
BENCHMARK OF THE
UNROLLING OF PSEUDORANDOM NUMBERS GENERATORS

David R.C. Hill

Alexandre Roche
LIMOS – UMR CNRS 6158

Blaise Pascal University
ISIMA, Campus des Cézeaux BP 10125

63177 Aubière Cedex
FRANCE

KEYWORDS

Pseudorandom numbers, unrolling, optimisation, stochastic,
simulation

ABSTRACT

Research software involving stochastic behaviour often
requires an enormous quantity of random numbers. In
addition to the quality of the pseudorandom number
generator (PRNG), the speed of the algorithm and the ease
of its implementation are common practical aspects. In this
work we will discuss how to optimize the access speed to
random numbers independently from the generation
algorithm using a lookup table. This idea was exploited in
the late fifties, when the Rand Corporation started to
propose sets of ready to use pseudo-random numbers
(PRNs). The need of larger and larger sets of PRNs
cancelled the possibility of storing those sets into the
memory of our past computers, even supercomputers were
not able to store tables with hundreds of millions of PRNs.
In this paper we propose an implementation technique in
order to speedup any kind of PRNG taking into account the
capacities of current computers and microcomputers. The
speed of our solution stems from the classical unrolling
optimization technique, it is named the URNG technique
(Unrolled Random Number Generator). Random numbers
are first generated in source code, then precompiled and
stored inside the RAM of inexpensive computers at the
executable loading time. With this technique random
numbers need to be computed only once. The UNRG
technique is compliant with parallel computing. Limits and
effects on speed and sensitivity are explored over 4
computer generations with a simple Monte Carlo
simulation. Every research field using stochastic
computation can be concerned by this software
optimization technique.

I. INTRODUCTION

In most research fields various problems remain very
tedious if not intractable if they are tackled with
deterministic algorithms and this if the main reason why
scientists often develop stochastic algorithms. For small
problem size, this kind of randomized approach has proved
to be less efficient than its deterministic counterpart.
However, it is now well known that stochastic algorithms
can efficiently tackle various large-scale problems and we

have gained this certitude also on our experience (Hill et al
1998) (Aussem and Hill 1999) (Coquillard et al. 2000).
Such stochastic algorithms need a source of randomness.
Pseudo-random number generators are frequently preferred
to physical devices mainly because they authorize results
reproducibility, they are often portable and facilitate
program debugging. For computer scientists specialized in
stochastic computations and or simulations, it is well
known that there are no safe and universal random number
generators (L’Ecuyer 1997) (Hellekalek 1998). Since
generators of any kind have their side effects, it is at least
strongly recommended to check the results with different
kinds of generators. In addition to the study of their
theoretical and empirical qualities (Marsaglia 1984)
(Afflerbach 1990) (Coddington 1994) (Vattulainen 1995)
(Knuth 1998) (Srinivasan et al. 1998), the efficiency and
optimization of random numbers has often been considered
by specialists in their sequential (Kenneth et al. 1997)
(Entacher et al. 2001) and parallel versions (Williams and
Williams 1995) (Coddington 1997) (Tan 2000) (Chih Jeng
Kenneth Tan 2002). Despite a fair amount of sound
theoretical work on pseudorandom number generation
algorithms, the theoretical gain is often eradicated by poor
computer implementations. Indeed, the concern for speed
often results in shortcuts which most of the time rely on
approximations. Such approximations can be disastrous in
random number generation and some are very machine-
specific (Gentle 1990). In this paper we will concentrate on
the coding considerations for a very portable speedup
technique : i.e. applicable to any programming language
and to any pseudorandom number generator.

II. THE UNROLLING TECHNIQUE APPLIED TO
PSEUDORANDOM NUMBERS GENERATION

In every stochastic software and particularly if we deal with
stochastic simulation, the number of calls to the pseudo-
random generator is responsible for getting a great account
of CPU resources (Hill 1996). In this paragraph we will
describe the URNG implementation technique (Unrolling
Random Number Generators) to optimize the access to
random numbers of any generator. This method will be
described hereafter as the « unrolling » method. It consists
in generating automatically a source file containing a static
array of random-numbers generated with any kind of
random source (pseudo random numbers generator or
physical device). This source file can then be linked with
the main application files requiring random numbers. For

each random pulling, we in fact get the number contained in
a cell of the array previously built.

Figure 1 : URNG unrolling method principle

In order to evaluate the performance of this method, we
have written several programs. The tests we achieved were
done with the C language but the technique is fully
portable. With the C and C++ language we can use 32 bits,
64 bits or 96 bits (long double) representations of PRNs.
With C or C++, the interface is specifically designed to take
benefits of macro-instructions for data access, there is no
need to design a specific class in an object-oriented code.
The main objective of this technique remains to
significatively improve the execution speed.

To generate the source code with static arrays of
random numbers, we have developed 2 programs : unroll1
and unroll2 since we tested to two different
implementations of the data access. Both programs generate
two source files (Appendix A) a header (randUnroll.h) and
the implementation (randUnroll.c) of the static array of
random numbers which will be different for each PRNG or
when using different seeds. Both files are ready for separate
compilation and this compilation is done automatically by
the 2 versions of the unroll program. The result of the
separate compilation (randUnroll.o) is then linked with the
tests or application programs whose source code only
includes the header file randUnroll.h containing : the
declaration of the static array and the macroinstruction
designed for accessing random numbers.

III. THE NEED TO APPLY THIS TECHNIQUE TO
DIFFERENT PRNGS

Knowing that there is no universal generator, it is strongly
recommended to test a stochastic application with widely
different PRNGs. They can be classified in four major
classes: linear generators, lagged generators, inversive

generators and mixed generators. It is interesting to
maintain at least a large file of sequence for each major
type of generator. For instance, inversive generators are
very interesting for verifying simulation results obtained
with an LCG because their internal structure and correlation
behavior strongly differs from what LCGs produce. Since
inversive generators are usually very slow (10 times slower
than an equivalent LCG of the same size (Hellekalek
1997)), some scientists refrain from using them. With our
speedup technique the “generation time” is the same for
every kind of generator, thus it helps scientists to enhance
their verification habits by facilitating the use of sequences
generated by slow generators that maybe they would not
have used otherwise. The next paragraphs briefly present
different kinds of generators which are detailed in (Traore
and Hill 2002) (Figure 2).

Unroll
Code generator

Generation

RandUnroll.h
Header with access

macro

RandUnroll.c
Implementation of the

PRN array

Inclusion

YourStochasticApp.c Rand
Unroll.o
acts as a

library with
the compiled

PRNs

Compilation The main Linear generators are LCGs (for Linear

Congruential Generators), MLCG (for Multiplicative
LCGs), LCGPTM (for LCG with Power of Two Modulus),
LCGPM (for Linear Congruential Generator with Prime
Modulus), MRG (for Multiple Recursive Generator),
CLCG (for Combined Linear Congruential Generator)
includes generators that are obtained by the concatenation
of the sequences provided by several different LCG in order
to get longer periods. Linear generators are the most
commonly analyzed and utilized generators (they are de
facto standards in C and FORTRAN compilers)

Your
StochasticApp.o Linking

Your
FinalProgram

Lagged generators also have a general recursive formula,
and can also often be identified into particular overlapping
sub-classes. LFG (for Lagged Fibonacci Generator) is the
main class. The following algorithm is used: xi = xi-p ⊗ xi-q

where ⊗ is an arithmetical operator (+, -, x modulo m, or
XOR); p and q are the lags, p>q. Most of the time in
practice, a power of two modulus is chosen. SRG (for Shift
Register Generator) gives particular cases of LFG with
XOR as the operator. ALFG (for Additive LFG) concerns
LFG for which, addition is the operator. MLFG (for
Multiplicative LFG) gives generators, for which the
operator is the multiplication, and which period can reach
(2p-q – 1)2s-3 for a 2s modulus. GLFG (for Generalized
Lagged Fibonacci Generator) is a generalization of LFG.
The following algorithm is used:xi = xi-p1 ⊗ xi-p2 ⊗ xi-p3⊗ …
⊗ xi-pn. Chaotic generators use some additional bit-rotation
operations. They are called chaotic because of the
divergence that appears between two sequences which are
generated from two neighbor seeds.

Inversive congruential generators (ICGs) form a recent
class of generators which are based on the principle of
congruential inversion (Eichenauer and Lehn 1986)
(Eichenauer-Hermann 1993a,b) ICGs aim at reducing
correlation phenomena by avoiding the lattice structure of
linear generators. Three types of inversive generators have
been proposed : RICG (for Recursive ICG) EICG (for
Explicit ICG) and compound generators which define
combinations of ICG. As said previously the disadvantage
of ICGs is their high computing cost, due to the
congruential inversion. Major results are presented in
(Hellekalek 1995).

Mixed generators result from the need for sequences of
better and better quality, or at least longer periods. This has
led to mixing different types of RNG. One way to design a
Mixed Generator (MG) is as follows: xi ≡ yi ⊕ zi (mod m)
where ⊕ is often XOR or addition modulo m, and yi and zi
are the ith terms of two other generators. Linear versions of
mixed generators with good qualities are presented in
(L’Ecuyer 1998). Obviously, cICG, cEICG, cLCG and
combined MRG are sub-classes of mixed generators.
Another simple way to greatly improve any random number
generator is to shuffle its output with another generator
(Wichmann and Hill 1982).

Figure 2 : UML(Unified Modeling Language) ontological

class hierarchy of RNGs
(Traore and Hill 2002)

IV RESULTS ANALYSIS

IV.1 Benchmark description

We have built a benchmark with several pseudorandom
number generators on a simple Monte Carlo simulation (PI
computation). The main goal of these tests was not to
compute an approximated PI value, but rather to measure
the average speed of the generators. We decided to compare
the unrolling technique to two kinds of generators described
in (Press et al, 1992) : an ultra fast implementation of the
“Quick and Dirty” generator (coded with a
macroinstruction) and the shuffled version of ran2 in
Numerical Recipies. After some preliminary testing, we
have evaluated for each generator : the computing time, the
execution time, the loading time and compilation time on 4
generations of machines. We have also tested optimized
and non optimized compilations to see whether the
unrolling technique benefits from optimizing compilers.
The four machines were an IBM R6000 Power 3 Server
(quadri-processor under AIX) and 3 different micro-
computers running under Linux with Mandrake 8.1
distribution : a Pentium II at 450 Mhz, a Pentium III at 800
Mhz, and an Athlon at 1.5 Ghz. The two main limits of the
unrolling technique will be discussed now, just before
presenting the computing times.

IV.2 Files sizes

One of the first disadvantages we can find to the unrolling
technique is the important size of the generated files
(sources and executable) used with the unrolling method :
indeed, the size of a C source file containing an array of 1
million generated numbers reaches 10,4 Mb, and the size of
the resulting executable reaches 3,82 Mb…but only 18 kb
for the same program compiled with a standard generator.

For 2 million generated numbers, the source file size
reaches 21 MB and the executable file size 7,64 MB, and so
on. At the present time, we can compile (on the IBM
server) files containing up to 4 million generated numbers
(that is to say a source file size of approximately 40 MB).

IV.3 Compilation and loading times

The second point which could have limited the unrolling
technique is the compilation time for the files used with the
unrolling method. The following tables (tables 1 and 2)
show these times for the macro version of the Quick and
Dirty generator and for the unrolled generator, on the
different computers. The versions of the generators used for
these tests were the optimized ones. Furthermore, we have
noticed that the compilation times for the optimized version
of the unrolled generator and the unoptimized version were
almost the same, contrary to the other generators, for which
the compilation time increased with the optimization (this is
not true on the IBM server with the -O5 option, which gives
very efficient optimization but at higher cost if we consider
the compilation time). Loading times have been computed
from the Unix “time” command. The size of the generated
source file to compile for the unrolled generator was 10,4
Mb.

Linear
Generator

LCG MRG

Lagged
Generator

LFG Chaotic
Generator

ICG

RICG EICG

Mixed
Generator

Combined
Generator

Shuffled
Generator

RNG
*

Table 1 : compilation times

IBM

server Generator P2 450 P3 800 Athlon
1500 gcc xlc

Quick and
Dirty
(macro)

2 s 550 ms 510 ms 720
ms

430
ms

Unrolled 1min 47 s 52 s 28 s 63 s 8 s

Table 2 : loading times

Generators, loading
times (in ms) PII 450 PIII 800 IBM

Server
Quick and Dirty
(macro) 10 0 10

Unrolled 10 0 20

Only the compilation time moves between the two
programs ; loading times are almost the same. With our
current version of operating system and computer, loading a
3,8 Mb file (for the unrolled version) or a 20 kb executable
file give approximately the same time from an end-user
point of view. We can notice that the precision of the time
command is 10 ms, a more precise measure would of have
given some difference. That is why a wide range of the
loading times lies between 0 ms and 10 ms (the IBM server
is the only machine of our benchmark indicating loading
times lying between 0 and 20 ms). No computer has shown
loading times higher than 20 ms, whatever the generator
tested.

IV.4 Synthesis

In spite of the two previous problems, it can be interesting
to consider the power of the unrolling method. The
following table (table 3) shows the average of the results
computed for each machine and this/those(?) of the third
paragraph to consider the perenniality of this method on
computers belonging to 4 different generations.

Table 3 : average results for the four computers

Generators
(O)
Optimized
compilation
(UO) Un-
optimized

Generator
(#1 or #2)

Computing
time in ms

Generator
#3

(Shuffle NR
« unrolled 2

»)
 Computing
time in ms

Computing
time ratio
Unrolled
technique
(X) times

faster
than ref #1

or #2

3718 (UO) 2981 (UO) 1,24
Generator
ref #1

Quick and
Dirty
(macro
version)

2142 (O) 1748 (O) 1,29

8085 (UO) 2981 (UO) 2,69 Generator
ref#2

Shuffle NR
 (standard) 4833 (O) 1748 (O) 3,00

Even if compared with an ultra fast and dirty generator, the
unrolling technique remains faster (at least 1.24 times). To
facilitate comparison between the different computers, we
have merged the most interesting results in a single table
(table 4). We can notice that the unrolling method allows us
to get a great speed profit if a serious pseudorandom
number generator is used. This remark is true whatever the
computer generation, the speed ratio even increases in favor
of the unrolling technique on the most recent computers.

V CONCLUSION

We have presented an implementation technique able to
speedup any software that makes an intensive use of
pseudo-random number generators. This approach is now
possible since the computing power available at low cost
enables the management of very large file systems as well
as the handling of huge arrays in random access memory.
The essence of speed is based on the unrolling optimization
technique, and thus we named it the URNG technique
(Unrolled Random Number Generator). With this
technique, we obtain the same speedup ratio independently
from the pseudo-random number generator. Whatever the
generation algorithm, arrays are generated and compiled to
be present in memory after the loading of the executable
program. Instead of computing each random number with
an algorithm, a simple array access is proposed, enabling
fast first level cache prediction by our current

microprocessors. The URNG technique is faster than
hardwired generators and file accesses which need millions
of slow input device instructions. In addition, this technique
is portable and facilitates the verification and validation of
models with various different random number generators
(pre-computed once and for all, and usable in the same
manner by just a recompilation).

Table 4 : synthesis of the optimized generators on the
different computers.

Computing times of the different optimized generators on
the different computers (in ms).

Bold, the faster generator on each machine.

Generators PII 450 PIII 800 IBM server

Quick and
Dirty (macro
version)

3570 1830 810

Shuffle NR 6920 3550 3070

Unrolled
Version 3180 1680 920

This technique also has some disadvantages : the first lies
in the compilation time of the generated source file, though
with the latest computers the compilation time remains fast
(8s. for a 10.4 Mb file on the IBM server), this compilation
time can reach several minutes on slow computers (1 min
47 sec on the Pentium II 450 Mhz computer). Furthermore,
the main disadvantage still remains that the source and
executable file size increases significantly : 10,4 Mb. for
the source file with one million float values and 3,8 Mb. for
the executable file. Thus, hard disk space and memory
space is obviously not saved. However, nowadays, a
microcomputer with 80 Gb hard disk and with 1 Gb. of
RAM is really affordable, and even though the compilation
of a 500 Mb. file (i.e. a file containing an array of about 50
million generated float values) seems to be bold on a
standard computer, we can imagine that in about 2 or 3
years, this compilation would be completely feasible, and
even maybe fast. We could even enhance compilers and
operating system architecture to fully benefit from this
technique. In addition, we are also exploring the possibility
of exploiting the memory mapping implemented in Unix
system. This technique is promising and will enable us to
use of very large sets of PRNs (stored in files with many
gigabytes) when we handle many replications.

ACKNOWLEDGEMENT

I would like to thank my research assistant
Alexandre Roche, for his technical report, the
implementation and testing on various computers of this
speedup technique.

REFERENCES

L. Afflerbach, Criteria for the assessment of random

number generators, Journal of Computational and
Applied Mathematics, Volume 31, Issue 1, 24 July
1990, Pages 3-10.

A. Aussem, D. Hill, “Neural networks metamodelling for
the prediction of Caulerpa taxifolia development in
the Mediterranean sea'', Neurocomputing Letters,
Neurocomputing, Vol 30, pp 71-78, 2000.

Chih Jeng Kenneth Tan, The PLFG parallel pseudo-random
number generator, Future Generation Computer
Systems, Volume 18, Issue 5, April 2002, Pages
693-698.

P.D. Coddington, Analysis of random number generators
using Monte Carlo simulation, Int. J. Mod. Phys. C5
(1994).

P.D. Coddington, Random number generators for parallel
computers, Natl. HPCC Software Exchange Rev. 1.1
(1997).

P. Coquillard, T. Thibaut, D. Hill, J. Gueugnot, C. Mazel
And Y. Coquillard, "Simulation of the mollusc
Ascoglossa Elysia subornata population dynamics:
application to the potential biocontrol of Caulerpa
taxifolia growth in the Mediterranean Sea.",
Ecological modelling, Vol 135, pp. 1-16, 2000.

J. Eichenauer and J. Lehn, A Non Linear Congruential
Pseudo Random Number Generator, Statist. Papers,
Volume 27, 1986, Pages 315-326.

J. Eichenauer-Hermann, Explicit Inversive Congruential
Pseudorandom Numbers: The Compound Approach,
Computing, Volume 51, Pages 175-182.

J. Eichenauer-Hermann, Statistical Independence of a New
Class of Inversive Congruential Pseudorandom
Numbers, Math. Comp., Volume 60, 1993, Pages
375-384.

K. Entacher, T. Schell and A. Uhl Optimization of random
number generators: efficient search for high-quality
LCGs, Probabilistic Engineering Mechanics,
Volume 16, Issue 4, October 2001, Pages 289-293.

James E. Gentle, Computer implementation of random
number generators, Journal of Computational and
Applied Mathematics, Volume 31, Issue 1, 24 July
1990, Pages 119-125.

P. Hellekalek, Inversive Pseudorandom Number
Generators: Concepts, Results and Links,
Proceedings of the Winter Simulation Conference,
1995, Pages 255-262.

P. Hellekalek, A Note on Pseudorandom Number
Generators, Simulation Practice and Theory,
Volume 5, Issue 6, 15 August 1997, Pages p6-p8.

P. Hellekalek, Good random number generators are (not so)
easy to find, Mathematics and Computers in
Simulation, Volume 46, Issues 5-6, 1 June 1998,
Pages 485-505.

D. Hill, P. Coquillard, J. De Vaugelas, A. Meinesz, "An
algorithmic Model for Invasive Species Application
to Caulerpa taxifolia (Vahl) C. Agardh development
in the North–Western Mediterranean Sea".
Ecological modelling, Vol. 109, pp. 251-265, 1998.

D. Hill, Object-Oriented Analysis and Simulation, Addison-
Wesley, 1996.

Kenneth G. Hamilton and F. James, Acceleration of
RANLUX, Computer Physics Communications,
Volume 101, Issue 3, 1 May 1997, Pages 241-248.

D.E. Knuth, The Art of Computer Programming, Vol. II,
Seminumerical Algorithms, 3rd Edition, Addison-
Wesley/Longman Higher Education, New York,
1998.

P. L’Ecuyer. Combined multiple-recursive random number
generators. In Jerry Banks, editor, Handbook on
Simulation, Wiley, New York, 1997.

P. L’Ecuyer, Efficient and Portable Combined Random
Number Generators, Communication of the ACM,
Volume 31, 1998, Pages 742-774.

G. Marsaglia, A current view of random number generators,
in: Proceedings of the XVI Symposium on the
Interface, Computing Science and Statistics, 1984.
11 p.

W.H. Press, S.A. Teukolsky, W.T. Wetterling, B.P.
Flannery, Numerical Recipies in C : The art of
Scientific Computing, Cambridge University Press,
1992.

A. Srinivasan, D. Ceperley, M. Mascagni, Testing parallel
random number generators, in: Proceedings of the
Third International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific
Computing, 1998.

C.J.K. Tan, Efficient parallel pseudo-random number
generation, in: H.R. Arabnia, et al. (Eds.),
Proceedings of the 2000 International Conference on
Parallel. and Distributed Processing Techniques and
Applications, Vol. 1, CSREA Press, 2000.

M.K. Traoré, D.R.C. Hill, Random Number Generation in
Large Scale Stochastic Simulations, 2002, Systems
Analysis Modelling Simulation, In Press

I. Vattulainen, T. Ala-Nissila, K. Kankaala, Physical
models as tests of randomness, Phys. Rev. E 52,
1995.

B.A. Wichmann and I.D. Hill, Algorithm AS 183: An
efficient and portable pseudo-random number
generator, Applied Statistics, Volume 31, 1982,
Pages 188-190.

K.P. Williams, S.A. Williams, Implementation of an
efficient and powerful parallel pseudo-random
number generator, in: Proceedings of the Second
European PVM Users' Group Meeting, 1995.

ALEXANDRE ROCHE was born in Limoge, France, and
is now ending his studies with honours at ISIMA, a French
"Grande Ecole d'Ingénieur", college of Engineering in
Computer Science and Modelling.

DAVID HILL received his Ph.D. degree in Object-
Oriented Simulation in 1993 and his research direction
habilitation in 2000 (both from Blaise Pascal University,
France). D. Hill is currently full Professor and head of the
Computer Science, System and Networking department at
ISIMA (Computer Science and Modelling Institute). His
current application domain concerns Life Science
Simulation. Dr. Hill has authored or co-authored various
technical papers and he has published three text books in
Object-oriented Simulation and Ecological Modelling.

	Mixed generators result from the need for sequences of better and better quality, or at least longer periods. This has led to mixing different types of RNG. One way to design a Mixed Generator (MG) is as follows: xi (yi (zi (mod m) where (is of
	Figure 2 : UML(Unified Modeling Language) ontological class hierarchy of RNGs �(Traore and Hill 2002)
	IV.1 Benchmark description
	We have built a benchmark with several pseudorandom number generators on a simple Monte Carlo simulation (PI computation). The main goal of these tests was not to compute an approximated PI value, but rather to measure the average speed of the generato
	IV.2 Files sizes
	IV.3 Compilation and loading times

	Table 1 : compilation times
	Generator
	P2 450
	P3 800
	Athlon 1500
	IBM server
	gcc
	xlc
	Quick and Dirty (macro)
	Unrolled
	Table 2 : loading times
	Generators, loading times (in ms)
	PII 450
	PIII 800
	IBM Server
	Quick and Dirty (macro)
	Unrolled
	IV.4 Synthesis

	Table 3 : average results for the four computers
	Generators
	(O)
	Optimized compilation�(UO) Un-optimized
	Generator (#1 or #2)
	Computing time in ms
	Generator #3�\(Shuffle NR « unrolled 2» \)
	Computing time in ms
	Computing time ratio Unrolled technique �(X) times faster �than ref #1 or #2
	Generator ref #1
	Quick and Dirty
	(macro version)
	Generator ref#2
	Shuffle NR� (standard)
	Table 4 : synthesis of the optimized generators �
	Generators
	PII 450
	PIII 800
	IBM server
	Quick and Dirty (macro version)
	Shuffle NR
	Unrolled Version
	I would like to thank my research assistant Alexandre Roche, for his technical report, the implementation and testing on various computers of this speedup technique.

	c0: Proceedings 14th European Simulation SymposiumA. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

