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ABSTRACT 
 
Research software involving stochastic behaviour often 
requires an enormous quantity of random numbers. In 
addition to the quality of the pseudorandom number 
generator (PRNG), the speed of the algorithm and the ease 
of its implementation are common practical aspects. In this 
work we will discuss how to optimize the access speed to 
random numbers independently from the generation 
algorithm using a lookup table. This idea was exploited in 
the late fifties, when the Rand Corporation started to 
propose sets of ready to use pseudo-random numbers 
(PRNs). The need of larger and larger sets of PRNs 
cancelled the possibility of storing those sets into the 
memory of our past computers, even supercomputers were 
not able to store tables with hundreds of millions of PRNs. 
In this paper we propose an implementation technique in 
order to speedup any kind of PRNG taking into account the 
capacities of current computers and microcomputers. The 
speed of our solution stems from the classical unrolling 
optimization technique, it is named the URNG technique 
(Unrolled Random Number Generator). Random numbers 
are first generated in source code, then precompiled and 
stored inside the RAM of inexpensive computers at the 
executable loading time. With this technique random 
numbers need to be computed only once. The UNRG 
technique is compliant with parallel computing. Limits and 
effects on speed and sensitivity are explored over 4 
computer generations with a simple Monte Carlo 
simulation. Every research field using stochastic 
computation can be concerned by this software 
optimization technique. 
 
I. INTRODUCTION 
 
In most research fields various problems remain very 
tedious if not intractable if they are tackled with 
deterministic algorithms and this if the main reason why 
scientists often develop stochastic algorithms. For small 
problem size, this kind of randomized approach has proved 
to be less efficient than its deterministic counterpart. 
However, it is now well known that stochastic algorithms 
can efficiently tackle various large-scale problems and we 

have gained this certitude also on our experience (Hill et al 
1998) (Aussem and Hill 1999) (Coquillard et al. 2000). 
Such stochastic algorithms need  a source of randomness. 
Pseudo-random number generators are frequently preferred 
to physical devices mainly because they authorize results 
reproducibility, they are often portable and facilitate 
program debugging. For computer scientists specialized in 
stochastic computations and or simulations, it is well 
known that there are no safe and universal random number 
generators (L’Ecuyer 1997) (Hellekalek 1998). Since 
generators of any kind have their side effects, it is at least 
strongly recommended to check the results with different 
kinds of generators. In addition to the study of their 
theoretical and empirical qualities (Marsaglia 1984) 
(Afflerbach 1990) (Coddington 1994) (Vattulainen 1995) 
(Knuth 1998) (Srinivasan et al. 1998), the efficiency and 
optimization of random numbers has often been considered 
by specialists in their sequential (Kenneth et al. 1997) 
(Entacher et al. 2001) and parallel versions (Williams and 
Williams 1995) (Coddington 1997) (Tan 2000) (Chih Jeng 
Kenneth Tan 2002). Despite a fair amount of sound 
theoretical work on pseudorandom number generation 
algorithms, the theoretical gain is often eradicated by poor 
computer implementations. Indeed, the concern for speed  
often results in shortcuts which most of the time rely on 
approximations. Such approximations can be disastrous in 
random number generation and some are very machine-
specific (Gentle 1990). In this paper we will concentrate on 
the coding considerations for a very portable speedup 
technique : i.e. applicable to any programming language 
and to any pseudorandom number generator.  
 
II. THE UNROLLING TECHNIQUE APPLIED TO 
PSEUDORANDOM NUMBERS GENERATION 
 
In every stochastic software and particularly if we deal with 
stochastic simulation, the number of calls to the pseudo-
random generator is responsible for getting a great account 
of CPU resources (Hill 1996). In this paragraph we will 
describe the URNG implementation technique (Unrolling 
Random Number Generators) to optimize the access to 
random numbers of any generator. This method will be 
described hereafter as the « unrolling » method. It consists 
in generating automatically a source file containing a static 
array of random-numbers generated with any kind of 
random source (pseudo random numbers generator or 
physical device). This source file can then be linked with 
the main application files requiring random numbers. For 

 



 

each random pulling, we in fact get the number contained in 
a cell of the array previously built.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : URNG unrolling method principle 
 

In order to evaluate the performance of this method, we 
have written several programs. The tests we achieved were 
done with the C language but the technique is fully 
portable. With the C and C++ language we can use 32 bits, 
64 bits or 96 bits (long double) representations of PRNs. 
With C or C++, the interface is specifically designed to take 
benefits of macro-instructions for data access, there is no 
need to design a specific class in an object-oriented code. 
The main objective of this technique remains to 
significatively improve the execution speed.  
 

To generate the source code with static arrays of 
random numbers, we have developed 2 programs : unroll1 
and unroll2 since we tested to two different 
implementations of the data access. Both programs generate 
two source files (Appendix A) a header (randUnroll.h) and 
the implementation (randUnroll.c) of the static array of 
random numbers which will be different for each PRNG or 
when using different seeds. Both files are ready for separate 
compilation and this compilation is done automatically by 
the 2 versions of the unroll program. The result of the 
separate compilation (randUnroll.o) is then linked with the 
tests or application programs whose source code only 
includes the header file randUnroll.h containing : the 
declaration of the static array and the macroinstruction 
designed for accessing random numbers.  
 
III. THE NEED TO APPLY THIS TECHNIQUE TO 
DIFFERENT PRNGS 
 
Knowing that there is no universal generator, it is strongly 
recommended to test a stochastic application with widely 
different PRNGs. They can be classified in four major 
classes: linear generators, lagged generators, inversive 

generators and mixed generators. It is interesting to 
maintain at least a large file of sequence for each major 
type of generator. For instance, inversive generators are 
very interesting for verifying simulation results obtained 
with an LCG because their internal structure and correlation 
behavior strongly differs from what LCGs produce. Since 
inversive generators are usually very slow (10 times slower 
than an equivalent LCG of the same size (Hellekalek 
1997)), some scientists refrain from using them. With our 
speedup technique the “generation time” is the same for 
every kind of generator, thus it helps scientists to enhance 
their verification habits by facilitating the use of sequences 
generated by slow generators that maybe they would not 
have used otherwise. The next paragraphs briefly present 
different kinds of generators which are detailed in (Traore 
and Hill 2002) (Figure 2). 
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Compilation The main Linear generators are LCGs (for Linear 

Congruential Generators), MLCG (for Multiplicative 
LCGs), LCGPTM (for LCG with Power of Two Modulus), 
LCGPM (for Linear Congruential Generator with Prime 
Modulus), MRG (for Multiple Recursive Generator), 
CLCG (for Combined Linear Congruential Generator) 
includes generators that are obtained by the concatenation 
of the sequences provided by several different LCG in order 
to get longer periods. Linear generators are the most 
commonly analyzed and utilized generators (they are de 
facto standards in C and FORTRAN compilers)  
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Lagged generators also have a general recursive formula, 
and can also often be identified into particular overlapping 
sub-classes. LFG (for Lagged Fibonacci Generator) is the 
main class. The following algorithm is used: xi = xi-p ⊗  xi-q 

where ⊗  is an arithmetical operator (+, -, x modulo m, or 
XOR); p and q are the lags, p>q. Most of the time in 
practice, a power of two modulus is chosen. SRG (for Shift 
Register Generator) gives particular cases of LFG with 
XOR as the operator. ALFG (for Additive LFG) concerns 
LFG for which, addition is the operator. MLFG (for 
Multiplicative LFG) gives generators, for which the 
operator is the multiplication, and which period can reach 
(2p-q – 1)2s-3 for a 2s modulus. GLFG (for Generalized 
Lagged Fibonacci Generator) is a generalization of LFG. 
The following algorithm is used:xi = xi-p1 ⊗  xi-p2 ⊗  xi-p3⊗  … 
⊗  xi-pn. Chaotic generators use some additional bit-rotation 
operations. They are called chaotic because of the 
divergence that appears between two sequences which are 
generated from two neighbor seeds.  
 
Inversive congruential generators (ICGs) form a recent 
class of generators which are based on the principle of 
congruential inversion (Eichenauer and Lehn 1986) 
(Eichenauer-Hermann 1993a,b) ICGs aim at reducing 
correlation phenomena by avoiding the lattice structure of 
linear generators. Three types of inversive generators have 
been proposed : RICG (for Recursive ICG) EICG (for 
Explicit ICG) and compound generators which define 
combinations of ICG. As said previously the disadvantage 
of ICGs is their high computing cost, due to the 
congruential inversion. Major results are presented in 
(Hellekalek 1995). 
 

 



 

Mixed generators result from the need for sequences of 
better and better quality, or at least longer periods. This has 
led to mixing different types of RNG. One way to design a 
Mixed Generator (MG) is as follows: xi ≡ yi ⊕  zi (mod m) 
where ⊕  is often XOR or addition modulo m, and yi and zi 
are the ith terms of two other generators. Linear versions of 
mixed generators with good qualities are presented in 
(L’Ecuyer 1998). Obviously, cICG, cEICG, cLCG and 
combined MRG are sub-classes of mixed generators. 
Another simple way to greatly improve any random number 
generator is to shuffle its output with another generator 
(Wichmann and Hill 1982). 
 

 
Figure 2 : UML(Unified Modeling Language) ontological 

class hierarchy of RNGs  
(Traore and Hill 2002) 

 
IV RESULTS ANALYSIS  
 
IV.1 Benchmark description  
 
We have built a benchmark with several pseudorandom 
number generators on a simple Monte Carlo simulation (PI 
computation). The main goal of these tests was not to 
compute an approximated PI value, but rather to measure 
the average speed of the generators. We decided to compare 
the unrolling technique to two kinds of generators described 
in (Press et al, 1992) : an ultra fast implementation of the 
“Quick and Dirty” generator (coded with a 
macroinstruction) and the shuffled version of ran2 in 
Numerical Recipies. After some preliminary testing, we 
have evaluated for each generator : the computing time, the 
execution time, the loading time and compilation time on 4 
generations of machines. We have also tested optimized 
and non optimized compilations to see whether the 
unrolling technique benefits from optimizing compilers. 
The four machines were an IBM R6000 Power 3 Server 
(quadri-processor under AIX) and 3 different micro-
computers running under Linux with Mandrake 8.1 
distribution : a Pentium II at 450 Mhz, a Pentium III at 800 
Mhz, and an Athlon at 1.5 Ghz. The two main limits of the 
unrolling technique will be discussed now, just before 
presenting the computing times. 
 
IV.2 Files sizes 
 
One of the first disadvantages we can find to the unrolling 
technique is the important size of the generated files 
(sources and executable) used with the unrolling method : 
indeed, the size of a C source file containing an array of 1 
million generated numbers reaches 10,4 Mb, and the size of 
the resulting executable reaches 3,82 Mb…but only 18 kb 
for the same program compiled with a standard generator. 

For 2 million generated numbers, the source file size 
reaches 21 MB and the executable file size 7,64 MB, and so 
on. At the present time, we can compile (on the IBM 
server) files containing up to 4 million generated numbers 
(that is to say a source file size of approximately 40 MB). 
 
IV.3 Compilation and loading times 
 
The second point which could have limited the unrolling 
technique is the compilation time for the files used with the 
unrolling method. The following tables (tables 1 and 2) 
show these times for the macro version of the Quick and 
Dirty generator and for the unrolled generator, on the 
different computers. The versions of the generators used for 
these tests were the optimized ones. Furthermore, we have 
noticed that the compilation times for the optimized version 
of the unrolled generator and the unoptimized version were 
almost the same, contrary to the other generators, for which 
the compilation time increased with the optimization (this is 
not true on the IBM server with the -O5 option, which gives 
very efficient optimization but at higher cost if we consider 
the compilation time). Loading times have been computed 
from the Unix “time” command. The size of the generated 
source file to compile for the unrolled generator was 10,4 
Mb. 
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Table 1 : compilation times 

 
IBM 

server Generator P2 450 P3 800 Athlon 
1500 gcc xlc 

Quick and 
Dirty 
(macro) 

2 s 550 ms 510 ms 720 
ms

430 
ms 

Unrolled 1min 47 s 52 s 28 s 63 s 8 s 

 
Table 2 : loading times 

 

Generators, loading 
times (in ms) PII 450 PIII 800 IBM 

Server
Quick and Dirty 
(macro) 10 0 10

Unrolled 10 0 20

 
 
Only the compilation time moves between the two 
programs ; loading times are almost the same. With our 
current version of operating system and computer, loading a 
3,8 Mb file (for the unrolled version) or a 20 kb executable 
file give approximately the same time from an end-user 
point of view. We can notice that the precision of the time 
command is 10 ms, a more precise measure would of have 
given some difference. That is why a wide range of the 
loading times lies between 0 ms and 10 ms (the IBM server 
is the only machine of our benchmark indicating loading 
times lying between 0 and 20 ms). No computer has shown 
loading times higher than 20 ms, whatever the generator 
tested. 

 



 

 
IV.4 Synthesis 
 
In spite of the two previous problems, it can be interesting 
to consider the power of the unrolling method. The 
following table (table 3) shows the average of the results 
computed for each machine and this/those(?) of the third 
paragraph to consider the perenniality of this method on 
computers belonging to 4 different generations. 
 

Table 3 : average results for the four computers 
 

Generators 
(O) 
Optimized 
compilation 
(UO) Un-
optimized  

Generator 
(#1 or #2) 

Computing 
time in ms 

 

Generator 
#3 

( Shuffle NR 
« unrolled 2

» ) 
 Computing 
time in ms 

Computing 
time ratio 
Unrolled 
technique 
(X) times 

faster  
than ref #1 

or #2 

3718  (UO) 2981 (UO) 1,24 
Generator 
ref #1 
 
Quick and 
Dirty 
(macro 
version) 

2142  (O) 1748 (O) 1,29 

8085 (UO) 2981 (UO) 2,69 Generator 
ref#2  
 
Shuffle NR 
 (standard) 4833 (O) 1748 (O) 3,00 

 
Even if compared with an ultra fast and dirty generator, the 
unrolling technique remains faster (at least 1.24 times). To 
facilitate comparison between the different computers, we 
have merged the most interesting results in a single table 
(table 4). We can notice that the unrolling method allows us 
to get a great speed profit if a serious pseudorandom 
number generator is used. This remark is true whatever the 
computer generation, the speed ratio even increases in favor 
of the unrolling technique on the most recent computers.  
 
V CONCLUSION  
 
We have presented an implementation technique able to 
speedup any software that makes an intensive use of 
pseudo-random number generators. This approach is now 
possible since the computing power available at low cost 
enables the management of very large file systems as well 
as the handling of huge arrays in random access memory. 
The essence of speed is based on the unrolling optimization 
technique, and thus we named it the URNG technique 
(Unrolled Random Number Generator). With this 
technique, we obtain the same speedup ratio independently 
from the pseudo-random number generator. Whatever the 
generation algorithm, arrays are generated and compiled to 
be present in memory after the loading of the executable 
program. Instead of computing each random number with 
an algorithm, a simple array access is proposed, enabling 
fast first level cache prediction by our current 

microprocessors. The URNG technique is faster than 
hardwired generators and file accesses which need millions 
of slow input device instructions. In addition, this technique 
is portable and facilitates the verification and validation of 
models with various different random number generators 
(pre-computed once and for all, and usable in the same 
manner by just a recompilation). 
 

Table 4 : synthesis of the optimized generators on the 
different computers. 

Computing times of the different optimized generators on 
the different computers (in ms). 

Bold, the faster generator on each machine. 
 

Generators PII 450 PIII 800 IBM server 

Quick and 
Dirty (macro 
version) 

3570 1830 810 

Shuffle NR 6920 3550 3070 

Unrolled 
Version 3180 1680 920 

 
 
This technique also has some disadvantages : the first lies 
in the compilation time of the generated source file, though 
with the latest computers the compilation time remains fast 
(8s. for a 10.4 Mb file on the IBM server), this compilation 
time can reach several minutes on slow computers (1 min 
47 sec on the Pentium II 450 Mhz computer). Furthermore, 
the main disadvantage still remains that the source and 
executable file size increases significantly : 10,4 Mb. for 
the source file with one million float values and 3,8 Mb. for 
the executable file. Thus, hard disk space and memory 
space is obviously not saved. However, nowadays, a 
microcomputer with 80 Gb hard disk and with 1 Gb. of 
RAM is really affordable, and even though the compilation 
of a 500 Mb. file (i.e. a file containing an array of about 50 
million generated float values) seems to be bold on a 
standard computer, we can imagine that in about 2 or 3 
years, this compilation would be completely feasible, and 
even maybe fast. We could even enhance compilers and 
operating system architecture to fully benefit from this 
technique. In addition, we are also exploring the possibility 
of exploiting the memory mapping implemented in Unix 
system. This technique is promising and will enable us to 
use of very large sets of PRNs (stored in files with many 
gigabytes) when we handle many replications.  
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