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ABSTRACT

Some aspects of the research documented in [1] are further
investigated by the authors to evaluate the possibility of
improving plant engineering solutions for the case study
and to highlight some limitations concerning the validity
of the traditional optimal region identification techniques
that arise under particular operating conditions.
With regard to the second point, the authors studied the
opportunities and limit application conditions of the classic
optimal region identification techniques and of the R.S.M.
also through quantitative comparisons with empirical
techniques based on the experimental method.
This study falls within that area of research already widely
investigated by the authors and on which a more detailed
analysis was carried out as evidenced by the recent work
on designed simulation of complex systems (DOE
techniques) and reported in [2].
On that occasion the problems that the classic techniques
had in modelling the typical complex behaviours of
industrial systems were solved using neural networks with
even higher performance capabilities.
The study outlined in this paper is divided into 3 strictly
interrelated points:
- a cost/benefit analysis relative to application of the

Simplex Method;
- some further studies about the role, measurement and

magnitude of the Pure Experimental Error;
- a multi-objective optimisation through fine mapping

of the analysed dominion combined with the
Montgomery-Bettencourt algorithm.

The results reported will prove, once again, that the
traditional methods to solve some complex problems are
not completely suitable and that alternative methods
capable of expressing results that are sufficiently adequate
for industrial applications must also be explored.

1. STATE-OF-THE-ART

The search for optimal conditions has become of
fundamental strategic importance in every area of human
activity, and especially in the industrial sector. This is the
result of increasingly strong competition that imposes two
fundamental objectives: cost reduction and best service
level.
For problems solved using R.S.M., the literature proposes
optimal region search techniques such as the well-known
Simplex Method algorithm (in the basic version and the
one modified by Nelder and Mead) and the Steepest
Ascent/Descent algorithm (in the basic version and with a
modified step).
Such techniques maintain their tested validity on both
single-objective and multi-objective problems provided
that they are inserted into systems with a low experimental
error. To this regard, in the 1980s Mosca and Giribone
already identified the Montgomery-Bettencourt algorithm
as the most useful tool to find the absolute optimal
conditions in the presence of homogeneous industrial
objective functions such as the use coefficients of three
groups of machine tools [3]. The situation becomes more
complex, and thus requires greater analytical accuracy, if
an attempt is made to identify absolute optimal conditions
in the presence of non-homogeneous objective functions.
The same traditional techniques are not as efficient, due to
their nature, when complex problems inserted within
contexts with a high experimental error must be solved.
In fact, the problem of adequately evaluating and
controlling the Pure Experimental Error is anything but
solved and many experimenters often are unaware of how
it can invalidate the results obtained also by using well-
structured models with the subsequent serious
consequences in the decision-making process.
In any case, the fact remains that from a technical
viewpoint this problem can be solved even if it implies that
the simulation times must become much longer [2].
Finally, the physical limitation of displaying functions and
variables in multi-objective problems makes it almost
impossible to identify the preferred directions along which
to orient the analysis.



This is particularly true in industrial engineering where,
without adequate mathematical-statistical skills, complex
analytical techniques cannot be successfully applied.
The need to use a discrete and stochastic simulation model
to handle a plant sizing problem leading to specific high-
precision answers allowed the authors to highlight two
important and often neglected methodological aspects of a
technique that is being used more and more thanks to the
widespread use of dedicated tools with low-cost
calculating power. Specifically:
a) time evolution and quantitative control of the

experimental error
b) the possibility, through adequate design of

experiments to carry out using the model, of obtaining
the absolute optimal conditions, in a certain
experimental dominion, in the presence of a single-
objective analysis and when searching for the best
stationary point in the presence of a multi-objective
analysis.

As indicated further in the paper, due to an unusual
coincidence related to the intrinsic structure of the plant
studied, the connection between the previous points a) and
b) was such, without an accurate control about how the
experimental error influences output data, that it nullified
any possibility of using techniques to identify the optimal
region.
Such a consideration obviously takes into account the fact
that each time the experimental error is not controlled by
the experimenter, the results, also using models that
closely match the behavioural logic of the real system,
might be very different from the “real” answers of the
system. This is due to the entity of such a parameter, with
all the consequences that can easily be imagined.
In fact, if we take just one moment to consider the
situation, we can intuitively see how, in any problem
considered within a stochastic regime, a specific result is
never accepted without knowing at least one additional
parameter that best fits the datum obtained within the
general context (variance, confidence band, etc.).
Then, when the discussion shifts to the simulation of
industrial systems, models in which dozens and often
hundreds of frequency distributions interact, it might be
clear how not knowing the experimental error makes the
specific datum obtained in this manner from the
experimentation reasonably unreliable.
What is most surprising is how this situation has persisted
in many experimentations, both in the company and as
reported in the literature, since consolidated methods for
studying the evolution of the Mspe over time have been
available for more than twenty years, like the one applied
here. In fact, in addition to being used to constantly control
the magnitude of the experimental error, thanks to
Cochran’s theorem, they also provide an efficient logical
and methodological statistical validation and debugging
tool of the simulation model.
With regard to optimisation, it should be noted how the
low-cost and enhanced (and constantly increasing)
calculating power available today allowed the authors to
experiment with an optimum search method as an
alternative to the classic methods, based on the approach to
the optimal region and subsequent construction of that

region in accordance with what was hypothesised by
Mosca and Giribone in 1980.
The interesting results obtained confirm the validity of the
proposed method.

2.  SIMPLEX METHOD CRITICAL
APPLICABILITY ANALYSIS

The Simplex Method algorithm, while maintaining its
validity and performance superiority over the Steepest
Ascent (n+1 simultaneous survey points in Simplex versus
only 2 points in the Steepest), proved, as illustrated here
below, to be extremely limited in the presence of a high
experimental error.
In the research described in [1] it was necessary to identify
a global optimum relative to three different objective
functions - Biogas production [Nm3/y]; Industrial water
[m3/y]; Accumulated volume in digester suspension [t].
The problem was handled, initially, by searching for the
single optimum conditions. That search was complicated
by the fact that for one of the three objective functions
(Industrial water [m3/y]) it was impossible to build a
regressive model that could pass the statistical adaptation
tests. The need to provide technically plausible answers
and to limit experimentation times forced the authors to
find a compromise. That compromise involved the
construction of 3 regressive polynomials for the critical
function obtained through the parameterisation of one of
the 3 independent variables on three specific design
values. The procedure used seemed to be a valid
methodological compromise but, theoretically, was not
beyond criticism: for this reason, the authors decided to
carry out a new and rigorous analysis according to
traditional methods by using the Simplex Method
algorithm to identify the optimal region.
The region analysed (analysis dominion) is a cubic solid in
space ℝ3 bordered by the extreme values of the three
independent variables analysed: Residues daily quantity
[t/d]; Dry solid percentage [%]; Digester potentiality [%] –
figure 1.
To ensure that the solutions would have adequate
robustness, the authors decided to perform the analysis in
two steps:
1) construction of a first simplex with initial tetrahedron

in the centre of the dominion;
2) construction of a second simplex with initial

tetrahedron in the optimal region identified by the first
simplex.
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Fig. 1a –Simplex Method analysis dominion for the
Industrial Water function
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Fig. 1b – First simplex
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Fig. 1c – Second Simplex

Construction of the first simplex
As represented in figure 1b, implementation of the first
simplex included the definition of an initial regular
tetrahedron located in the central region of the analysed
dominion.
The following is the code of the four points to define the
initial tetrahedron:
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The traditional algorithm was applied using the plant
simulation model developed in SIMUL8 and already
described in detail in [1].
The tetrahedron was flipped 58 times and 34 of those
around p24, thus fully satisfying the convergence criterion,
as suggested by the authors, according to which:

205.065.1 nnM ⋅+⋅=

iterations are needed around a fixed vertex to identify the
optimal region.
The optimal region identified is the one represented in
figure 2a. It is identified by the following ranges of values
of the independent variables:

Residues daily quantity [t/d]: 126 – 128.7
Dry solid percentage [%]: 13.0 – 13.25
Digester potentiality [%]: 68.0 – 68.85

However, the results reported do not match what emerged
from the previous analysis [1] based on which the
optimum, for the analysed function, should be located in
the extreme lower corner of the cube delimiting the
experimental region, i.e. for values of the independent
variables equal to [126, 13.0, 67.56], with the third value
of co-ordinates outside the range with respect to the
optimal region identified by the Simplex.
To scrupulously analyse the reasons why problems arose
with the algorithm, the authors, having never encountered
anything similar in the numerous applications carried out
in the past, decided to perform a new implementation of
the Simplex Method starting from an initial tetrahedron
located in the region including the point [126, 13.0, 67.56].

Construction of the second simplex
Implementation of the second simplex involved the
definition of a regular tetrahedron located in the extreme
region of the analysed dominion. The code of the points
and the corresponding real decoded values are shown
below:
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Once again, using the simulator created, the tetrahedron
was flipped 44 times, and 12 of those around p32. As in the
other case, this made it possible to satisfy the convergence.
The optimal region identified is the one represented in
figure 2b. It is identified by the following ranges of values
of the independent variables:

Residues daily quantity [t/d]: 126 – 128.5
Dry solid percentage [%]: 13.0 – 13.5
Digester potentiality [%]: 67.56 – 68.5

As easily noted in figure 2b, the optimal region does not
coincide with the one identified by the first simplex. A
single global optimal region is built in figures 2c and 2d.
It is more extended than the two identified and includes
them: thus, this region was considered as the new
dominion to be analysed and in which a model was built to
search for the stationary point.
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Fig. 2a – optimal region
1st simplex
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Fig. 2c – union of optimal
regions
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Fig. 2b – optimal region
2nd simplex

126          140 13
.0 

   1
4.0

73.56

67.56

Fig. 2d – global optimal
region

Construction of the regressive polynomial for a regular
analysis
Traditionally, once the optimal region has been identified,
a second-order model is built to specifically determine the
stationary point and the nature of that point. It is
commonly known, in a sufficiently restricted portion of the
analysed dominion, that a second order model is generally
suitable to represent the curvature of the real response
surface.
In the case study, since the fit was so good for a model of
that order, a suspicion arose that the curvature of the real
response surface was so slight that it could even be
described with a first-order regressive model.
This suspicion was confirmed using the usual Fisher
double-tail statistical test through which it was possible to
validate the following first-order polynomial:
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The polynomial obtained confirmed the results of the study
described in [1] with an optimum of the function in the
point [126,13.0;67.56]. It follows then that the Simplex
Method apparently has a problem in clearly identifying the
optimal region also in what is seemingly a simple case
since it does not have local optimums.
After a thorough analysis of all the experimental
campaigns carried out and of the behaviour of the Simplex,
the authors felt it was necessary to further investigate the
Pure Experimental Error despite the fact that the curve of
the MSpe had easily reached the stability area and that the
magnitude of the error appeared to be mathematically
acceptable.

3. MORE ABOUT THE PURE EXPERIMENTAL
ERROR MEASURE

As a consequence, a new experimental campaign was
carried out to specifically study the experimental error in
the analysed dominion.
Based on the analysis of the Mspe carried out in the first
part of the research [1] the optimum duration of the
simulation is 210 days. Within this time span the error
settled around a value of 10-2 for all the analysed objective
functions. In particular, for the function y2 (Industrial
water [m3/y]), the experimental error was 1.029%.
Despite the fact that the magnitude of the error would
seem to be more than acceptable in terms of the
technological result, since modifications of the second
decimal digit are not significant, the values of the function
y2 in the points obtained by applying the simplex method
are so similar to each other that such a magnitude of the
experimental error easily masks the real response surface.
Therefore, it was decided to define a tetrahedron within the
global optimal region and to perform various sets of
simulations on its vertices, replicating each set on different
time horizons to try to reduce the experimental error even
further.
In the first experimental campaign, the analysis was
carried out over a time span of 420 days, with three
replications for each vertex of the tetrahedron. The results
of y2 are reported in table 1, while the normalised values
needed to correctly measure the pure error are shown in
table 2.
The magnitude of the pure experimental error decreased by
almost one order of magnitude, settling around 0.6439%.
This value, if we consider a confidence interval within the
range of ± 3σ, would make it possible to be at the limit of
the confusion between the values reported in tables 1 and
2. Therefore, to increase the robustness of the results, it
was decided to carry out an addition experimental
campaign over a time span of 700 days. The results are
reported in tables 3 and 4.
The magnitude of the experimental error was reduced even
further to 0.2612%.
In this case, the confidence interval included within the
range ± 3σ guarantees no confusion between the test
vertices.

replication 1 replication 2 replication 3
P1 42931.26456 42888.67402 42748.12524
P2 43267.95997 43225.0354 43083.38434
P3 43381.28783 43338.25084 43196.22876
P4 43274.03921 43231.10862 43089.43765

Tab. 1 – Values of y2 on the vertices of the tetrahedron for
t=420 days

replication 1 replication 2 replication 3
P1 102.2172966 102.1158905 101.7812506
P2 103.0189523 102.916751 102.5794865
P3 103.2887805 103.1863115 102.8481637
P4 103.0334267 102.931211 102.5938992
Tab. 2 – Values of y2 on the vertices of the tetrahedron

normalised for t=420 days



replication 1 replication 2 replication 3
P1 71665.36594 71618.51748 71541.85636
P2 72227.42681 72180.21093 72102.94857
P3 72416.61014 72369.27059 72291.80586
P4 72237.57517 72190.35265 72113.07944

Tab. 3 – Values of y2 on the vertices of the tetrahedron for
t=700 days

replication 1 replication 2 replication 3
P1 102.3790942 102.3121678 102.2026519
P2 103.1820383 103.114587 103.0042122
P3 103.4523002 103.3846723 103.2740084
P4 103.196536 103.1290752 103.0186849
Tab. 4 – Values of y2 on the vertices of the tetrahedron

normalised for t=700 days

Pure experimental error trend
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Fig. 3 –Reduction in pure experimental error

This result again confirms what the authors have indicated
over the last few years, i.e. the fact that the magnitude of
the experimental error tends to decrease, and even
significantly, with respect to the first settling values, as run
time increases.
To obtain reliable results from the application of
traditional R.S.M. techniques, such as the Simplex
Method, it may be necessary, as for the case being
analysed, to perform runs over very long time frames:
however, this may not be feasible due to the lack of
adequate calculating power at sustainable costs (high-
performance PCs are still very expensive and thus justified
for research purposes but very difficult to justify in the
industrial field).

4. MULTI–OBJECTIVE OPTIMISATION

The third phase of the study focused on solving multi-
objective stochastic optimisation problems.
As already mentioned in paragraph 2, the objective of the
research described in [1] was to identify a global optimum
point relative to the three objective functions:
- Y1 Biogas production [Nm3/y];
- Y2 Industrial water [m3/y];
- Y3 Accumulated volume in digester suspension [t];

which are not homogeneous and have different sizes.
To identify the global optimal region, the authors decided
to use a different method than what was used in [1] to
compare the potential of that method and to validate or
repudiate their conviction about the possibility of
improving the first solution.

The methodology utilised, as hypothesised by Mosca and
Giribone already in 1980, involves a direct search of the
optimum point by measuring the objective functions on
points deriving from fine mapping of the analysis
dominion.
Figure 4 shows the mapping of the analysed dominion
(cubic solid in space ℝ3 – figure 1a). The mapping
generated 240 test points.
The co-ordinates of the new test points were defined by
moving along the axes of the space ℝ3 with the following
steps ∆:
- Residues daily quantity [t/d]:

x1 ∈ [126, 140], ∆ = 2;

- Dry solid percentage [%]:
x2 ∈ [13.0, 14.0], ∆ = 0.2;

- Digester potentiality [%]:
x3 ∈ [67.56, 73.56], ∆ = 1.5.

Based on what emerged concerning the magnitude of the
pure experimental error and following the problems
encountered in the Simplex Method implementation, it was
decided to carry out all the tests over a time frame of 700
days.
Finally, in this phase, a test was carried out on each of the
240 points defined and the value assumed by the three
objective functions (for a total of 240 * 3 = 720 values)
was measured with each simulation. Finally, the values
found were graphically represented to better analyse the
behaviour of the real system.
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Fig. 4 – Mapping of the analysis dominion

Step 1
In this first step, attention was focused on the first two
objective functions Y1 and Y2 since they are more
interesting from a strictly plant engineering viewpoint.
Figure 5 illustrates the first graphic representation: the
values assumed by the two objective functions in the 240
points of the mapped dominion together with the code
used to define those points (i+j relative to the variables x1
e x2; k relative to the variable x3) are represented on a
Cartesian plane (Y1, Y2).
At this point, it should be recalled that the plant
engineering technological objective to be achieved is to
maximise Y1, minimise Y2 and maintain a value as close as
possible to the average for Y3.
Figure 5 illustrates the mapping of the values obtained for
the three objective functions analysed: the functions Y1
and Y2 are represented on the Cartesian axes while the



values of function Y3 are projected on the Cartesian plane
and identified by the varying shades of grey. The
parameters i, j and k are used to define the mapping steps.

Fig. 5 – Mapping of the objective functions Y1 and Y2 on
the dominion ℝ3

For what concerns the functions analysed to this point, Y1
and Y2, the location of the Pareto–Optimal point is
represented by the line that joins the extreme points of the
two sides of the quadrilateral. In fact, with ordinate (Y2)
being equal, the line represents the points whereY1 is a
maximum. Instead, with abscissa being equal, the line
represents the points whereY2 is a minimum.
The analysis of the values of Y1 and Y2 on the 240 test
points showed that there is a linear correlation between the
values of the two objective functions: an example is
provided in figure 6 which shows the correlation that links
the two objective functions corresponding to the high
value of the independent variable x3. The values of the
correlation coefficient for all other values of x3 can be
obtained from the graph in figure 7.

Step 2
After identifying the Pareto–Optimal points, we must
identify the global optimal point.
In accordance with Montgomery and Bettencourt the
location of the Pareto – Optimal points was obtained by
joining the optimal points of the objective functions Y1
and Y2 considered individually (i.e. one at a time).

Fig. 6 – Correlation between the objective functions Y1

and Y2 in the dominion ℝ3

 Correlation between Y1 and Y2 

12.2 
12.3 
12.4 
12.5 
12.6 
12.7 
12.8 
12.9 

13 
13.1 
13.2 
13.3 

67.56 69.06 70.56 72.06 73.56 
x3:    digester potentiality [%] 

k Y2 = k * Y1 

Fig. 7 – Correlation coefficient for different x3 values

At this point we need a selection criterion that can be used
to identify a specific optimal point that can then be
converted into real values of the independent variables
(plant engineering variables).
Thus, the authors decided to use the third objective
function Y3 as a constraint to reduce the optimal region
that was previously identified.
This consideration was strongly justified by the fact that
Y3 also fell within the multi-objective optimisation
problem, even though, from what is strictly a plant
engineering point of view, it was not as interesting as the
other two objective functions.
The decision to maintain the values of such a function
within a range centered on the average value led to the
graphic representation shown in figure 8: the grey segment
that represents the region of interesting values for Y3
intersects the Pareto – Optimal line, significantly reducing
the global optimal region.
Figure 9 illustrates the graphic representation of the global
optimal point identified in the analysis carried out in [1]
and the lines along which it is possible to move to obtain
even better points.
To make a quantitative comparison between the two
applied methodologies, it is useful to recall the co-
ordinates of the optimal point identified in [1] and the
corresponding values of the three objective functions:

Independent variables

x1 - Residues daily quantity [t/d] = 137 t/d
x2 - Dry solid percentage [%] = 13.0 %
x3 - Digester potentiality [%] = 70.56 %

Objective functions

Y1 - Biogas production [Nm3/y] = 5951.631 Nm3/y
Y2 - Industrial water [m3/y] = 75820.63 m3/y
Y3 - Accumulated volume [t] = 2703.304 t

Comparing figure 9 with figure 6 we find that the location
of the improved points is limited by the following ranges
of steps along the three independent variables:

2 ≤i + j ≤ 5 and k = 4

and thus by the area represented in figure 10 (A=x1; B=x2;
C= x3).



Fig. 8 – Global optimal region

At this point, with the complete mapping of the dominion,
we can read the values assumed by the three objective
functions corresponding to the improved points and
compare them with those calculated in the research
described in [1].
As an example, we present the following two possible
global optimums:

Global optimal 1 Global optimal 2

Independent variables Independent variables

x1 = 134 t/d
x2 = 13.0 %
x3 = 73.56 %

x1 = 132 t/d
x2 = 13.2 %
x3 = 73.56 %

Objective functions Objective functions

Y1 = 6068.8 Nm3/y
Y2 = 74647.09 m3/y
Y3 = 2644.107 t

Y1 = 6070.201 Nm3/y
Y2 = 74664.23 m3/y
Y3 = 2644.71 t

These are the points in which the three objective functions
have better plant engineering values than those that were
previously determined.
Having identified such a narrow optimal region it also
becomes possible to apply additional decision-making
rules, such as the weighing criterion and the utility
function already widely described in [1] to satisfy
industrial needs.

Fig. 9 – Lines of points that are better than  the first global
optimal region

Fig. 10 – Narrow global optimal region

5. FINAL CONSIDERATION

The research of the optimum region of the response
surface obtained by a simulation model represents, at the
beginning, an optimisation problem of a function with k
variables. This function and the variability ranges of the
independent variables are not known to the user.
Consequently, because of the past experience to study
various complex model of industrial systems, it happens
that also in apparently simple cases, with only two
independent variables involved f(x1;x2), the “intuitive”
identification of variability ranges, where is contained the
optimum of the response surface, can require an high
number of simulation runs. This can be explained because,
situation like these, could be underlined only at the end of
an integral optimisation study.
This task requires:
• a Central Composite Design of 2nd order (that mean

N=22+2*2+5=13 runs);
• the research of the better surface using the regression;
• the application of the classic analysis on the founded

surface.

So, only after these steps, the user will know the project
success or failure, with only the eventual advantage to
identify the X0 direction on which the searched optimum is
situated.
This allows the user to reset the variability ranges and to
reapply the complete project hoping to be much lucky.
So when is required to pass from 2 to k variables (k>2) the
problem will assume “dramatic” sperimental dimension.
In this context the D.O.E. philosophy utilises gradient
techniques (Steepest – Ascent) to obtain a guide
methodology in the research of optimum region.
This technique, in the case of high stocasticity models, like
industrial plant simulators are, appears too expensive in
the convergence phase to the optimum or not able to study
particular surface.
For this reason, from ’80, Mosca and Giribone,
considering that a complete exploration of a surface
requires a multidirectional analysis, preferred to utilise
sequential projects.
In these projects the runs are execute one at the time and
the choice of the next point is based on the information of
the previous points; in particular, they decided to adopt
projects of Simplex’s family.



The Simplex Method is not a real algorithm but a driven
choice criterion for the next point. This allow to evaluate
the function in a n dimension space (n=number of
independent variables) in n+1 equidistant points.
During the optimisation of the methodology oriented to the
simulation model, Mosca and Giribone identifies, like best
method, the Nedler & Mead version of the Simplex
Method. It was opportunely modified, respect to the base
Simplex, in order to reduce the approaching phases to the
optimum region.
The comparison between the classic D.O.E. methodology
and the technique used by AA shows how the Steepest–
Ascent cannot be compared with the Simplex already in
the approaching phase to the optimum region.
Consequently a complete comparison between them, based
on the total number of runs required, in most cases, this
included, appear not sustainable.
It is possible, in fact, to observe that only in the case of
classical mono hilly surfaces, however not known at the
beginning of a simulation project, the Steepest gives good
results.
The Simplex method reaches, with relatively few tests
(less then 50% respect the Steepest), the optimum region,
with the advantage to identify it with absolute certainty.
This also happens in case of complex surface or in case of
surface with particular crests.

CONCLUSIONS

The research described allowed the authors to improve the
already very encouraging results obtained in the previous
work and to test the applicability of methodologies that
differ from those traditionally found in the literature.
In the specific case, the experimental methodology used
proved the validity and efficiency but involved longer
times and higher analysis costs. However, it is felt that in
particularly complex cases and with a high experimental
error, like the one presented, the approach used can help
generate very advantageous operating conditions.
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