 RTP module has been created. This
module was used as a part of an ECN-capable
receiver-driven layered multicast transmission system.
The simulation model was tested in various network
environments and in different network conditions. The
exemplary results are shown in the paper. The behaviour of
the simulations conform to expectations - experiments show
that the use of ECN-capable multicast transmission allows
achieving stable transmission of the layered video stream,
with no packet loss or low packet loss ratio.
Implemented modules may be used for further research on
ECN-capable congestion avoidance for multimedia
communication.
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