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ABSTRACT

In distributedsimulations,many entities(mobileagents,dis-
tributed objects,processes)communicateand may evolve
continuously. Volumesof communications,groupsof com-
municatingentities,aswell ascomputationalneedsmayvary
a lot during theexecution.Dueto thesedynamiccharacter-
istics, the needof a migration for oneor several entitiesis
generallydifficult to evaluate. A dynamiccommunication
graphconstitutesthe modelfor the multiagentsystem.The
proposedmethodevaluatesthetraditionaltrade-off between
communicationoverheadandload-balancingby identifying
clustersof highly communicatingentities.A variantof clas-
sical ant algorithmswasdesignedfor that purpose. In our
implementationpheromonesarecolored.Theverticesof the
communicationgrapharecoloredaccordingto the effective
communicationbetweeneachother. A changeof color for
a vertex informsthata migrationof thecorrespondingentity
on thecorrespondingprocessorshouldbebeneficial.

1. INTR ODUCTION

Naturepresentsmany examplesof complex systemswith a
sophisticatedglobal evolution while entities composingit
havesimplebut evolving behaviors. Onewayof tacklingthe
problemof simulatingsuchsystemsconsistsin identifying
eachkind of entity andin modelingits main characteristics
and their evolution: capabilities, behavior, interactions
with the environment and interactionswith other entities.
This may require many entities, behaving independently
and evolving at their own speedin an asynchronousway.
So distributed agent basedsystemsis the more suitable
architecturesfor implementingsuchapplications. Even if
performanceis not themainreasonfor choosingdistributed

systems,someproblemshave to be addressedin order to
avoid majorperturbationsthatmight affect theexecutionof
theapplication.Amongtheseproblems,we areinterestedin
themanagementof thecommunicationtraffic. Indeed,if the
communicationsare not regulated,the executionof highly
communicatinggroups of entities, composinginteresting
emergingstructures,maybeperturbated.

The paperis organizedas follows : Section2 presentsthe
graphmodel. In section3, we presentsomeclassicalant
algorithmsfor graphproblems. In section4, we definethe
generalmethodcalledcoloredant system.In section5, we
describetheexperimentationsandpresentsomeresults.Fi-
nally, thelastsectionconcludesthework andsomeperspec-
tivesarediscussed.

2. DYNAMIC COMMUNICA TION GRAPH MODEL

We study the previously describedproblemfrom the agent
migrationpoint of view. We call effectivecommunications,
communicationsbetweenagentslocatedon distinct proces-
sors.

Thecommunicationsbetweenagentsaremodelwith agraph�������
	���
where

�
is thesetof verticescorrespondingto

theentitiesand
�

is thesetof edges.Eachedge� ��������	�����
representsthe communications(whatever the direction)
betweenagentsassociatedto vertices

���
and

���
. Thevolume

of dataexchangedbetweenboth agentsis the label of edge� ����� � 	�� �  .
During execution, communicationsbetween agents may
vary, may start or may stop. Such events changethe
numericalparametersof thegraph,but evenmoreimportant,
they maychangethestructureof thegraph.

In this context, the only way of limiting the volume of
effective communications consists in gathering highly
communicatingagentson the sameprocessor, which can



be achieved by a migration operation. However to avoid
the migration of all the agentson a single processor, this
criterionhasto becoupledwith a loadbalancingcriterion.

Theoriginality of thiswork consistin performingbothgraph
partitioning(clustersof highly communicatingentities)and
loadbalancingfor a dynamicapplication.Themaingoalof
our work consistsin identifying groupsof highly communi-
catingentitiesfor giving someindicationabouttherelevance
of a migration operation. Moreover, this information may
alsobe profitablefor somesimulationapplicationin which
multi-scalesphenomenaappear(Tranouezet al., 2001).

Two approachescan be considered. The first consistsin
applyingclassicalmappingstrategiesfor staticdeterministic
graphsby considering,periodically, a snapshotof theappli-
cation graph. But the fact that the graphmay changejust
after the snapshot,making the future mappingout-of-date
before its computation,and the fact that the solution may
be not reusablefor the next snapshotare the two main
drawbacksof this approach.Thesecondapproachconsiders
the applicationgraphasa changingenvironment. We want
an anytime solution for the agentsallocation. For that
purpose,the allocation is continuouslycomputed,and a
changein the structureor in the numericalparametersis
reportedin thegraphandis taken into accountfor thecom-
putation.Oneway of performingsuchcomputationconsists
in deploying computingelements. They identify relations
betweenverticesby analyzingthe traffic. Ant algorithms
arewell suitedfor that taskasit hasbeenshown in (Dorigo
et al., 1996)or in (CaroandDorigo,1997;Schoonderwoerd
et al., 1997;Heusseet al., 1998;Bonabeauet al., 1998)for
theadaptiveroutingproblemin communicationsnetworks.

3. ANT ALGORITHMS FOR GRAPH

Ant algorithmsare basedon natural ants behaviour. Ex-
perimentalstudiesshow (Gordon, 1995) that natural ants
continouslyforagetheir territoriesto searchfood. Myrme-
cologistshave alsoobservedthatvery complex taskscanbe
achievedby cooperationbetweenants: bridgeconstruction,
nestedification... This kind of collective behavior emerges
from the interaction betweenants as shown by Langton
(Langton,1987).

The principle of ant algorithmsconsistsin exploiting the
ability of ants to find near optimal solutions, for difficult
problems. The intelligent collective behavior arisesfrom
their interactionsbasedon indirect communicationsknown
as stigmergy. Sematectonicstigmergy produceschanges
in the physical environment, constructionof the nest for
instance. Stigmergy basedon signal usesthe environment
assupport. The resolutionprocessis basedon this volatile
chemicalsignal,a.k.a. pheromone.This approachprovide
robust solutionsfor a problemwith parameterschanges.It

is intrinsically distributedandscalableandusesonly local
information for computing high-quality global solutions.
These characteristicsconstitute the main quality of this
approach.

Ant-basedalgorithmshave beensuccesfullyappliedto vari-
ouscombinatorialoptimizationproblemslike the Traveling
SalesmanProblem(Dorigo andGambardella,1997)or rout-
ing in networks (Caro andDorigo, 1997; Schoonderwoerd
et al., 1997;Bonabeauet al., 1998;Heusseetal., 1998).

4. COLORED ANT SYSTEM (CAS)

Our work concernslarge-scalesimulationson distributed
systems. Theseapplicationcan be modeledas a dynamic
communicationgraphwhereeachvertex is associatedto one
agentandwhereeachedgerepresentsthevolumeof commu-
nicationsbetweena coupleof agents.The ideais to usean
ant-basedapproachfor thedetectionof clustersof communi-
catingagents.Morever, theallocationneedsaloadbalancing
criterion. For thatpurpose,we have introducethe notionof
coloredpheromones.

Definition 1 (Dynamic communication coloredgraph)
A dynamiccommunicationcoloredgraphis a weightedundi-
rectedgraph

�������
	���	���
such that:� � is a setof  colors where  is thenumberof proces-

sorsof thedistributedsystem.� � is thesetof vertices.Each vertex hasa color belong-
ing to

�
.� � is the set of edges. Each edge is labelled with a

weight. A weight ! ��"#	��$�% IR& associatedto an edge��"#	��$
correspondsto a volumeof communicationsbe-

tweenthecoupleof agentscorrespondingto vertices
"

and
�
.

On the examplefigure 1, as further explainedin section5,
the applicationis madeof 12 agentsandis distributedon a
four-processorssystem. Eachvertex is colored(from light
gray to dark). Verticesof the samecolor correspondsto
agentslocatedon thesameprocessor.

The methodwe conceived proposesto changethe color of
someverticesif thesechangeslead to an improvementof
theallocation.During theexecution,avertex maychangeits
color several times, dependingmainly on the variationsof
thedataexchangesbetweenagents.

We describenow the Colored Ant System(CAS)Algorithm
for theDynamicDistribution which is inspiredby Ant Sys-
tem(Dorigoet al., 1996).We considera dynamiccommuni-
cationcoloredgraph

�'�(�)�*	��+	���
(seedefinition 1). For

eachcolor , %�� a setof - antsis created( -�./ ).Thus-10� antsareusedby our method. 2 denotesthesetof all
ants.
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Figure 1: An exempleof dynamiccommunicationcolored
graph.

1. Initially, ants are uniformly distributed among the
vertices. The color of eachant is fixed by its initial
vertex.

2. Thealgorithmis basedonaniterativeprocess.Between
steps35476 and 3 , eachant crossoneedgeandreacha
new vertex. During its move, it dropspheromoneof its
color, on theedgecrossed.Moreover, eachanthasthe
ability to memorizethelastvertex crossed.

We definethefollowing positivenumbers:� Thequantityof pheromoneof color , droppedby
theant 8 ontheedge

��"#	��$
, betweenthesteps394:6

and 3 , is noted ;:< ��"=	��>	 ,  .� Thequantityof pheromoneof color , droppedby
antsontheedge

��"=	��?
, betweenthesteps3�4+6 and3 is noted

; ��"=	��>	 , 
�A@<CB�D ; < ��"=	��>	 ,  (1)

� The total quantity of pheromoneof all colors
droppedby antson the edge

��"#	��$
, betweenthe

steps3E4F6 and 3 is noted

; ��"#	��$
��@G BCH ; ��"#	��I	 ,  (2)

� if ; ��"#	��$KJ��L
, the rateof pheromoneof color ,

on theedge
��"#	��$

betweenthesteps3M4F6 and 3 is
noted N G ��"=	��?
� ; ��"#	��I	 , ; ��"#	��$ (3)

This rateverifies

N G ��"#	��$O%QP LR	 6TS .
3. Thecurrentquantityof pheromoneof color , presenton

the edge
��"#	��$

at step 3 is denotedby UWVYX�Z ��"#	��I	 ,  . Its
initial value(when 3 �[L

) is
L

andthenit is computed
following therecurrentequations:

� if ; ��"=	��?\J�]L ,
U VYX�Z ��"=	��>	 , ^� _ Na`G ��"#	��$ U VYXcb � Z ��"#	��I	 , d N G ��"=	��? ; < ��"#	��I	 ,  (4)� if ; ��"=	��?5�]L ,

U VYX�Z ��"=	��>	 , 
�e_ U VYXcb � Z ��"=	��>	 ,  (5)_Q%7P LR	 6fS representsthe pheromonepersistencedueto
its evaporation.

N G ��"=	��? and g representrepulsionfac-
tors. Thesevaluesdecreasethequantityof pheromone
whenmany antsof other colors have crossedthe arc.
Thus

_ N `G ��"#	��$ dependson the quantity of the other
colors and contributes to the evaporation of the ,
pheromone.

4. Let usdefine ��"=	��Chi	 ,  the transitionprobabilityof an
edge

��"#	��Chj
incident to vertex

"
for an ant of color ,

andwhosecommunicationvolumeis noted! ��"#	��Ch� .� At theinitial step( 3 �7L ),
 ��"=	��Ch?	 , 
� ! ��"#	�� h kl BCmCn ! ��"#	��$ (6)

� After this initial step( 3 J�eL ),
 ��"=	�� h 	 , 
� � U VYX�Z ��"=	��Chi	 , ��o=� ! ��"=	��ChC�cpklrq BCm�n � U VYX�Z ��"=	��Cst	 , � o � ! ��"#	��Cs�� p

(7)

whereuMv is thesetof verticesadjacentto
"

.

The relative valuesof w and x give the ponderation
betweenpheromonefactorandcommunicationvolume.
We show later in the experimentalsection that this
ponderationis oneof themajorfactorsin thealgorithm
convergence.

Thechoiceof thenext edgecrossedby anantdepends
on previous probabilities. However, to avoid the ants
movesto oscillatebetweentwo vertices,weintroducein
theprobabilityformula,a penalisationfactor y %1P LR	 6fS .
Given

� < the last visited vertex by the ant 8 , the new
probabilityformulais:

 < ��"#	�� h 	 , 
� � U VYX�Z ��"=	��Ch?	 , ��o=� ! ��"=	��ChC�cp yC<Cz hkl�q BCmCn � U V{X�Z ��"#	��Cst	 , � o � ! ��"#	��Cs�� p yC<Cz s
(8)

where y <�z s �[| 6 if
� s J� � <y if
� s � � < (9)



5. Thecolorof avertex
"

, noted} ��"~ is obtainedfrom the
maincolorof its incidentarcs:

} ��"W*�e�����
���j�G BCH @l BCm n U VYX�Z ��"#	��I	 ,  (10)

5. EXPERIMENT ATION

The model has been implementedand usedto determine
valid numericalvaluesfor its parameters.In the following,
we give the parametersusedto tune the behaviour of the
CAS:w Therelative importanceof pheromonein probability for-

mula(8).x Therelative importanceof weight in probability formula
(8)._

Thepheromonepersistenceon anedge.y The penalisationfactorthat retainsan ant from returning
on thevertex it just left.

In theseexperiments,theparameterg is heldto 6 .
The initial parameters,numberof ants,antsper color, etc.
aresetthis way:� An equalnumberof antsis allocatedto eachcolor. As

colorsrepresentcomputingresources(processors),this
repartitiongivesanequalimportanceto eachresource.
Changingit would give more power to one or more
computingresourcescomparedto others.� Thenamongtheseants,anequalnumberof themis al-
locatedto eachvertex of a givencolor.� Initially, for eachvertex, the numberof ants,allocated
to it, mustbe equalor greaterthan its degree(i.e. its
numberof connectededges).

Thevalidationtestsarecomputedon severalgraphsdefined
to form clustersof highly communicatingagents,while
theseclustersarelinkedto theothersby low communication
edges(seefigure1).

We definedtwo methodsto expressthequalityof solutions:� We usecommunicationgraphswhereclustersare al-
readyidentified. Thesegraphsarerandomlyperturbed
in termof color allocation.Thenthey aresubmittedas
initial configurationfor thealgorithmwhichtriesto find
theinitial allocationon thegraph,asa solution.� We computeglobal communicationcosts,noted � , by
summingeffective communicationson the graph(be-
tweenagentslocatedon distinct processorsi.e. allo-
catedto differentcolors,asdefinedin thebeginningof
the section2). Thenwe computea ratio � � amongthe
total communication,noted � , on thegraph( � ��� ����� ).

We have a secondcriterion, noted � � , measuringthe
loadbalancing:for eachcolor , , wehave

� G thenumber
of verticeshaving color , and G thepowerof processor
affectedto , . Thenwe have

� �����K� -~���� 8>� where � � | � G G>� , %a���
We first investigatea dynamicgraphwith four colorswhere
four clustersshouldappear. Initially, eachof themhasapre-
dominantcolor, andonevertex of anothercolor, asshown
under:
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The CAS algorithm finds clusters after five cy-
cles, using 100 ants, and the following parameters:� w � 6 	 x ���$	�_��eLR� �R	 y �7L�� L 6C� .
Anothertestusesasimilardynamicgraphandthesamenum-
ber of ants,but with a different initial configurationwhere
eachvertex in thefour clusterhasa distinctcolor, asshown
under:
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Here the optimal parameterswhere:
� w � 6 	 x ���$	�_��L�� ��	 y ��L�� LCLCL 6�� (notice

_
and y ), and the solution was

foundaftersevento heightsteps.

The algorithmbecomesvery sensitive to parametersettings
when graphsare initially very perturbedlike the second
exampleshown above. However, a graphalreadycorrectly
colored (that is where clustersof highly communicating
entities are already of the same color) is almost never
changedby theCASalgorithm.

Thefollowing diagrammayhelpunderstandtherelative im-
portanceof the pheromonetrail andedgeweight. The dia-
gramcharacterizesthealgorithmconvergencein functionof



thevalueof w parameter(which grows with relative impor-
tanceof pheromonetrail) andin functionof the x parameter
(which grows with relative importanceof edgeweight). In
this diagram,a 0 meansthealgorithmdid not founda good
enoughsolution,anddid not stabilized.A � meansthealgo-
rithm did not found a goodenoughsolution,but stagnated.
Finally a � meansthe algorithmfounda goodsolution,and
stabilizedon it.
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6. CONCLUSION AND PERSPECTIVES

This paperpresentsa variant of Ant System,using multi-
coloredpheromonesand called ColoredAnt System. The
aim of this methodis to solve the allocationproblemin dy-
namicagent-basedsimulation,respectingsomeloadbalanc-
ing aspects.First validationsarepresentedandsomenumer-
ics valueshavebeencomputedto estimatethesolutionqual-
ity. Thisapproachoffersto giveadvicesfor agentmigration.
Westudyactuallyamodelfor thecouplingandthefeed-back
on multi-agentsimulations,respectingsomeof their specific
constraintsandtakingadvantagesof theseadvices.
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andThéraulaz,G. (1998). Routingin telecommunica-
tions networks with ”smart” ant-like agents. In Pro-
ceedingsof Intelligent Agentsfor Telecommunications
Applications’98.

Caro,G.D. andDorigo,M. (1997).Antnet:A mobileagents
approachto adaptiverouting.Technicalreport,IRIDIA,
Universit́e libre deBruxelles,Belgium.

Dorigo, M. and Gambardella,L. (1997). Ant colony sys-
tem: A cooperative learningapproachto the traveling
salemanproblem. IEEE Transactionson Evolutionary
Computation, 1(1):53–66.

Dorigo, M., Maniezzo,V., andColorni, A. (1996). Theant
system:optimizationby acolony of cooperatingagents.
IEEETrans.SystemsManCybernet., 26:29–41.

Gordon,D. (1995). The expandablenetwork of ant explo-
ration. AnimalBehaviour, 50:995–1007.
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