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ABSTRACT 
 
In this paper the use of so-called heuristic-free GMDH 
(Group Method of Data Handling) networks are considered 
to tune an unknown parameter (the wind stress coefficient) 
in a model used for prediction of the meteorological effect 
on the water level of the North Sea. GMDH tries to find 
unknown relationships between the parameter concerned 
and other variables, purely on the basis of measurement 
data (data mining, dependency modeling). The results 
achieved, i.e. the prediction capabilities of the GMDH-
based tuned model, were found to be reasonably 
comparable with those from the model that had been 
previously fine-tuned through a years-lasting tuning 
procedure; moreover, the method which is generally 
applicable provided more insight into the physics behind 
the model concerned. 
 

1. INTRODUCTION 
 
Fine-tuning physical models may be a long lasting 
procedure, especially when parameters or variables cannot 
be measured directly and sufficient a priori knowledge 
about relations with other variables in the model is missing. 
In this paper we consider the use of GMDH (Group Method 
of Data Handling) networks, more in particular heuristic-
free GHMH networks, to estimate a variable in relation to 
other variables. It is assumed that large amounts of 
measured data are available and that the unknown relations 
we are looking for, are hidden in these data. The resulting 
data mining problem (more in particular: dependency 
modeling problem) is solved with heuristic-free GMDH 
The method is applied to reveal the relevant variables 
(inputs) on which the considered unknown variable (output) 
depends upon, as well as a mathematical expression 
between the unknown output and its found relevant inputs. 
 
The procedure is illustrated and validated on the basis of a 
realistic example: fine-tuning wind stress coefficients in an 
operational North Sea model which is used to predict 

meteorological effects on the water level. Heuristic-free 
GMDH is applied to reveal the unknown relationships 
between the wind stress coefficient and other physical 
variables such as wave energy, wind and pressure. The 
found relations were included in the model. New forecasts 
with the modified model were made and compared with 
forecasts made by the original model. In the original model 
wind stress coefficients have been determined via a 
previous long lasting fine-tuning process. Although not 
improving previous predictions, the GMDH-based fine-
tuning method proved to give comparable results. However 
these GMDH-based results can be achieved in much shorter 
time than the time needed for the previous fine-tuning 
process. 
The paper is built up as follows: in Sect. 2 a short 
description is given of both basic and heuristic-free 
GMDH; the latter was found to give the better results and is 
therefore used throughout the research. The considered 
example model tuning problem is dealt with in Sect. 3: an 
operational “North Sea model” with the wind stress 
coefficient as the parameter to be tuned. Network training 
and tuning performances are presented in Sect. 4. A Sect. 5 
“Conclusions” completes the paper. 
 

2. THE GROUP METHOD OF DATA HANDLING 
(GMDH) 

2.1 Basic GMDH 
 
The Group Method of Data Handling (GMDH) was 
introduced by A.G. Ivakhnenko in 1968 and reformulated 
in 1971 [Ivakhnenko 1971]. GMDH neural networks are 
typically used to approximate a continuous function 

; in case of vector functions one 
network per output element is needed. The typical GMDH 
network shown in Figure 1 has four inputs (components of 
the vector x) and one output, the estimate y’ of the correct 
function value y = f(x). The first layer of the network 
consists of a fanout-input layer. The nodes of this layer 
distribute their inputs x
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1, x2,…, xn to the appropriate nodes 
of the first hidden layer. Every node in each layer following 
the fanout-input layer receives two inputs, which are 
outputs of the nodes of the previous layer. The scheme of 
the GMDH is a simple feed-forward sequence. The 
components of the input vector x are first supplied to the 



input units. These then distribute them to the appropriate 
first hidden layer processing elements. The outputs of these 
hidden layer processing elements are then supplied to the 
next layer, and so on. The final output of the network is a 
single real number y’. 
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Figure 1: Example of a Typical GMDH Neural Network 

 
Except for the input layer, all processing elements in the k-
th layer (k = 2,3,…) have the configuration shown in Figure 
2. The output signal of a layer-k processing element l is 
given by the quadratic transfer function: 
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Figure 2: GMDH Processing Element l of Layer k 
 
Thus, the GMDH network as a whole builds up a 
polynomial function of the input components. The output y’ 
of the network can be expressed as a polynomial of degree 
2K (the so-called Ivakhnenko polynomial), where K is the 
number of layers in the network following the input layer. 
 
The GMDH network is developed by starting at the input 
layer and growing the network progressively towards the 
output layer, one layer at the time. Starting with k = 1 and 
proceeding to k = 2 until the entire network is configured, 
the process used is the same, regardless the value of k. 
Layer k is configured with one processing element for each 
different pair of outputs from the previous layer. Assuming 
that the previous layer contains  processing elements, 
the number of processing elements in layer k will be the 
number of combinations of the  outputs, taken two at 
a time: C , where  
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The basic idea of GMDH is that each of these processing 
elements with transfer function (2.1) wants to have its 

output y’ match y=f(x) as closely as possible for each 
network vector input x. This approximation is accomplished 
through linear regression. The six coefficients of each 
processing element are found using a large set of 
input/output examples (x1, y1), (x2, y2), ... (xp, yp). These 
determine numerical values to be entered into the transfer 
function of the lth-processing element of layer k, which 
finally results in a system of linear equations in the 
coefficients  k
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where Zl = the matrix of numbers in which each row 
corresponds to the values in equation (2.1) and Y = the 
output of the processing element (the estimate y’ of the 
correct function value y = f(x)). 
The set of linear equations expressed by (2.3) will almost 
never have an exact solution, only an approximate one:  
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where = the pseudo inverse of the matrix Z�

lZ
k
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l. The 

solution  represents the best possible 
selection of coefficients in terms of minimizing the mean 
squared error between the output of each processing 
element and the desired output. 
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After the six coefficients for each of the processing 
elements of layer k have been derived,  the overall 
performance of each processing element in terms of its goal 
is evaluated through cross-validation. For this purpose a test 
set is used which is completely different from the data set 
used for training. For each processing element the so-called 
regularity criterion: 
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is determined. The next step in the GMDH process is to 
eliminate those processing elements on layer k that have a 
“large” regularity criterion value, whereby “large” is user 
defined. The final set of remaining processing elements 
then supplies the Zk output vector that feeds layer k+1. 
When the layer is adapted it is frozen, and the process 
continues with the next layer. The process of adding new 
layers stops when the stop criterion is met, which normally 
is the case when the regularity criterion value of the best 
performing processing element in a layer reaches its 
minimum. 
 

2.2 Heuristic-free GMDH 
 
The GMDH network is not free of heuristics. Heuristics are 
needed with respect to the predetermination of the structure 
of the partial polynomials, the subdivision of the 
observation data into training data and validation data, and 
the predetermination of the number of nodes selected in 



each layer. To find the optimal combination of these 
heuristics the GMDH algorithm must be executed many 
times, each time for a different combination. This gives a 
huge computational overhead, whereby unfortunately the 
real optimal combination is rarely found. A solution is a 
revised GMDH algorithm that was developed by Tamura 
and Kondo [Tamura and Kondo 1984]. This algorithm is 
free of heuristics. All the data are used for both training and 
testing which  eliminates the problem of subdividing the 
data into training data and test data. Instead of using the 
regularity criterion, the so-called Prediction Sum of Squares 
(PreSS) is calculated. This criterion is used for generating 
optimal partial polynomials, selecting intermediate 
variables and stopping the GMDH algorithm. 
 
The heuristic-free GMDH algorithm consists of four steps: 
 
Step 1: 
Generating optimal partial polynomials in each layer. 
 
Optimal partial polynomials are generated through the 
polynomial generator G1, G2, G3 or G4, applying a stepwise 
regression procedure to the polynomial: 
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In this stepwise regression procedure, the above-mentioned 
PreSS is used as the criterion for selecting the best partial 
polynomial: 
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where: 

xk = �
T

jkikjkikjkik xxxxxx �,,,,,1 22 � for k=1,…m and X = [x1, 
x2,…,xm]T, m = the number of training observations, yk = the 
kth observed value for the output variable, xik = the kth 
observed value for the input variable xi  and  = the kth 
estimated value obtained by a regression of one of the 
partial polynomials against all available training data. 

ŷ

 
Step 2: 
Selecting the nodes. 
 
P nodes with the smallest PreSS are selected from all the 
nodes in the layer. The number p is preferred to be as large 
as possible within the computational capacity of the 
computer. Therefore, p is determined by computational 
criteria and not by heuristics. 

The outputs of the selected nodes are regarded to be the 
inputs of the next layer. Of each layer, the smallest PreSS is 
kept for later use as the stopping criterion for the iterative 
computation. 
 
Step 3: 
Stopping the multi-layered iterative computation. 
 
The iterative computation of the model is terminated when 
the PreSS cannot be further improved, or all selected partial 
polynomials are generated by G4. 
 
Step 4: 
Computation of the predicted values. 
 
The final model describing the relationship between the 
input and the output variables can be obtained in two ways: 
 
1. Select in the final layer the node with the smallest 

PreSS. The output of this node is the output of the 
final model. 
 

2. Select the L nodes with the smallest PSS as was 
done in the preceding layers, and calculate the 
weighted average of these nodes. 
 

In the training executed during this study, the first method 
was used. 

2.3 GMDH-based Dependency Modeling 
 
The dependency modeling problem we were confronted 
with in this research, is to discover on the basis of (a large 
amount of) measurement data which entities of an a priori 
selected set of entities xj (where j � J = {1, 2, 3, …, N}) 
have relevant dependency to a certain variable y and to find 
a descriptive mathematical expression between y and those 
found relevant entities xi (where i � I � J).  In this 
description (for different values of i) xi can be different 
variables and/or the same variables at different time 
instances; i.e. there might be, for instance, a dependency 
between y(t) and z1(t-3), z2(t) and z3(t-1): y = f (x1, x2, x3) 
with x1 = z1(t-3), x2 = z2(t), x3 = z3(t-1). The data that are 
assumed to hide the unknown relationships are 
measurements of the variables (entities) y and xi at many 
time instances. 
 
From the description of Sect. 2.1 on how to build up a 
GMDH-network it is clear that during training the 
subsequent elimination of processing elements (neurons), 
that do not perform well on the basis of their regularity 
criterion values, has as final result that irrelevant 
relationships are cut off and therefore irrelevant entities xi 
are removed: the value y of the single output neuron is a 
polynomial of only the relevant entities xi.  
It is easy to understand that the dependency modeling 
capacities of heuristic-free GMDH (usually considerably) 
outpaces those of basic GMDH; this was also found in 
practice. However, for this a price has to be paid: heuristic-
free GMDH is much more computing intensive than basic 
GMDH which in itself is already computing intensive! In 



this research we have used a home-made parallel 
implementation of heuristic-free GMDH (a slightly 
modified version of the one considered in Sect. 2.2), 
running on a (hypercube) parallel computer and/or a 
network of UNIX machines [Water and Kerckhoffs 1999]. 

3. MODEL TUNING PROBLEM 

3.1 An Operational “North Sea Model” 
 
We illustrate and evaluate the considered GMDH-based 
data mining method to fine-tune physical models on the 
basis of an example. The example concerns a numerical 
model of the North Sea and parts of the adjoining waters 
(see also [Schrijver et al. 2001]). This so-called North Sea 
model is based on linearized shallow water equations: 
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where t = time, h = meteorological effect on the water level, 
(u,v) = water velocities in the x- and y-direction, D = depth 
of the water, f = Coriolis parameter, � = linear bottom stress 
coefficient, � = wind stress coefficient, V = wind velocity, 
� = direction of the wind with respect to the positive x-axis, 
�w = density of water, pa = atmospheric pressure, and g = 
acceleration of gravity. The model is used to predict the 
meteorological effect on the water level, which is extremely 
important for decision support purposes. The North Sea 
model was extended with a Kalman filter which has 
improved the prediction accuracies. The prediction 
capabilities of the model can be validated by comparing 
predicted and actually measured water levels at certain 
fixed measurement locations.  
 
Discretization of the model in space yields to a spatial grid; 
the used size of each cell in this grid is �x = �y = 33,8 km. 
At each grid point the discrete differential equations are 
solved for discrete times ti with �t = ti – ti-1 = 10 min. In the 
considered model the North Sea is subdivided into 6 areas 
(1; South part, 2: the Channel, 3: Middle West part, 4: 
North West part, 5: North East part, 6: Middle East part). 
Each area has its own pressure, wind speed and wind 
direction, which are available every three hours and 
interpolated (in space and time). On the basis of an 
atmospherical numerical model a forecast of pressure pa, 
wind speed V and wind direction � as functions of space 
and time is calculated. Since the grid of the latter model is 
coarser than the grid used by the North Sea model and 
pressure and wind data are in the forecast only available 
every 6 hours, both spatial and time interpolations are used 
to obtain pressure, wind speed and wind direction on the 
grid points of the North Sea model. Since the grid is only 
defined for the North sea, external surges are modeled 
through the correct initial values at the grid boundaries. 

However, these correct initial values are unknown. The 
North Sea model was extended with a steady state Kalman 
filter to solve this problem. 
As said, the North Sea model is used for tide  prediction 
(meteorological effect on the water level). In preparation of 
any forecast, first a hindcast is made: the model is executed 
with known input data from a certain moment on in the past 
until current time. The hindcast results in the model’s state 
vector representing the actual situation at current time. 
When running the hindcast, known input data is used to 
perform the measurement update of the Kalman filter. After 
the hindcast the forecast is made with as starting point the 
model’s state vector built from the hindcast. The Kalman 
corrections on the wind and boundary conditions are also 
input parameters for the forecast; these corrections certainly 
have influence especially during the first hours of the 
forecast, but are then smoothed by the model. The forecast 
is done by running the model with as input the calculated 
expected future pressure and wind (in the different wind 
areas), starting at the time the hindcast has finished up to a 
number of hours ahead. After having ran a forecast, at time 
t+n a new hindcast/forcast cycle can be performed, thereby 
making a new prediction over the next n hours, and so on.  
 

3.2 The Wind Stress Coefficient � 
 
Most parameters in the shallow water equations (3.1), (3.2) 
and (3.3) are physical constants or measurable variables. 
Two variables, however, the bottom stress coefficient � and 
wind stress coefficient �, are physical quantities that cannot 
be measured. During previous tuning of the North Sea 
model it appeared that the bottom stress coefficient � has a 
much lower influence on the meteorological effect than the 
wind stress coefficient, therefore � is modeled as a constant 
and is in this research beyond further investigation. Since 
the wind stress coefficient � is obviously dependent on the 
wind speed and any of the afore-mentioned wind areas has 
its own wind speed, in the model different �’s are assumed. 
Two areas (North East and Middle East parts) were found 
to have a minor impact on the meteorological effect. 
Therefore we will try to establish a relation between the 
four relevant wind stress coefficients and other variables. 
Commonly, a relation between the wind speed and the wind 
stress coefficient is used, for instance the Charnock 
relation. However,  it could well be that there are other 
variables that may influence the wind stress coefficient. 
Since measurements of several physical variables were 
available for many years, the problem can be viewed as a 
data mining problem: find those physical variables the wind 
stress coefficient essentially depend on, as well as find a 
mathematical relation between them, as all this information 
is supposed to be hidden in the stored physical 
measurements. Having found an expression for the relation 
between � and other physical variables, it can be included in 
the model and the model’s predictions can be validated. 



4. GMDH-BASED MODEL TUNING 

4.1 Data Sets To Train The GMDH Networks 
 
For each �i  (�i is the wind stress coefficient for the i-th wind 
area; i = 1, ..4), a separate GMDH network is used. In order 
to train a network, data was gathered in the time period 
01/01/1998 – 30/09/1999 ( i.e.  638 days, with a resolution 
of 6 hours resulting in 4 samples a day, so all together 2552 
data records). Each record in the training set (for a single 
net) contains input/output data at a certain time tj (see figure 
3). The 18 measured basic inputs are: pressure p1 – p4 in 
each of the 4 areas, the x- and y-components of the wind in 
these areas, the significant wave height at two special 
locations L1 and L2, where measured wave data was 
available, the high frequency wave energy (> 0.2 Hz) at 
these locations L1 and L2, and the medium range frequency 
wave energy (0.1-0.2 Hz) at L1 and L2. Moreover, 
additional  inputs were included: the differences of all the 
basic inputs at time t and t-6, as well as each basic input 
shifted backward in time over a period of 6, 12, 18 and 24 
hours; so all together we have 18 + 18 + 18*4 = 108 inputs. 
The output data in each record is obviously �i. The values of 
�i were found by running (i.e. performing hindcast and 
successive forecast) the model on a 4-times a day basis 
during the entire indicated period and for a predetermined 
number of 7 different values of �i on its definition interval 
[0;6x10-6], and then determining that value of �i  that 
minimizes the difference between predicted and actually 
measured meteorological effect. In summary, the training 
set for each separate net consists of 2552 records, each 
having 108 input items and 1 output �i. (see Figure 3). It is 
the task of the trained GMDH network to reveal which of 
these 108 inputs are actually relevant for �i and to provide a 
mathematical expression �i= f(x1, x2, .., xN) in these found 
relevant inputs.  
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Figure 3: Structure of the Used Data Set 

 
In addition to the above training, the networks are also 
trained with measurements in the period 24/02/1998 – 
14/05/1998 (with a resolution of 1 hour, finally resulting in 
1921 data records). Here each record contains, in addition 
to the 18 above-mentioned basic inputs also the pressure, 
wind speed and wind direction in the areas North East and 
Middle East, the differences at time t and t-1 as well as each 
input shifted backwards in time over a period of 1, 2, …, 24 
hours, so all together 24 + 24 + 24*24 = 624 inputs. Now 
the trained GMDH is assumed to reveal the relevant inputs 
out of these 624. 
 

4.2 GMDH Performance 
 
GMDH networks of various size (1- 5 layers) have been 
trained for each �i (i = 1, 2, 3, 4), using both the data 
gathered for the period 01/01/1998 – 30/09/1999 (6 hours 
resolution) and the period 24/02/1998 – 14/05/1998 (1 hour 
resolution). In the training of the networks an important 
role was played by the so-called “condition qualifier”, 
which defines the sensitivity of the matrix in the algorithm. 
By enlarging this value, which is normally set to 106, more 
dependency between the inputs is assumed. A disadvantage 
of enlarging this value, however, is that the output becomes 
more sensitive to noise on the inputs. In our research the 
condition qualifier was set to 1012. 
 
In order to validate the result of the training, the 
mathematical relations between �i and the relevant inputs 
found were included in the North Sea model. With this 
modified model a series of forecasts was made. Every 10 
minutes (in simulation time) the predicted meteorological 
effect on the water level was stored and afterwards 
compared to the actually measured meteorological effect 
through the well-known RMSE (Root Mean Square Error) 
criterion. Similar forecasts with RMSE estimations were 
also made using the currently operating North Sea  model 
with �–values that have been found after a many years 
lasting, difficult tuning process and that have proved to give 
satisfactory prediction results. We are obviously interested 
in the difference �RMSE between both these RMSE 
performances. In all cases the results in terms of RMSE 
obtained from predictions with GMDH-based �’s were 
comparable with (actually however a little less than) those 
for the fine-tuned model; however,  the interesting point is 
that the differences in percentage proved to be relatively 
small so that GMDH can be considered worthwhile for 
quickly estimating reasonable � ’s purely on the basis of 
measurements. Table 1 presents results of �RMSE for one 
GMDH-based �i (i = 1 – 4) while the other three � ’s were 
not changed in the North Sea model.  Table 2 shows 
�RMSE-figures for the case that all four � ’s were GMDH-
based. Note that in the experiments the best results with 
either 1-layer or 2-layer networks are between 7 and 8 %. 
In both tables, the upper placed figures reflect the result for 
the data set that covers the period 01/01/1998 - 30/09/1999 
(6 hours resolution) and the lower placed figures the result 
for the other data set covering the period 24/02/1998 - 
14/05/1998 (1 hour resolution); in case of only one figure, 
the result concerns the second mentioned data set. 
 

Table 1: Results of �RMSE for one GMDH-based �i 
 

1�  2�  3�  4�  

�RMSE 
(Prediction over 
5 months, 1-
layer GMDH) 

0,1% 
 

1,9% 

4,5% 
 

3,3% 

0,3% 
 

0,9% 

0,1% 
 

0,1% 

 
 



Table 2: �RMSE for the case that all four � ’s were 
GMDH-based 

 GMDH 
(1-

layer) 

GMDH 
(2-

layer) 

GMDH 
(3-

layer) 

GMDH 
(4-

layer) 

GMDH
(5-

layer) 
�RMSE 
(Prediction 
over 5 
months) 

7,6% 
 

7,7% 

7,9% 
 

31,6% 

* 
 
* 

* 
 

54% 

* 
 
* 

�RMSE 
(Prediction 
over 2 
months) 

 
11,7% 

 
7,5% 

 
17,6% 

 
27,2% 

 
* 

 

5. CONCLUSION 
 
In this research heuristic-free GMDH networks are used to 
fine-tune a North Sea model for wind stress coefficients in 
four different wind areas. Although the GMDH-based 
dependency modeling method did not improve the 
prediction capabilities of the current North Sea model, the 
eventual differences in prediction performance were 
relatively small. Considering the fact that the current model 
has been extensively tuned during several years, it is an 
interesting result that roughly the same performance can be 
achieved with a completely different technique. The 
GMDH data mining method therefore proved to be usable 
to achieve reasonably good results, with the additional 
advantage that the period of time for collecting training 
data, training and validating is much shorter than the time 
(several years) that has been necessary in the past to fine-
tune the current model. Summarizing, GMDH-based 
dependency modeling can be fruitfully used for a fast 
reasonable estimate of one or more parameters that cannot 
be directly measured and that lack (sufficient) a priori 
knowledge on relational dependencies. 
 
Another interesting aspect of the GMDH-based dependency 
modeling is that unexpected variables might be found to 
have relevant impact on the wind stress  coefficients. The 
procedure may thus increase physical insight. 
Our research has shown that wind stress coefficients 
considerably depend on wave energy, which confirms 
certain assumptions with experts in the field and can be 
made explicable by physics. It means that the usually 
assumed dependence of the wind stress coefficients on only 
wind speed and wind direction is not optimal and can be 
improved. 
 
Although no a priori knowledge about the relationship 
between the inputs and the output is needed, a thorough 
knowledge of the system being modeled is necessary. This 
knowledge is needed when creating a valid data set and 
especially when verifying training results. One cannot use 
heuristic-free GMDH for dependency modeling without 
knowledge of the system being modeled. 
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