
AN AGENT-BASED ARCHITECTURE FOR SOLVING
DYNAMIC RESOURCE ALLOCATION

PROBLEMS IN MANUFACTURING

Lars Mönch, Marcel Stehli Roland Schulz
Technical University of Ilmenau TewiSoft GmbH

Institute of Information Systems, Helmholtzplatz 3 Ehrenbergstrasse 11
D-98684 Ilmenau, Germany D-98684 Ilmenau, Germany

E-mail:{Lars.Moench|Marcel.Stehli}@tu-ilmenau.de E-mail: Roland.Schulz@tewisoft.de

KEYWORDS
Manufacturing, Shop-Floor-Control, Agent-Based Mode-
ling, Object-Oriented Frameworks, System Architecture

ABSTRACT

In this paper, we present results of agent-based modeling
for the solution of dynamic resource allocation problems in
manufacturing. After a concise problem description, we
start by identifying the agents necessary for the required
shop floor control functionality. Then we describe the
architecture and implementation of a multi-agent-system
prototype based on the object-oriented framework JAF-
MAS, a blackboard-type data layer and the discrete event
simulator ParSimONY. We present results of computational
experiments with our prototype multi-agent-system.

INTRODUCTION

Recently, distributed approaches to shop floor control
have attracted a greater interest in the community (Roy and
Anciaux 2001, Tranvouez et. al 2001). The two main reasons
are the following: Firstly, important steps have been made
towards a theoretical foundation and experimental evalu-
ation of multi-agent-systems over the last five years. Se-
condly, the development of modern middleware and the
further dissemination of the Java programming language
have greatly reduced the implementation effort for this kind
of system.
In this paper, we study a resource allocation scenario that
stems from flexible manufacturing. Problems of this type
have been discussed in the context of multi-agent-systems,
for example in (Ottaway and Burns 2000) and in (Dewan and
Joshi 2001).
Traditionally, in the context of shop-floor control, one uses
a contract-net based solution for resource allocation prob-
lems. The existence of managers (clients) and contractors
(servers) is essential for this approach. The basic idea
comprises manager agents looking for task-solving entities
and contractor agents offering task-solving abilities. The
manager agents announce tasks, receive and evaluate bids
from potential contractors. The contractor agents receive

task announcements of the manager agents, evaluate his
capability to respond and, if possible, respond with a bid
and finally perform the task if his bid is accepted. The basic
manager-contractor approach has the drawback that the
acceptance competence is exclusively with the manager
agent. An approach to solve this problem is the
coordinator architecture introduced, for example, by
(Zelewski 1997). Here, in addition to the manager and
contractor role one integrates the coordinator (mediator)
role into the multi-agent-system. Because the coordinator
has the character of a centralized entity, the coordinator will
be a bottleneck in large systems. Problems arise also in the
case of a failure of the coordinator. However, for relatively
small problems the coordinator architecture shows some
advantage over the pure manager-contractor architecture.
Contract-net based resource allocation approaches can be
used at the lowest level of distributed, hierarchical shop-
floor control systems. Bidding procedures must be used in
situations, where no valid schedule is available. The analy-
sis and design results for such a system in the semicon-
ductor manufacturing domain are described in (Mönch
2001).
The aim of our research was twofold. Firstly, we are inter-
ested in developing an architecture that allows for integra-
ting a multi-agent-system and a discrete event simulator.
For that purpose we extend the generic architecture
suggested by Mönch et al. 2002 to the present case. Se-
condly, in order to carry out a validation of our research,
we are interested in extending the results of a bidding
procedure suggested by Mönch and Stehli 2002 from the
static to the dynamic case. In this paper, we report about
these two aspects of our research.

PROBLEM DESCRIPTION

We are interested in solving the following problem from
manufacturing: Given n jobs, which have to process on
m different machines, we are interested in minimizing the
value of the performance measure Average Weighted Tar-
diness (AWT) of the n jobs:

()ii

n

1i
i dc,0maxw

n
1

:T −= ∑
=

, (1)

where we denote by
:w i weight of job i,

:c i completion date of job i,

:d i due-date of job i.

Note that this performance measure is attractive in due-date
oriented manufacturing environments (for example in
semiconductor manufacturing).
We assume that each single machine is able to perform
processing steps of more than one product. Furthermore, in
order to investigate a more realistic scenario we consider
the following process restrictions:
• We suppose the case of dynamic job arrival, i.e., each

job i has an additionally attribute, the ready time ir .

• There exists sequence-dependent setup times, which
usually are a multiple of the pure processing time.

• In the manufacturing environment under investigation,
we find charge production. Here, we define a charge as
a temporary collection of different jobs with the aim to
process these jobs at the same time on the same ma-
chine. The basic decision is whether to wait for jobs in
order to obtain a full charge or to process the (non-full)
charge immediately.

• Machine failures occur in a stochastic manner.
• The material handling system is assumed always avai-

lable.
• Transportation times are assumed included into the

processing times of the single jobs.
For problems of this type, there is a vast literature. How-
ever, we found only a small number of papers dealing with
questions like how to choose costs and how to implement
distributed prototype multi-agents-systems for such situa-
tions (cf. Brennan and William 2000 for the implementation
of such a scenario using DCOM technology).

AGENTIFICATION OF THE PROBLEM

Multi-Agent-Systems offer a way to obtain the desired
compromise between centralized control and fully decen-
tralized control (cf. Baker 1998 and Van Brussel et al. 1998).
Starting with the PROSA architecture (Van Brussel et al.
1998), we distinguish between decision-making agents and
staff agents. Decision-making agents solve decision
problems while the staff agents try to support them in the
course of the decision-making process. In the PROSA
architecture, we find order, product and resource agents as
abstract classes.
Starting from the results related to the PROSA architecture,
we identified three basic agent types in our application sce-
nario:
• Each job agent represents a single job. We use job

agents to monitor the job’s production progress.
• Machine agents represent a single machine on the

shop floor. The machine agents keep track of the pro-
duction progress of the machine and its response to
the requests of the mediator agent.

• Mediator agents are required to realize a matching
between the job agents and the machine agents. A

mediator agent is a kind of a staff agent as suggested
in the PROSA architecture. It supports the decision-
making entities job agent and machine agent during
the fulfillment of their own goals.

Note, that we do not describe any further staff agents be-
sides the mediator agent, because we are more interested in
implementation issues and, in this paper, try to keep the
scenario as simple as possible. However, as explained in
(Mönch 2001) it is extremely important to identify the
proper hierarchies and staff agents in order to develop a
multi-agent-system for a special application domain. Our
research does not model product agents explicitly because
we consider product information in our study as static in-
formation. Note, that this is usually not true in more realis-
tic application scenarios. We show the used agents in Fi-
gure 1.

AgentAgent

Decision-Making
Agent

Decision-Making
Agent

Staff
Agent
Staff
Agent

Resource
Agent

Resource
Agent

Order
Agent

Order
Agent

Machine
Agent

Machine
Agent

Job
Agent
Job

Agent

Mediator
Agent

Mediator
Agent

Figure 1: Agentification of the Manufacturing Problem

BIDDING SCHEME

We are interested in a robust bidding scheme that mimics
the situation in a real shop floor. The basic idea that was
suggested by two of the present authors (Mönch and
Stehli 2002) is the introduction of properly chosen machine
costs. We use these machine costs to give each job agent a
certain amount of currency. For the sake of completeness
we repeat the main ingredients of our bidding scheme.

Introduction of Machine Hour Rates
Machine hour rates are calculated as follows (cf. Warnecke
et al. 1996). In a first step, we calculate the following two
quantities for each machine of the shop floor (usually we
choose one year as a fixed period T):
a) i,failt is an estimate of the time (per period T) that the

i-th machine is unavailable due to technical reasons.
The time for repair, preventative maintenance, breaks
and holidays is included into the quantity i,failt .

b) i,techt is an estimate of the time that the i -th machine

is unavailable due to technological reasons. The
quantity i,techt is determined by tests (especially in

semiconductor manufacturing) in order to choose
appropriate parameters of the machine.

We obtain the amount of time of machine i , designated to
processing jobs (per period T) as follows:

)tt(T:)T(t i,techi,faili,t +−= . (2)

In a second step, it is necessary to calculate the costs that
accumulate at a single machine. We have to distinguish
between variable and fixed costs. Variable costs depend on
the production consumption of the machine. Examples for
variable costs varC (per period T) are:

- costs for special materials for processing of process
steps on the machine (for example, special gases in
semiconductor manufacturing)

- costs for using the machine during the production
process (for example for electrical energy)

- costs for maintenance, which depend on the number of
completed process steps.

Fixed costs fixC are necessary in order to model expenses

that are independent of a machine’s usage (for example,
rental costs for the shop floor, wear and tear of the
machine).
We determine the machine hour rate imh for machine i by

using the following formula:

)T(t

CC
:mh

i,t

i,fixivar,
i

+
= , (4)

i.e., the machine hour rate is given by the cost of the
machine related to one single time unit of usage.
Machine hour rates are implemented in many enterprise
resource-planning systems

Costs for Producing Jobs of a Single Product
We denote the set of products by { }m1 p,...,p:P = . Each

product ip has a process flow ()nii2i1 s,...,s,s:S = . Here,

we denote by kis the k-th process step of ip . The time kit
is required for processing kis on machine ki . The costs for

the production of a job of product ip are calculated as

follows:

)t(aver)mh(aver:)p(C ki

n

1k
kii ∑

=

= . (5)

We use the notation ()aver in order to indicate, that we use

average values for machine hour rates and for processing
times in the case of parallel machines.

Costs for Job Agents
The goal of the job agents is to optimize the purchase of
scarce machine capacity provided by the machine agents.
The achievement of this goal is controlled by the objective
function

()0,dcmaxg JJ:J −= , (6)

where we denote by

:Jc completion time of job J ,

:Jd due-date of job J .

Note, that the objective function of a single agent (6) is a
part of the objective function of the whole production sys-
tem (1).
Suppose, that agent JA is designated to produce a job of

product ip . The budget

() JmJt

Pk
kk

i
mtJ MwTw

)p(C
)p(C

ww1:)A(B +

∈

+
λ

−−=
∑

, (7)

where
:TJ measure of the due-date priority of job J ,

:M J measure of the importance of job J from ma-

nagement point of view,
:w t weight for due-date priority,

:wm weight for management importance,

:kλ frequency of jobs of product kp ,

is given to the agent after release into the shop floor. Here,
0w,w,1ww mtmt ≥≤+ and ∑

∈

λ
Pk

k =1 and 0k ≥λ are

valid.
The due-date priority of a job J is given by the ratio:

 timeactual - date-due
 timeprocessing remaining

:TJ = . (8)

We calculate the management importance of job J as fol-
lows:

=

important very is J job if,
4
3

important is J job if,
2
1

important not is J job if,
4
1

 :MJ . (9)

The job agent pays a price P to the corresponding ma-
chine agent for carrying out a process step of the job on
the machine represented by the machine agent. This price
reduces the budget)A(B Jold of the job agent by P. The

new budget is denoted by)A(B Jnew . In order to avoid a

hold of jobs, that have a too small budget, a refresh of the
budgets is carried out after a fixed amount of time. We
consider only these jobs for budget update that required
no machine capacity for a time thresholdt . We determine the

new budget)A(B Jnew as follows:

λ
=

∑
∑

∈

+=)A(B,
)p(C

)t(aver)mh(aver

max:)A(B Jnew

Pk
kk

n

1lk
kiki

Jnew ,(10)

where we suppose, that the job has finished the process
step ls and the next process step is 1ls + . The update

scheme (10) ensures, that each job agent has at least that
budget required to pay the machine costs based on (5) for
its remaining process steps.

Costs for Machine Agents
The goal of the machine agents is full utilization of the
machines. This goal includes especially the minimization of
setup-times and a maximization of the load, because this
yields an increase of the dynamic capacity of the shop
floor. Therefore, we consider the following combined ob-
jective function

() (),)UM1(SCmin:MG k2k1
Ik

i −αα= +
∈

 (11)

where 121 =α+α and 0i ≥α are valid. Here, we use the

following notation:
:I Set of indices of the jobs (charges) that are

waiting in front of the machine,
:SCk normalized setup costs,

:UMk normalized fullness of charge k ,

:iα weight of the i-th objective.

A machine agent offers the job agent (product ip , actual

process step kis), processing capabilities at the price:

)UM1(wSCw
)p(C

tmh
)ww1(:)M(P kchks

Pk
kk

kii
chsi −

λ
= ++

∈

−−

∑
,

(12)

where 0ww,1ww ch,schs ≥≤+ hold. We denote by sw
the weight of the setup costs and by chw the weight of the

fullness of the charge.
Note, that in case of a full load the necessary price to be
paid is lower than in case of a non-full charge. Shorter
processing times lead also to lower prices under the
assumption of identical machine hour rates.

OVERALL ARCHITECTURE OF THE SYSTEM

Multi-Agent-System Prototype
An agent is a software entity that allows for autonomous
decisions. By using communication capabilities, an agent
demonstrates also cooperative behavior (Nwana et al.
1998).
We used the object-oriented framework JAFMAS (Chau-
han 1997) as a starting point for a prototype of a multi-
agent-system. The framework facilitates the development of
multi-agent-systems by hiding most of the implementation
details of communication capabilities. JAFMAS is a white-
box framework (cf. (Pree 1996)) based on Java software
technology. An abstract basic class agent is used in
JAFMAS. Each agent contains references to objects of

different classes that support commu nication. The Multi-
castCom object provides functionality to implement a mul-
ticast communication in the multi-agent-system. Concrete
classes must be derived from the abstract classes
DirectedComImpl and DirectedComIn in order to use direct
communication abilities of the agents.
For communication purposes, each agent contains
references of different conversation objects. A certain
conversation consists of a set of conversation rules that
specify the behavior of the agent in a situation dependent
manner. We refer the reader to the work (Stehli 2002) and
the paper (Mönch and Stehli 2002) for the details of the
implementation of the multi-agent-system prototype.

Discrete Event Simulator for Shop-Floor Emulation
We use a simulation environment in order to emulate the
behavior of a shop-floor (cf. Mönch et al. 2002 for a generic
framework handling this situation). A real shop-floor
communicates with the shop-floor control and/or
scheduling system over a message bus. Additionally, an
event-based online communication between the simulation
and the shop-floor control software has to be established
in order to realize the control of the material flow in the
simulator based on decisions of the shop-floor control
software.
We decided to use the simulation package ParSimONY
(Preiss and Wan 1999). ParSimONY is a discrete event
simulator written in the Java programming language that
was especially developed for distributed simulation.
Classes that allow for the simulation of manufacturing
systems were added by Schulz (cf. Schulz 2001). A
subscription/notification mechanism was added in order to
send information from the simulation model to a data layer.
For that purpose special events were defined. These events
allow for a monitoring of machine and lot states. The event
handling mechanism was implemented in the component
PSY_Event (see Figure 3). The use of a discrete event
simulator for performance evaluation of multi-agent-
systems was described by Henoch and Ulrich 2000 and by
Brennan and William 2000.

Blackboard-Type Data Layer
We adapt the data layer described by Mönch et al. 2002 to
the present situation. The scheduling system described
there has to be replaced by the multi-agent-system. Instead
of using the discrete event simulator AutoSched AP we will
use the simulator ParSimONY. We can distinguish between
two types of data in the blackboard. We collect static data
like
• information about process flows
• setup information
• existing machines
• processing times
and dynamic data like
• lot release information

B B _ S t a t i o n F a m i l y T

B B _ O p e r a t i o n T

B B _ L o t S t a t e T

B B _ S t a t i o n TB B _ S t a t i o n S t a t e T B B _ P r o c e s s S t e p T

B B _ R o u t e S t e p T

B B _ S c h e d u l e TB B _ S e t u p T

a l l o w e d o n

p r o c e s s e d o n

h a s B B _ L o t TB B _ R o u t e T

B B _ S t a t i o n F a m i l y T

B B _ O p e r a t i o n T

B B _ L o t S t a t e T

B B _ S t a t i o n TB B _ S t a t i o n TB B _ S t a t i o n S t a t e TB B _ S t a t i o n S t a t e T B B _ P r o c e s s S t e p T

B B _ R o u t e S t e p T

B B _ S c h e d u l e TB B _ S e t u p T

h a sh a s

h a s

s c h e d u l e d o n

B B _ L o t TB B _ R o u t e T

h a s

Figure 2 UML Class Diagram of the Black-Board

• lot states
• machine states
• setup states of a certain machine
in the blackboard. The blackboard is used in different
situations.
1. The multi-agent-system reads information from the

blackboard.
2. We initialize the blackboard at the beginning of the

simulation run by reading all required information from
the corresponding simulation objects.

3. We update the objects of the blackboard during the
simulation run in an event-driven manner.

The blackboard was developed in the Java programming
language. The UML class diagram for the blackboard is
presented in Figure 2.
A timer starts the multi-agent-system in the case of time-
driven triggering. This approach allows for the application
of rolling horizon approaches. On the other hand, events of
the shop-floor, i.e., simulation events, trigger the start of
the multi-agent-system. The multi-agent-system uses only
date stored in the blackboard in order to calculate
schedules. No internal information from the simulation
model is going to be used. By using this architecture, in
principle, the simulator could be replaced by an arbitrary
manufacturing execution system of a real factory. We can
see the described architecture in Figure 3.

RESULTS OF COMPUTATIONAL EXPERIMENTS

Experimental Design
We assume a manufacturing system that consists of four
different machines. We see the corresponding machine

data of the scenario in Table 1. We consider the case of
three different products. The corresponding product data
can be found in Table 2.

Performance Evaluation
We use the performance measure AWT given by (1) in our
experiments. The product mix uses the same number of jobs
of each product. We compare our bidding scheme based on
machine hour rates (MHR) with the First-In-First-Out
(FIFO) dispatching rule. The percentage of important jobs
was 80%.
Results of simulation runs can be seen in Figures 4. MHR
outperforms the simple heuristic that is widely used in
shop-floor control. MHR is better suited to the task of
distributing the jobs over machines with different char-
acteristics.
In order to measure the performance of our approach more
sophisticated dispatching rules (for example the apparent
tardiness cost rule Pinedo 1995) and other contract net
approaches should be included into the experiments.

Table 1 Machine Data
Machine Process Step Duration

(Time Units)
Machine

Hour Rates
1 A 4 7

B 6 7
2 A 6 5

B 8 5
C 3 5

3 B 6 7
C 5 7
D 6 7

4 D 8 5

Table 2 Product Definitions
Product Process Flow

1 A-B-C
2 B-D-C
3 A-D-B-C

Multi-Agent-System

Blackboard BB_Factory

Coupling Component PSY_Event

Simulator ParSimONY

Event point
of view

Agent point
of view

initialize

Information
Update

Scheduling
Information

Init_Model
LotEntersFab
LotLeavesFab

...
LoadStation

Selection
Mechanism

Events

Create/Destroy
Agents

Figure 3 System Architecture

SUMMARY

In this paper, we present the results of agent-based mod-
eling for dynamic resource allocation problems in manu-
facturing. We described an architecture including the multi-
agent-system, a blackboard and a discrete event simulator.
We report on the prototypical implementation. We present
the results of some computational experiments in the last
part of the paper.

MHR vs. FIFO

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40

Number of released jobs

A
W

T
 (t

im
e

U
n

it
s)

MHR FIFO

Figure 4: Performance Comparison based on AWT

ACKNOWLEDGEMENT: The first and the second author
gratefully acknowledge the support of the Deutsche For-
schungsgemeinschaft (DFG) - Priority Research Program
1083 “Intelligent Agents and Realistic Commercial
Application Scenarios” for this work. The authors would
like to thank Frank Mock for his valuable programming ef-
forts.

REFERENCES

Baker, D. A. 1998. "A Survey of Factory Control Algorithms
which Can be Implemented in a Multi-Agent Heterarchy:
Dispatching, Scheduling, and Pull". Journal of Manufacturing
Systems, Vol. 17/No. 4, 297-320.

Brennan, R. W. and O. William. 2000. "A Simulation Test-Bed to
Evaluate Multi-Agent Control of Manufacturing Systems". In
Proceedings of the 2000 Winter Simulation Conference, J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.,
1747-1756.

Chauhan, C. 1997. JAFMAS: "A Java-based Agent Framework
for Multiagent Systems – Development and Implementation".
PhD Dissertation, University of Cincinnati.

Dewan, P. and S. Joshi. 2001. "Implementation of an Auction-
Based Distributed Scheduling Model for a Dynamic Job Shop
Environment". International Journal of Computer Integrated
Manufacturing, Vol. 14, No. 5, 446-456.

Henoch, J. and H. Ulrich. 2000. "HIDES: Towards an Agent-
Based Simulator". In Proceedings of the Workshop 2000
“Agent Based Simulation”, eds.: C. Urban, 259-263.

Krothapalli, N. K. C. and A. V. Deshmukh. 1999. "Design of
Negotiation Protocols for Multi-Agent Manufacturing Sys-
tems". International Journal of Production Research, Vol. 37,
No. 7, 1601-1624.

Mönch, L. 2001. "Towards an Agent-Based Production Control
in the Semiconductor Industry". In Proceedings 13th Euro-
pean Simulation Symposium (ESS 2001), Marseille, 941-945.

Mönch, L., O. Rose and R. Sturm. 2002. "Framework for the
Performance Assessment of Shop-Floor Control Systems". In
Proceedings of the International Conference on Modeling and
Analysis of Semiconductor Manufacturing (MASM 2002).
Tempe, 95-100.

Mönch, L. and M. Stehli. 2002. "Agent-Based Modeling and
Implementation of Resource Allocation Scenarios in
Manufacturing". In Proceedings 3rd International Workshop
on Agent-Based Simulation, Passau, 149-154.

Nwana, H. S., L. Lee, and N. R. Jennings. 1998. "Coordination in
Multi-Agent Systems". In "Software Agents and Soft Com-
puting – Towards Enhancing Machine Intelligence", Nwana,
H.S., Azarmi, N. (Eds), Lecture Notes in Artificial Intelli-
gence, Springer, 42-58.

Ottaway, T. A. and J. R. Burns. 2000. "An Adaptive Production
Control System Using Agent Technology". International
Journal of Production Research, Vol. 38, No. 4, 721-737.

Parunak, H. V. Dyke, A. D. Baker, and S. J. Clark. 1998. "The
AARIA Agent Architecture: From Manufacturing Require-
ments to Agent-Based System Design". In Proceedings
ICAA’98, Workshop on Agent-Based Manufacturing.

Pinedo, M. 1995. Scheduling: Theory, Algorithms and Systems.
Prentice Hall, N.J.

Pree, W. 1996. Framework Pattern. SIGS Books, New York
City.

Preiss, B. R. and K. W. C. Wan. 1999. "The Parsimony Project:
A Distributed Simulation Testbed in Java". In Proceedings of
the 1999 International Conference On Web-Based Modelling
& Simulation. 89-94.

Roy, D. and D. Anciaux. 2001. "Shop-Floor Control: a Multi-
Agent Approach". International Journal of Computer
Integrated Manufacturing, Vol. 14, No. 6, 535-544.

Stehli, M. 2002. "Konzeption und Implementierung eines
kontraktnetzartigen Allokationsmechanismus unter Benut-
zung eines objektorientierten Frameworks". Diplomarbeit,
Technische Universität Ilmenau, Institut für Wirtschafts-
informatik.

Schulz, R. 2001. "Einsatz der Parallelen und Verteilten Simulation
zur Simulation von Produktionssystemen". In Proceedings
"Simulation und Visualisierung 2001". 67-78.

Tranvouez, E., A. Ferrarini, and B. Espinasse. 2001. "A Multi-
Agent Modelling and Simulation of Workshop Disruptions
Management by Cooperative Rescheduling Strategies". In
Proceedings 13th European Simulation Symposium (ESS
2001),Marseille, 917-924.

Van Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts, and P.
Peeters. 1998. "Reference Architecture for Holonic Manu-
facturing Systems: PROSA". Computers in Industry, Special
Issue on Intelligent Manufacturing Systems, 37(3), 225-276.

Warnecke, H. J., H.-J. Bullinger, R. Hichert, and A. Voegele.
1996. Kostenrechnung für Ingenieure. Carl Hanser Verlag,
München, Wien.

Zelewski, S. 1997. "Elektronische Märkte zur Prozeßkoordi-
nation in Produktionsnetzwerken". Wirtschaftsinformatik 39,
(1997) 3, 231-243.

AUTHOR BIOGRAPHIES

LARS MÖNCH is an Assistant Professor in the Depart-
ment of Information Systems at the Technical University of
Ilmenau, Germany. He received a master’s degree in applied
mathematics in 1994 and a Ph.D. in the same subject from
the University of Göttingen. He worked at Softlab GmbH,
Munich, in the area of object-oriented software develop-
ment. His research interests are in simu lation-based pro-
duction control of semiconductor wafer fabs, applied op-
timization and artificial intelligence applications in manu-
facturing. He is a member of GI (German Chapter of the
ACM), GOR (German Operations Research Society) and
SCS. His email address is <Lars.Moench@tu-
ilmenau.de>.

MARCEL STEHLI is a Ph.D. student in the Department of
Information Systems at the Technical University of Il-
menau, Germany. He received a master’s degree in
Information Systems in 2002. His research interests are in
agent-based modeling applied to manufacturing problems
and in object-oriented software development. His email
address is <Marcel.Stehli@tu-ilmenau.de>.

ROLAND SCHULZ is a software development engineer at
TewiSoft GmbH, Ilmenau, Germany. Prior to his current

position he was a Ph.D. student in the Department of
Information Systems at the Technical University of Il-
menau, Germany. He will finish his Ph.D. dissertation in
autumn 2002. His research interests are in distributed and
parallel simulation and in simulation applications in ma-
nufacturing. His email address is <Roland.-
Schulz@tewisoft.de>.

	c0: Proceedings 14th European Simulation SymposiumA. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

