
JOB SEQUENCING PROBLEM
IN A SEMI-AUTOMATED PRODUCTION PROCESS

Roberto Mosca
Filippo Queirolo

Flavio Tonelli
Department of Production Engineering

University of Genoa
Via all’Opera Pia 15, I-16145

Genoa, Italy
e-mail: tonelli@itim.unige.it

KEYWORDS
Sequencing, Simulators, Optimization, Parallel Processing

ABSTRACT

In this work the authors addresses the problem of
sequencing a set of jobs on a single machine using a genetic
algorithm and simulation. The goal is to find the schedule
that minimizes the total earliness and tardiness penalties of
all jobs, under the assumptions that no pre-emption of jobs
is allowed and all jobs are available at time zero. In order to
accelerate the search process, the Authors also implemented
a procedure for genetic algorithm initialization. Simulation
has been used for the fitness evaluation of the population’s
members: in this way, one of the most critical issues related
to evolutionary computation has been successfully
addressed. This hybrid approach led to an effective tool
adopted for the scheduling in a real production plant, where
three bottling lines are used and several kind of product are
commercialized.

INTRODUCTION

In the paper the problem of single machine scheduling
(SMS) is addressed. SMS represents the simplest of all
possible scheduling problem. Nevertheless SMS provides
important basis for heuristics approaches that are adopted in
the cases of more complex production processes [Pinedo
2002].
Indeed flow shop, flexible flow shop, job shop and open
shop scheduling problem are often addressed decomposing
the original planning process into many sub-problem that
can be solved by using single machine techniques.
Since 1955 several approaches have been proposed for this
class of scheduling problems: EDD rule [Jackson 1955];
WSPT rule [Smith 1956; Lawler 1978; Sidney and Steiner
1986]; branch and bound methods [Nowicki and Zdrzalka
1986]; number of late jobs minimization [Moore 1968]; the
scheduling problem as a knapsack problem [Gens and
Levner 1981; Potts and Van Wassenhove 1988]; due date
assignment problem [Cheng and Gupta 1989]; dynamic
programming approaches  [Potts and Van Wassenhove
1982, 1987]; PTAS [Chekuri et al. 1997; Schuurman and
Woeginger 1999]; earliness and tardiness penalties [Baker
and Scudder 1990]; SMS with multiple objectives [Chen

and Bulfin 1993; Hoogeveen and Van Der Velde 1995]; the
SMS as a TSP [Gilmore and Gomory 1964; Bianco et al.
1988; Wittrock 1990].
This work adopts an evolutionary approach for SMS greatly
integrated by simulation: in the studied case, the SMS looks
as a sequencing problem and the sequencer has been
realized by using an hybrid solution, which joins genetic
algorithm (GA) and simulation.
The authors deal with the proposed approach starting from
a real industrial case study, concerning an Italian SME
operating in the large consumer good market.
The remainder of the paper is organized as follow: after a
brief introduction to the studied case, the proposed
approach is followed up and the genetic paradigm and
operator are described; then the contribute of simulation is
highlighted and the conclusions are drawn.

THE REAL INDUSTRIAL CASE

The studied production process is a flowshop process: three
semi-automated production lines are sited in the plant and
the equipment is connected by rolling tapes. Two lines
request the presence of eight employs, while the third needs
of ten persons. According to products’ technological cycles
long setup times are required (from 2 to 6 hours). They are
due to  the substitution of some tools, equipment calibration
for the specific size of the produced bottles and testing.

Figure 1: Information Flow Diagram in the Studied
Company
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The commercialized items

Twenty-one items are commercialized in France and in
Northern and Middle Italy. Production is generally
organized according to make to stock policy. Nevertheless a
significant part of the produced items can be manufactured
just when unforecasted orders come: in this case a mixed
(make-to-stock/ make-to-order) policy is followed and the
rescheduling of the activities is required.

Hidden set-up

When production is realized by using one of the two
8-employs lines, two persons execute PET bottles’
preforms insuffling  operations or the setup activities on
another production line: in this way it is possible that the
setup time is hidden and the total completion time is
reduced.

Figure 2: Hiding Setup Significantly Reduces Total
Completion Time

Lot sizing solutions

The batches are determined as a function of the production
rates: a batch is equal to the produced quantity during a
turn. In some particular cases (generally during summer)
the minimum batch size is equal to the production realized
in an half of a turn.

ONE SINGLE MACHINE SCHEDULING

Because of the features of the production processes, the
scheduling problem is reduced to a job sequencing problem.
It means that the goal is determining the sequence, which
optimizes the performance indices. This approach is
consistent because the three production lines cannot work in
a parallel way. Thus one can think to each lines as a single
machine that transforms raw materials in finished goods
(each flowshop is modeled by observing the production
bottleneck of the lines). Sequencing is an integer
optimization problem on bounded domain. The Authors
faced this problem by using an hybrid approach, which
joins a genetic algorithm and a simulator.

GAS FOR SEQUENCING

In order to find a solution for job sequencing, searching for
an optimum (or sub-optimum) order  of a list of objects is
required. This problem is generally classified as a
constrained optimization problem (COP). GAs have been

successfully applied in the case of continuous function
optimization [Chambers 1995] on bounded domain. Even if
binary codes of the problem are generally adopted, several
real cases concern multidimensional search. Many solutions
have been provided for coding problem (see for example
[Mitchell 1995]). In this work, the Authors adopted a code
based on a alphabet of n symbols.
Traditional genetic operators are named crossover and
mutation: crossover is responsible for mixing the portions
of the sequences selected as parents; mutation introduces
stochastic ness in the research process [Mitchell 1995].
However, in several industrial cases, developers should
design specific genetic operators, based on the
characteristics of the treated problem.

An OR viewpoint for sequencing problem

It’s well known that COPs belong to the class of NP-hard
problem [Mackworth 1977; Freuder 1978]. Therefore no
classic research algorithm is available which is able to find
the optimal solution (of every COP) in polynomial time.
Several Authors [Dechter and Pearl 1988, 1989; Fox et al.
1989; Freuder 1982, 1985] deeply investigated the
performance of different heuristic algorithms for COPs. In
spite of these significant efforts, a need for an efficient
method is required by industry. Since 1983, theoretical
bases have been drawn for the selection of the best heuristic
for the assignment of the value to the variables [Nudei
1983]. However that and following results are characterized
by the probabilistic approach: no effective solution of the
faced problem is guaranteed.
Some algorithms are especially suitable for simple COPs;
this is the case of problem where no cycles and/or implicit
constraints are. Nevertheless the COPs concerning real
problem are characterized by high dimensional research
space, many cycles and implicit constraints. As a result
determining optimal solution of a COP is generally
performed by trial-and-error search algorithm.
For these reasons determining robust general purpose
algorithms for this class of problem is a relevant issue both
from theoretical and applicative viewpoint.

Heuristic Genetic Algorithms

During last ten years evolutionary computation  has
represented an interesting and important method
approaching COPs.
Contrary to traditional search methodology, the aim of the
heuristic genetic algorithms (HGAs) are not the exhaustive
exploration  (performed in some way) of all the possible
solutions: GAs improve the fitness of the current set of
individuals (chromosomes) by the weighted random
selection of one or more parents and create a certain
number of children from these parents by the genetic
operators.
The main advantage deriving from evolutionary approach is
related to the fact that, during each loop of the algorithm
(i.e. a generation) a whole set of potential solutions (i.e. the
population) is evaluated. In this way next individuals are
generated by the simultaneous evaluation of many
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production sequences. On the other hand, traditional
methods examine just one solution during a loop.
In the literature, authors generally refer to this property as
the parallel computation or the parallel research process.
Parents are selected with a method by which selection
probability is proportional to parent’s fitness value.
Traditional GAs are based on selection and crossover
operators that use uniform random number and are suitable
for problems, characterized by not correlated independent
variable [Davis 1985; Davidor 1991]. As a result, classic
GAs should be adapted to the specific problem in order to
be applied to constraint satisfaction problems (CSPs) and to
COPs. The most important modifies concern the code and
genetic operators.
The proposed approach substitutes uniform random
mechanisms with new operators, which allow to preserve
(almost partially) the feasibility of the candidate solutions.
The adopted genetic operators are partially derived from
heuristic approach found in literature [Chambers 1995] and,
when requested, they have been modified and integrated
with problem specific knowledge. On the other hand, new
operators have been designed in order to improve the GA’s
performance.
The main goal has been to integrate stochastic method
(proper of traditional GA) with heuristic approaches. In this
way, the best feature of each class of techniques have been
followed up. As a result, hybrid approach minimizes the
lackness of each class of mechanisms and new promising
sequences could be introduced during the search process.
However, it’s important to highlight the limitations of
evolutionary computation: while exhaustive exploration of
the research domain ever leads to a feasible solution, GAs
lead to suboptimal solutions and it’s impossible to state that
no solution can be find for the studied problem.

Genetic Operators

The genetic algorithm is developed by employing problem
specific reproduction, crossover and mutation operators.
In particular, the authors focused on crossover operator
because it determines the role of exchanging information
during evolution and this process often cause redundant or
lost features in some solutions.
In this study the uniform order-based crossover is adopted
because it is considered to best fit to the job sequencing
problem, since it allows both the absolute and relative
positions of parents’ job sequences [Chambers 1995].
In order to accelerate the converge of the genetic algorithm,
the authors also implemented a procedure for genetic
algorithm initialization: the initial sequences of jobs are
partially constructed generating sequence with EDD and
SPT rules.

Unit and relationship of the proposed model

Sequencing problem has been faced by a multi-objective
function composed by two components: the goal was to
find the schedule that minimizes the sum of the total setup
time and the earliness and tardiness penalties of all jobs,
under the assumptions that no pre-emption of jobs is

allowed and all jobs are available at time zero. Each job has
its own due date, earliness and tardiness penalty weights.

Figure 3: Schematic Representation of the Proposed Model

The first component optimizes the impact of setup times on
the total completion time. In presence of production
sequences dependent of the set-up times, a formal model
for the problem is required because of strongly NP-hard
nature of the sequencing. In accordance with [Pinedo
2002], the authors considered the scheduling problem as a
Traveling Salesman Problem (TSP). This approach is easily
understandable if one considers that the cities of the TSP
represent the jobs and the distances model the setup times.
This approach is suitable for problems characterized by
setup times that depend only on the adjacent jobs of the
production sequence. Since in this case production is
realized on three different automated lines (modeled as
three machines), setup times depend on the all production
sequence. As a result modifying the fitness of a sequence
by a specific routine is requested. The following pseudo-
code describes this procedure:

If last_item_produced_on (prod_line_i) ==
actual_scheduled_item_on (prod_line_i)
then
Setup_time = 0

Else
Setup_time = TSP_distance_between
(last_item_produced_on (prod_line_i),
actual_scheduled_item_on (prod_line_i))

End

The second component of the fitness function is derived
from a traditional heuristic function, commonly adopted in
the case of operative scheduling problem: the total earliness
and tardiness [Baker 1995]. In accordance with this
approach the (partial) fitness value is calculated as the
weighted sum of the earliness and tardiness.:
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SIMULATION FOR FITNESS EVALUATION AND
SCHEDULING ROBUSTNESS ANALYSIS

In adopting evolutionary computation the definition of a
fitness function is required. Nevertheless in the major part
of the real cases no explicit fitness function is available. So
genetic approaches are strictly related to all the research
areas which can lead to an approximation of the real fitness
function as accurate as possible. Obviously simulation
represents a suitable technique for solving this critical issue.
In this work simulation has been used for the evaluation of
the earliness and tardiness penalties (ETP)  of the
population’s members. In this way it was also possible to
validate the deterministic scheduling: simulation allows
production sequences’ robustness evaluation.

Figure 5: Flow Chart of the Fitness Evaluation Process

ETP estimation

Three simulators of the production processes have been
designed and realized in order to evaluate the fitness of the
production sequences. In accordance with [Mosca 1982],
the experimental error has been calculated as the Mean
Square Pure Error (MSpe):
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Figure 6: MSpe versus the Number of Run

For each sequence several runs are performed and the
sequence’s fitness value is calculated as the average of the
earliness and tardiness penalties observed at the end of each
run. In order to determine the optimal number of runs, the
relation between the MSpe and the number of runs has been
investigated.
According to the results of the MSpe analysis on the
number of runs, the authors calculated the fitness as the
average of the 11 simulation runs. In this way it was
possible to bound the experimental error under the 3.15%.

Stochastic simulation for sequencing validation

The proposed approach allows also to the validation of the
production sequences in a stochastic framework. Indeed the
result of the deterministic scheduling (i.e. sequencing)
process is obtained by using  a fitness function which
integrates earliness and tardiness penalties calculated on the
basis of the performance observed in a stochastic
environment.

APPLY THE PROPOSED METHODOLOGY

In order to enabled further application of the proposed
methodology, a brief list of the required activities is
provided:

1. search or design a traditional GA;
2. determine a code for the chromosome (number of gene

is equal to the planning horizon; symbols of the
alphabet are as many as the class of products);

3. extend crossover and mutation operator in accordance
with the specific constraints;

4. evaluate if the designed operators finally preserve
children feasibility;

5. in the case that feasibility is not completely preserved,
design a repairing procedure;

6. build the simulators of the production processes;
7. perform verification and validation of the simulators;
8. determine the optimal number of simulation runs;
9. design the procedure for the evaluation of total setup

time (TSP is a useful formal model);
10. integrate simulators and  setup evaluation procedure in

the GA so that fitness is calculated as the sum of
earliness and tardiness penalties and total setup time.

CONCLUSIONS

A scheduling problem with distinct due date in a single
machine is considered in this work. The adopted hybrid
(genetic and simulative) approach led to a tool effectively
adopted for the scheduling in a real production plant, where
three bottling lines are used and several kind of product are
commercialized. The authors approached the scheduling
problem in a semi-automated production process (i.e.
flowshop) as a sequencing problem. This is one of the well-
known very hard combinatorial optimization problems.
GAs are a good tool for COP, even if specific genetic
operators should be designed in order to preserve the
feasibility of the candidate solutions.
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Adopting evolutionary computation a fitness function is
required. Even if in the real industrial cases no fitness
function is available, the genetic approach can be greatly
supported by  simulation. As known, simulation leads also
to a validation of the deterministic scheduling in a
stochastic environment.
Future work concerns the extensions of the proposed
approach by using a multi-genetic-agent system, where
each agent searches for a local solution and a supervisor
manage the evolution of the GAs.
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