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ABSTRACT 

The global identifiability is a structural property of 
models, which associates a unique set of parameters with 
given input/output response. The translation of this 
property into bond graph modelling language allows the 
combination of the physically meaningful language of 
bond graph methodology and the numerical accuracy of 
identified transfer function models. 

Based on the building mechanisms of a transfer function 
from a bond graph model, the paper develops and explains 
why a bond graph can be not identifiable. Both internal 
and input/output dynamics can be written with the 
Mason’s rule, using causal loops and action chains. Then 
the way the combination of causal loops and action chains 
influences the identifiability of models is discussed. 

As a result a criterion is given, which decides whether a 
bond graph model is structurally globally identifiable or 
not. This is a crucial issue in order to guarantee the 
reliability of identification processes. 
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INTRODUCTION 

Any engineer has once wondered what is the best 
numerical value of a specific parameter (most of the time 
it is about heat dissipative phenomena) for his model to 
suit the input/output data. The most common solution to 
this problem is the parameter identification, a priori 
whatever the kind of model. 

Many identification methods are available, from the 
Strejc method to the neural network one. Each method 
deals with a specific model structure and with a specific 
optimization algorithm. But in every case the results may 
be not reliable if the model is structurally locally 
identifiable or not identifiable. This is the reason why 
there may exist several minima of an error function, which 
could explain the failure or unreliability of the 
optimization algorithms. 

The method to test the structural identifiability of a 
model depends on the structure of the model. The choice 
of bond graphs to model physical systems is ground on 
several facts. Bond graphs are highly suitable to model 
physical systems. They belong to the class of structural 
models in opposition to transfer functions, which are 
behavioral models. Bond graphs allow the translation of 
human prior knowledge into a language understandable by 
computer in order to be simulated. Some structural 

properties of models have already been successfully 
applied on bond graphs, as the structural controllability 
and the structural observability [Sueur-91], this paper 
presents the structural identifiability of the bond graph 
element parameters. 

We are going to establish a bond graph identifiability 
criterion in two phases. In the first one we discuss about 
the structural identifiability applied on transfer functions. 
In the second one the internal structure of bond graphs is 
developed in causal loops and action chains in order to 
apply to concepts of the first part. 

1 STRUCTURAL IDENTIFIABILITY OF 

TRANSFER FUNCTIONS 

Be u the input of a SISO model M, y its output, vp and 

vp

*

 some sets of parameters associated with its structure. 

The structural identifiability of a model is generally 

defined according to the solutions of equation [1]: 

                  )()(
∗= pp vMvM  [1] 

If equation [1] implies vp = vp
*

, then [1] has a unique 

solution. The model is said structurally globally 

identifiable. If [1] has several solutions, but in finite 

number, the model is structurally locally identifiable 

around each solution in vp. If the equation has uncountable 

number of solutions or no solution, the model is 

structurally not identifiable. [WALTER-87] 

Equation [1] may be rewritten in various ways. It 

depends on the structure of the model. If the model is a 

transfer function, the coefficients of the polynomial 

numerator αj(vp), and denominator βj(vp), of M(vp) and the 

coefficients of the polynomial numerator, αj(vp
*

), and 

denominator, βj(vp
*

), of M(vp
*

) can be equalized. Then [1] 
is equivalent to: 
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Until now the structural identifiability test was done 
afterward. It was an attempt of solving a non-linear 

system of equations involving the parameters of the 

model. The aim of this paper is to substitute the need of 

solving any equation by an analysis of the construction of 

the transfer function. 



   

2 TRANSFER FUNCTIONS FROM A BOND 

GRAPH 

According to the Mason’s rule, a transfer function can 

be deduced from every bond graph involving linear 
constitutive component laws, [MASON-53] and 

[BROWN-72]. A short recall on bond graph definitions is 

given in annexe. Let the transfer function be defined by: 
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The Mason’s rule gives for the transfer function : 
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∆ is the bond graph determinant, calculated with Bi the 
gains of the causal loops as 
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Tk is the gain of the k
th

 action chain. ∆k is computed like 

∆, the causal loops taken into account are the ones 
separated from the action chain Tk . 

Then we study the application, which transforms the 

parameters into gains of causal loops and action chains, 

and the one, which transforms gains into transfer function 
coefficients. 

3 STRUCTURAL IDENTIFIABILITY OF BOND 

GRAPH MODELS 

The non-linear application that transforms the set of 

parameters into the set of transfer function coefficients has 
to be invertible in order to ensure the existence of 

solutions to equation [1]. This application can be analysed 

as a composition of two non-linear applications. The first 

one, T1, transforms the parameters into the set of causal 

loop and action chain gains; the second one, T2, 

transforms this set into numerator and denominator 

coefficients. 

 

 

 

 

 

 

 

 

Figure 1: transformations T1 and T2 

Transformation T1, incidence matrix 

We study the invertibility of T1 with a special incidence 

matrix. 

Definition : Be a bond graph BG composed with np 

parameters to identify and ng gains of causal paths and 

action chains. We introduce Mi, the incidence matrix of 

BG. Mi is a ng × np matrix, where each row is associated 
with a gain of a causal loop or an action chain, and each 

column is associated with a parameter. The coefficients of 
the incidence matrix are the power of every parameter that 

appears in the gains, deprived of their sign and of their 

symbolic Laplace operator s. 

 

This definition of incidence matrices is based on a 

specific space where internal and external composition 

laws exist. This justifies the use of the invertibility of the 

matrix to prove the bijectivity of the associated 

application. The inverse transformation T1

-1
 is also 

directly deduced from the inverse of Mi.  

 

Transformation T2, partial solve of coefficients 

To study the invertibility of T2, we split the application 

T2

-1
 into two transformations : PST2

-1
 and CT2

-1
. These 

transformations are described on figure 2. The first one 

transforms the set of transfer function coefficients into 

PSC (Partially Solved Coefficients). Since PST2

-1
 is 

injective, the property of the second transformation CT2

-1
 

is conclusive for the invertibility of T2 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: invertibility of T2 

The application PST2

-1
 transforms the set of coefficients 

into PSC by recursively applying some substitution rules, 

figure 3 : from the set of 2 values α and α+β (or αβ), can 

be derived the terms α and β separately. 
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Figure 3: transformation rules 

The PSC are divided into three main sets. The PSC type 

is numbered I if the results of PST2

-1
 are all different and 

if they are equal to causal loop or action chain gains. Their 

type is numbered II if they are different and if some pairs 
of them are the sum and the product of two gains. 

Otherwise some of them are similar or a combination of 

several gains, then the PSC type is III. 
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Theorem : a model is structurally globally identifiable if 

and only if the three following conditions are satisfied : 

- The number of PSC is equal to the number of 
parameters to be identified, 

- the PSC type is I,  

- the incidence matrix Mi is invertible.  

 

Proof: The first part of the proof deals with the necessary 

condition of the theorem: if the incidence matrix is not 

invertible, then the inverse transformation T1

-1
 is not 

defined, then the equation [1] has no unique solution. The 

model is not structurally identifiable. If the PSC type is 

not I or if there are less PSC than the number of the 

parameter to identify, then the inverse transformation T2

-1
 

is not uniquely defined. The model is not structurally 
identifiable. 

If both conditions, regarding T1

-1
 and  T2

-1
, are satisfied, 

both transformations have a unique inverse 

transformation. Then equation [1] has a unique solution, 

and the model is structurally globally identifiable. 

 

The structural global identifiability is a very binding 

characteristic for a model. But this is the only one that 

assures a reliable and convenient identification process.  

4 APPLICATION 

We study the influence of the place of a sensor, in the 
structure of a bond graph, on the identifiability of its 

parameters. We model the very simple mechanical system 

of figure 4 by the bond graph figure 5. 

 

 

 

 

Figure 4 : mechanical system  

 

Figure 5 : bond graph model 

First case : we put a speed sensor (Df) on mass I1, the 

model and the associated transfer function are represented 

on figure 6.  

The incidence matrix, as defined previously, is 
constructed from the gains of the causal loops and the 

action chain. B1 is the gain of the causal loop between I1 

and C1, B2 is the gain of the causal loop between R1 and 

C1, and Ca1 is the gain of the action chain. 
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Figure 6: flow sensor on I element 

We deduce the transfer function (figure 6) from the causal 

loops and the action chain gains, according to the Mason’s 

rule described in paragraph 2. 

The figure 7 gives the frame of the incidence matrix build 
from the bond graph figure 5, with : 
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The “~” on the gains means that we eliminate the sign and 

the Laplace operator s. 

 

 

 

 

Figure 7: frame of incidence matrices 

In this first case the incidence matrix of the bond graph is 

invertible, equation [8]. 

 

 [8] 

Then the first transformation T1 described in figure 1 is 

invertible. We still have to test the invertibility of the 

second transformation. As shown figure 2, we compute 

the PSC, which is very easy in that case because the 

coefficients of the transfer function figure 6 are: {B1, B2} 

for the denominator, and {Ca1, Ca1 B2} for the numerator. 
There are 4 coefficients, and then their type is III because 

the number of parameters to identify is 3. The model is 

not structurally globally identifiable. 

Second case : we put an effort sensor on the spring C1. 

The model and the associated transfer function are 

represented on figure 8. In that case the gains of the causal 
loops and action chain are : 
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Figure 8: effort sensor on C element 
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The coefficients of the transfer function are: {B1, B2} for 

the denominator, and {Ca2} for the numerator. They are 

already simple and 3, but the incidence matrix is not 

invertible, [10]. 

 

 [10] 

 

Then according to the theorem the modified model of 

figure 8 is still not structurally globally identifiable 

Third case : hence we try with a flow sensor on element 
R1. This case is represented on figure 9  
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Figure 9: flow sensor on R element 

The gains of the causal loops and action chain are : 
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The incidence matrix is given in equation [12].  

 

 [12] 

 

The coefficients of the transfer function, {B1, B2} for the 

denominator, and {Ca3} for the numerator, are simple and 

their number is equal to 3, the incidence matrix is 

invertible, then the bond graph of figure 9 is structurally 

globally identifiable. 

 

 

 

 

 

 

 

 

 

Figure 10: T1red reduced transformation 

In some cases the place of the sensor in the structure is 

fixed because of technological constraints. So in order to 
find some structure globally identifiable, another solution 

consists in the reduction of the number of parameters to 

identify. In order to test if a subset of parameters is 

structurally identifiable, we define some reduced 

transformations. The figure 10 represents the reduction of 

the transformation T1, we also define a similar reduced T2 

transformation. From there it is possible to test the 

invertibility of a reduced incidence matrix and to test the 

type of some reduced PSC, and to conclude on the 

invertibility of a parameter subset. 

CONCLUSION 

After the study of the building mechanisms of the 

transfer function from a bond graph model, a test of 

structural global identifiability is given. This test involves 

a special incidence matrix and what we call “partially 

solved coefficients”. 

Bond graphs are very well suitable for the translation of 

the engineer needs into algorithmic language. Bond 

graphs explicit structural information of models, then 

engineers are able to graphically localize the places where 

they can place sensors. In the other way the non-

identifiability can be localized in a graphical way with the 

use of the causal loops in the identifiability test. Addition 
of sensors or reduction of the number of parameters to 

identify can be guided by this test, in conformance with 

physical constraints. Finally this test allows some reliable 

identification computations. The whole process has been 

coded under Mathematica workspace, using and 

developing Virtual Dynamics bond graph toolbox. 
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ANNEXES : some recalls on bond graph methodology 

A bond graph consists of subsystems linked together by 

half arrows, representing power bonds. They exchange 

instantaneous power at places called ports. The variables 
that are forced to be identical when two ports are 

connected are the power variables, considered as functions 

of time. The various power variables are classified in a 

universal scheme, and called either effort )(te or flow 

)(tf . Their product )().()( tftetP = is the instantaneous 

power flowing between the ports. Two other types of 

variables, called energy variables, turn out to be important 

in describing dynamic systems: the momentum 

∫= dttetp )()(  and the displacement ∫= dttftq )()(  in 

generalized notation. Table 1 shows power variables for 

several physical domains. 

Table 1. Generalized variables for several physical 

domains 

A few basic types of elements are required in order to 

represent models in a variety of energy domains. Table 2 

regroups basic 1-port elements, which respectively 

dissipate power (R), store energy (I, C) and supply power 

(sources). The detectors are used for sensors, supposed to 

be ideal (no power dissipated). 

A causal stroke, placed perpendicularly to the bond, 

shows up the way the constitutive relations in an element 

have to be written, as shown Table 2. Table 3 regroups the 

0 and 1 junction structure elements with their causality 
restrictions. They are power conservative. 

 

   BG symbol  General relation 

 0 

 

 

1 

 

 

Table 3 : 0 and 1 junctions 

  The bond graph is a graph, with causal paths and 

causal loops, followed by propagating effort or flow 

variable. A causal path is simple if it follows always the 

same variable (effort or flow) 

 

 

 

 
 

  The gains of the causal loops are equal to the product 

of the gains of the elements, table 4, encountered along 

the path of the propagating flow or effort variables. 
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Table 4 : gains of the elements 

 

 Elements  BG symbol  General relation  Linear relation  Physical elements 

 resistor R 
      electrical resistor, 

 mechanical damper 

 capacitor C 
      electrical capacitor, 

 mechanical spring 

 inertia I 

    
electrical inductance, 

mass, inertia 

 sources 
    voltage supply, gravity 

current supply, pump 

Table 2 : Passive and active elements 

 

   Power variables 
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