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ABSTRACT 

This paper is concerned with the simulation analysis of 
discrete-state stochastic models such as queueing systems 
or stochastic Petri nets, in which arbitrary probability 
distributions may be assigned to the activities. The analysis 
is performed on the state space using a numerical approach, 
rather than the usual discrete-event simulation at the model 
level. A new computational paradigm, the so-called Proxel 
(probability element) is introduced, which allows an 
approximation to the continuous stochastic process of the 
Petri net to be developed which does not require the use of 
differential equations. This proxel-based computational 
model directly yields a simulation algorithm which is 
readily understood and implemented. Simulation 
experiments are used to illustrate the behaviour of the 
method and to discuss the advantages and disadvantages of 
the method compared to the alternatives. 

INTRODUCTION AND OVERVIEW 

The goal of this paper is to present a new computational 
model for discrete-state stochastic models such as 
Stochastic Petri Nets (SPN) or queueing systems. This 
computational model is based on the concept of a Proxel, or 
probability element, as the basic unit of computation.  
 
Discrete-state stochastic models are almost always analysed 
using discrete-event simulation, which directly mimics the 
behaviour of the model, using random numbers to obtain 
samples of the probability distributions of the activities and 
multiple replications of the simulation to obtain statistically 
useful results. 
 
In principle, an alternative approach is possible, whereby 
the state space of the SPN is generated and a partial 
differential equation (PDE) is set up which describes the 
stochastic process of the model. This PDE can then be 
solved numerically to obtain information about the 
behaviour of the model. In practice, this approach is never 
used, owing to the significant difficulties involved in setting 
up and solving the PDE. 
 

The new, proxel-based method approaches the problem of 
analysing the model from a different angle. A proxel 
represents a certain state of the model, together with its 
probability at a given point in simulation time. The method 
generates the state space of the model and computes as 
solution variables the probabilities of each state of the 
model. The simulation method then simply consists of 
tracing the path of probability as it moves around and is 
redistributed within the state space. Starting from any given 
proxel, successor proxels may be easily derived, which 
represent the reachable states of the model and their 
probabilities at subsequent points in simulation time. The 
iterative process of generating proxels is a deterministic 
simulation of the user model. By contrast to the 
computational model based on partial differential equations, 
the proxel-based approach is algorithmic, rather than 
analytic, although it is otherwise similar in many respects. 
For this reason, it directly yields a simulation technique 
which is comparatively easy to understand and implement.  
 
The paper is organised as follows. In the next section, 
Stochastic Petri Nets and current methods for their 
simulation analysis are briefly described. We then introduce 
the Proxel formally and explain the instantaneous rate 
function and method of supplementary variables, which 
form the basis of the simulation algorithm, which is 
presented next. Various aspects of the algorithm are then 
discussed, in particular its memory requirements and 
computational complexity. Next, a simple SPN is used to 
illustrate the behaviour of the new algorithm and to allow a 
comparison with the alternative approaches. Finally, the 
conclusions are presented and directions for further 
research are suggested. 

STOCHASTIC PETRI NETS (SPN) 

Modelling with SPNs 
 
Stochastic Petri Nets are a well known modelling paradigm 
which are used, for example, to model traffic and material 
flow, computer networks, and manufacturing systems, as 
well in safety and reliability modelling. They represent user 
models whose behaviour is stochastic and is discrete in both 
time and space. Some advantages of SPNs are that they 
allow graphical editing of the model, they are easy to 
understand, they are powerful and flexible, and they can be 
simulated automatically by a computer. 
 



 

The term "Stochastic Petri Net" was originally used to 
denote those Petri nets in which all firing times were 
exponentially distributed (Molloy 1980). In this paper, the 
term "SPN" will be used to denote a Petri net whose 
transition firing times may have any distribution. 
 
SPN Analysis with Discrete-Event Simulation 

The simulation analysis of SPNs and similar user models, 
such as Stochastic Activity Networks (SAN) and queueing 
systems, is usually performed using a discrete-event 
simulation. These computational models use computer-
generated pseudo-random numbers to sample the 
distributions of the random variables describing the 
activities in the model. They directly mimic the behaviour 
of the user model in that they compute directly on the states 
of the user model and are themselves discrete in time and 
space and are stochastic in nature. Owing to the stochastic 
nature of the simulation, multiple replications must be 
carried out, in order to obtain statistically useful results, for 
example in the form of confidence intervals.  
 
The primary advantages of this computational model are 
that it is conceptually simple, and that it has very low 
memory requirements. The simplicity results from the 
similarity to the user model (it is also stochastic, and 
discrete in space and time); this allows discrete-event 
simulators to be implemented relatively easily. The 
memory requirements are proportional to the size of the 
user model, which, in the case of an SPN, is seldom larger 
than 100 places. 
 
On the other hand, difficulties can arise, such as: 

• Stiff models. Models can be stiff when they contain 
competing activities whose rates or probabilities vary 
strongly in magnitude. In such cases, the simulator will 
only rarely choose the slower or less probable event. 
This can lead to a significant loss of accuracy. 

• Very high accuracy requirements. High accuracy is 
required, for example, in safety and reliability 
modelling, where failure probabilities are measured in 
fractions of one per cent. 

• Measures with a large statistical variance. The random 
variable describing the quantity of interest in the model 
may have a large variance. 

 
Models with one or more of these attributes can require a 
very large number of replications in order to achieve 
sufficient accuracy, this number may be as high as 105 or 
106. This can result in very long computation times for the 
simulation experiment. An additional difficulty is the 
uncertainty in the accuracy of the simulated result; in 
general, there is no way of knowing whether the number of 
replications performed is sufficient to accurately capture the 
behaviour of the model.  
 
There are many examples of discrete-event Petri net 
simulators to be found in the literature. For example, Heller 
et al describe one such tool which is used to research safety 
and reliability issues in the automotive industry (Heller et al 
2002). 
 

SPN Analysis with Differential Equations 

Alternatively, SPNs can be simulated using an analytical 
approach based on partial differential equations (PDEs). 
This approach is based on the method of supplementary 
variables described by Cox in (Cox 1955), and for SPNs by 
German in (German 2000). This method considers the 
density functions for the elapsed times of all transitions 
which are enabled in each marking of the SPN, and 
constructs a PDE describing the behaviour of these 
densities over time. The PDE can be derived by creating a 
balance equation for the probability flow into and out of 
each state. In order to describe the rate of flow of 
probability between discrete markings, supplementary 
variables are introduced, which represent the elapsed 
enabling times of the transitions, and the rate of probability 
flow is then given by the instantaneous flow rate of the 
transition’s firing time. This is described in more detail for 
the proxel-based simulation method in the following 
section.  
 
In contrast to the user model, this computational model is 
deterministic and continuous in both time and space. The 
resulting system of PDEs is linear, first-order and 
hyperbolic, with complex boundary conditions. This PDE is 
then discretised and solved numerically. 
 
The primary advantage of this mathematical, analytic 
approach is that it yields a deterministic simulation 
algorithm. It is thus free from the above-mentioned 
problems resulting from the use of random numbers during 
the simulation. More specifically, no replications are 
necessary, and the accuracy of the result can be controlled 
easily, since it depends continuously on the discretisation 
step size. For many very simple models, a higher accuracy 
can be achieved than by using a discrete-event simulation, 
at lower cost and with a higher degree of certainty. 
 
The disadvantages of this approach are twofold: memory 
requirements and complexity. The size of the state space 
grows exponentially with the number of concurrently 
enabled transitions; Even comparatively small and simple 
SPNs can yield computational models that exceed the 
available memory space. The equations to be solved are 
quite complex, making them hard to understand and to 
implement. For these reasons, to the author’s knowledge, 
analysis based on PDEs has never been used in a general-
purpose SPN simulator. 

PROXELS 

A Proxel (probability element) is the basic unit of 
computation that will be used to develop the new method 
for the analysis of SPNs and similar user models. Its name 
was chosen in analogy to the well-known pixel (picture 
element) from Computer Graphics. A pixel contains 
application information concerning a computer image 
(RGB values), together with coordinates (x and y 
coordinates on a computer screen) at which this information 
is located. In an analogous manner, a proxel contains 
application information concerning the state of a simulation 
model (a probability value p), together with its location (in 



 

the state space of the SPN). As will be shown in the next 
section, the state S of an SPN consists of the marking m of 
the net, a vector of activation times τ  for the transitions 
enabled in that marking, and the simulation time t. 
 
Definition (Proxel): 
A Proxel P = (p, S) is a vector consisting of a state S = (m, 
τ, t) of an SPN, and a probability p, such that p 
(approximately) represents the probability that the SPN is 
in state S. 
 
In order to derive a numerical simulation algorithm, we will 
define a discrete time step ∆. For any proxel P = (p, S) at 
time t, successor proxels P' = (p', S') at time t+∆ can be 
readily determined, which describe how the probability p is 
redistributed among successor states at the new time step. 

INSTANTANEOUS RATE FUNCTION AND 
METHOD OF SUPPLEMENTARY VARIABLES 

In order to construct the proxel-based simulation method, 
the method of supplementary variables is used. This 
approach is described for SPNs in more detail by German 
(German 2000). 
 
We consider a random variable Φ, which is described by its 
cumulative distribution function F(τ) and corresponding 
probability density function f(τ). Then the instantaneous 
rate function h(τ) of Φ  is defined as 
 
 
 
The instantaneous rate function (IRF) represents the 
continuous rate of flow of probability for the random 
variable Φ. The function h is also known as the hazard rate 
or instantaneous failure rate. 
 
Figure 1 (left) shows an SPN with places A and B and 
transition T. From the perspective of the user, the states of 
the system are defined by the markings of the SPN, and the 
state changes are stochastic and instantaneous. Figure 1 
(right) illustrates the method of supplementary variables, 
which considers the probabilities πA, πB for each of the 
states A and B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Dual View of the Stochastic Process 
 

πA and πB are continuous variables which are governed by 
the equations 
 

(1) 
 
 
hT(τ) is the IRF of the firing time distribution of transition 
T, where τ  is the elapsed enabling time of T. Note that in 
this example, τ  is equal to t, since T becomes enabled once 
only at t=0. In general, this is not true; at any point in 
simulation time t, the enabling time τ  of each transition 
may take on any value τ  ≤  t. It is for this reason that the 
stochastic process is described by partial differential 
equations, and not merely ordinary differential equations. 
 
Given a transition Ti with firing time Φ, and markings mi, 
mj of an SPN, we write mj = succ(mi,Ti) to denote that the 
firing of Ti in marking mi leads to marking mj. Let πi(t) and 
πj(t) be the probabilities for the markings mi and mj at time 
t. The rate of probability flow from πi(t) to πj(t) is then 
given by πi(t) · hT(τ), where τ is the length of time that Ti 
has been enabled at time t, and hT(τ) represents the IRF of 
the firing time distribution of transition T.  
 
We now define the time-dependent enabling time vector 
τ (t) = (τ1, ..., τn). At any time t, τ (t) represents the times 
for which transitions T1 ... Tn have been enabled and n the 
number of currently enabled transitions plus the number of 
currently disabled transitions with an age memory policy 
and a partially expended firing time. The enabling time 
vector τ (t) is part of the specification of the state of the net. 
The overall state S of the Petri net is thus described by the 
vector S = (m, τ1, ..., τn, t). 
 
Each transition in an SPN has a memory policy. The 
permissible types are called AGE and ENABLE. The 
memory policy determines the behaviour of a transition 
when it becomes re-enabled after having been previously 
enabled and then disabled. In the case of AGE, the 
transition “remembers” the firing time consumed during the 
first enabling phase, and the remaining firing time is 
correspondingly reduced. In the case of ENABLE, the 
previous enabling time is forgotten, and the transition firing 
time starts once again from the beginning when the 
transition is re-enabled. 
 
S is a random variable, and the stochastic process of the 
SPN is described by a system of linear, hyperbolic first-
order partial differential equations for the density of S. The 
number of unknowns in the system is equal to the number 
of discrete states of the net, and the dimension of the 
differential equation is ℜn. For a number of reasons, this 
system of differential equations is very difficult to solve 
numerically in the general case. It is for this reason that, 
although the method of supplementary variables has been 
known for a long time, to the author's knowledge, no 
attempt has yet been made to create a general-purpose 
simulation tool for SPNs using this approach.  
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PROXEL-BASED SIMULATION ALGORITHM 

The Basic Idea 

The idea behind the proxel-based simulation method is to 
use proxels P = (p, S) to represent states S of the SPN 
model and their probabilities p. For any state S, we can 
determine each possible successor state, compute the 
probabilities that the model will transition into each of 
those states within a discrete time step ∆, and create new 
proxels accordingly. ∆ is a discretisation parameter of the 
derivative in Equation (1), whose value is chosen by the 
user; the stochastic process itself is continuous. 
 
Successor states are found by determining which transitions 
are enabled in the marking of the current proxel, and the 
transition probabilities are computed from the instantaneous 
rate functions of the enabled transitions. As the simulation 
progresses, proxels can be created, stored temporarily in a 
queue, removed, and destroyed.  
 
In the usual case, the simulation begins with the initial 
proxel P0=(1, m0, 0, 0), which states that with a probability 
of 1, in the initial marking m0, all transition enabling times 
are 0 and the simulation time is 0. Of course, if the user 
model specifies several initial markings (whose 
probabilities must then sum to 1), then more than one initial 
proxel can be specified appropriately. As the simulation 
progresses, a logical tree of proxels is generated (see Figure 
3 for an example), in which the k-th level of the tree 
contains all the proxels reached at the k-th discrete time 
step. Generation of new proxels ceases when the maximum 
simulation time has been reached, and the simulation 
terminates when the proxel queue Q is empty. 
 
In general, during the course of the simulation, many 
proxels will be generated whose values of both m and t are 
identical, but whose values of τ  differ. These proxels all 
represent the same discrete marking of the SPN, but are 
reached via different “routes” during the course of the 
simulation. The sum of the probabilities for such a set of 
proxels yields the overall probability for the discrete 
marking m at time t. 
 
Specification of the Algorithm 

We define a queue Q for the temporary storage of proxels. 
The implementation of Q is crucial for the performance of 
the algorithm and is discussed in the next section. We write 
P.x to denote an element x contained in proxel P. The 
variable πm(t) is used to store the simulation result, i.e. the 
probability that the SPN will be in marking m at time t. The 
constant tmax represents the maximum simulation time 
specified by the user. ∆ represents the discrete time step; 
the real-valued simulation time t takes on the values k ⋅ ∆, 
where the integer-valued k denotes the number of the 
discrete time step. ∅ denotes the empty set, and T a 
transition in the SPN.  Assignments are denoted by the ← 
symbol. 
 
Algorithm 1 describes the proxel-based numerical 
simulation of the SPN. 
 

1:  Q ← ∅ 
2:  addproxel(1 , m0 , 0 , 0) 
3:  WHILE Q ≠ ∅ 
4:      P ← getproxel() 
5:      πP.m(P.t) ← πP.m (P.t) + P.p 
6:      IF (P.t  <  tmax) 
7:           addproxel(P.p * (1 –  ∆*ΣT hT(τ)) , P.m ,  
                                update(P.τ , P.m , ∅), P.t + ∆) 
8:           ∀T:  IF (enabled(P.m , T)) 
9:                 addproxel(P.p * ∆*hT(τ) ,  succ(P.m , T),  
                                      update(P.τ , P.m , T),  P.t + ∆) 
 

Algorithm 1: Proxel-Based Simulation of an SPN 
 
The following functions are used by the algorithm: 
 
succ(m, T)  returns the marking reached from marking 

m by firing transition T. 
enabled(m, T) returns TRUE if transition T is enabled in 

marking m. 
addproxel(P) inserts proxel P to proxel queue Q. 
getproxel() deletes a proxel from Q and returns its 

value. 
update(τ, m, T) updates the enabling time vector τ  when 
 transition T fires in marking m. 
memory(T) returns memory policy of transition T (i.e. 

ENABLE or AGE). 
 
Explanation of the Algorithm 

First, we give a line-by-line commentary of the algorithm: 
 
Line 1: The proxel queue Q is initialised to the empty set. 
Line 2: The initial proxel P0 representing the initial state  
 of the model is inserted into the queue. 
Line 3: Loop until the proxel queue is empty. 
Line 4: Get the next proxel P from the queue. 
Line 5: Add the probability of the current proxel P.p  
 to the solution. 
Line 6:  Continue only if maximum simulation time tmax 

has not yet been reached. 
Line 7: Add a new proxel representing the case that  
 the SPN remains in the marking P.m. 
Line 8: Consider all transitions T that can fire in the 

marking of the current proxel P.m. 
Line 9: Add a new proxel to the queue for each of  
 these cases. 
 
Line 7 describes the case in which the SPN remains in the 
same marking as time advances from t to t + ∆. The 
probability for this case is equal to 1 minus the probability 
of leaving the state during this interval, which is computed 
as the sum of the corresponding probabilities for each 
individual enabled transition firing. 
 
The function update() modifies the j-th element of the 
vector τ, according to the behaviour and type of the j-th 
transition as follows: 



 

update(τ, m, T): 
FOR j = 1 TO n DO 
CASE 1. (Tj = T):  

τj ← 0   
CASE 2. (enabled(m, Tj)) ∧ (Tj ≠ T):  

τj ← τj + ∆ 
CASE 3. (¬enabled(m, Tj))  ∧ (memory(Tj) = ENABLE):  

τj ← 0  
CASE 4. (¬enabled(m, Tj)) ∧ (memory(Tj) = AGE): 

τj ← τj 
 
The function update considers all j=1..n supplementary 
variables which are active in marking m and modifies their 
values as appropriate. Case 1 concerns the transition which 
fires, resetting its enabling time to 0. In case 2, a transition 
is considered which is enabled, but does not fire. Here, the 
enabling time is incremented by ∆. Case 3 treats disabled 
transitions with memory policy ENABLE, for which the 
value of τ  is set to (or remains at) 0. Finally, in case 4, 
disabled transitions with memory policy AGE retain their 
stored enabling times.  
 
Note that supplementary variables can be mapped to 
different transitions in different markings. A general-
purpose SPN simulator must automatically determine the 
number of variables needed and determine this mapping. 
 
The algorithm essentially uses an explicit Euler-like 
discretisation of Eq. (1) and then performs an exhaustive 
search of the thus discretised state space of the SPN. In this 
sense the algorithm is analogous to many other discrete 
search methods, such as chess-playing programs. In the 
form given here, the number of proxels created grows 
exponentially with the number of time steps tmax/∆. 
Obviously, this is much too expensive. In the next section, 
techniques for reducing the complexity are discussed. 

DISCUSSION AND IMPLEMENTATION ISSUES 

Reducing Complexity 

The time and space complexity of the algorithm in this 
form is exponential in the number of discrete time steps. 
This is obviously far too expensive for practical use. 
Fortunately, heuristics for reducing the complexity are 
available. The simplest of these is based on the observation 
that during the course of the simulation, the probability of 1 
for the initial state is just redistributed among the different 
states at each new discrete time step. Specifically, for any 
proxel P' that is generated from a predecessor proxel P, we 
have P'.p ≤ P.p. This allows us to define a threshold value ε 
for proxel probabilities such that any proxel created with a 
probability value less than ε will be discarded, since its 
contribution to the overall solution is not significant. We 
can then replace Line 6 in Algorithm 1 by: 
 
6':      IF ((P.t  <  tmax) AND (P.p  >  ε)) 
 
This can lead to a substantial saving in the complexity of 
the algorithm, since the state space tree is pruned wherever 
the probabilities are too small to be of interest. By summing 

the probability values that are discarded, the total error 
incurred using this approach can be computed easily. 
 
Further reductions in complexity can be achieved by using 
appropriate storage schemes for Q. These are described in 
the next section. 
 
Temporary Proxel Storage 

Proxels that are generated are stored temporarily in a data 
structure Q. Different implementations of Q can 
significantly affect the efficiency of the algorithm. 
 
The basic queueing strategies LIFO and FIFO yield a 
depth-first and breadth-first enumeration of the state space, 
respectively. The depth-first strategy minimises memory 
requirements, needing O(b*tmax/∆) proxels, where b is the 
branching factor, i.e. the average number of transitions that 
are enabled at any time. Both of these simple strategies 
have exponential computational complexity, and are thus 
too expensive to be practical. 
 
A better storage scheme would allow proxels P = (p, S) 
with a given value of S to be located quickly. This would 
allow two proxels with identical values of S to be combined 
by simply adding their probability values. This in turn 
would significantly reduce both memory requirements and 
computational complexity, since it would permit substantial 
pruning of the proxel tree. 
 
The fastest simulation algorithm is achieved when proxels 
are stored in an array that is indexed by S. This allows 
proxels to be accessed in O(1) time. However, this requires 
storing a array that is large enough to be indexed by all 
possible values of S. This is prohibitive, since it essentially 
leads to the same data requirements as the PDE solver. 
 
An appropriate compromise is probably to be achieved 
using a sorted dynamic tree. This would lead to a data 
structure whose size corresponds to the number of currently 
active proxels, and which allowed an access time which is 
only O(log tmax/∆). 

EXAMPLE AND EXPERIMENTS 

In order to illustrate the proxel-based simulation algorithm 
and its behaviour, we use the simple SPN of Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Example SPN 
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We choose the following distributions for the transition 
firing times: 
FAB = Exponential (0.5) 
FBA = Uniform (0.3, 0.5)  
FBC = Deterministic (1.0) 
FCB = Uniform (0.2, 0.3) 
Transition T_BC has memory policy AGE, all others have 
the policy ENABLE.  
 
Since at most two transitions can have non-zero enabling 
times simultaneously, we will require two enabling time 
variables τ = (τ1, τ2). We use τ1 to represent the enabling 
time of transition T_BA in marking B and of transition 
T_AB in marking A.  Similarly, τ2 represents the enabling 
time of transition T_BC in markings B and A, and of 
transition T_CB in marking C. 
 
The proxels (p, m, τ1, τ2, t) generated by the simulation 
algorithm for the first three discrete time steps are shown in 
Figure 3, whereby the ? symbol signifies computed 
probabilities, and the times τ1, τ2 and t are shown as integer 
multipliers of ∆, i.e. a 2 represents 2∆. From the initial 
proxel representing the marking B, all three successor states 
are reachable, depending on whether transition T_BA, 
transition T_BC, or no transition fires during the time 
interval (0, ∆).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 3: First Steps of the Proxel-Based Simulation  
 
Numerical results from the proxel-based simulation are 
shown in Figure 4. The probabilities for each of the three 
system states A (red), B (green), and C (blue) are shown for 
the first 10 time units of operation (upper diagram); a 
detailed view for the first two time units is shown in Figure 
4 (lower). In this simulation, all transition memory policies 
were of type ENABLE. A time step of ∆=0.005 was used, 
yielding an estimated maximum error of no greater than 
0.01. The solution contains both discontinuities and non-
differentiable points. The solution tends towards a steady 
state, which has almost been reached by t=10. Since the 
proxel algorithm conserves probability, the solution values 
sum to 1 at all times during the simulation. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Simulation Results for the Example SPN 
 
Figure 5 shows the number of variables needed by the 
proxel and the PDE methods to simulate the example model 
for maximum simulation times tmax from 0.5 to 15. In the 
case of the proxel-based method of Algorithm 1, these 
variables are proxels, in the case of the PDE solution they 
are floating-point numbers. The green curve shows the case 
where Q is implemented as FIFO queue, i.e. the simulation 
proceeds as a breadth-first enumeration of the state space. 
without storing the proxels in a special data structure in 
order to prevent duplication. The red curve shows the 
proxel algorithm in which Q is implemented as an array 
indexed by S and duplicate proxels are eliminated. The blue 
curve shows the results for the numerical solution of the 
PDE. The integration of the differential equation was a 
first-order characteristic method on a 500x500 spatial grid. 
A time step of ∆=0.01 was used for both methods and a 
threshold value of ε =1e-8 was used for the proxel 
simulation. A logarithmic scale has been used for the 
vertical axis. The green curve shows the exponential growth 
in the number of proxels needed for the basic algorithm. 
This is clearly unacceptable. The proxel algorithm using 
array storage is approximately three orders of magnitude 
cheaper than the PDE solution This is due to the fact that 
the PDE solver accesses all variables at all time steps, 
whereas the proxel-based algorithm truncates the 
processing of proxels whose probability values drop below 
the threshold ε. The actual memory savings are a factor of 
four smaller, since in this implementation, one proxel 
requires four times as much memory as a floating-point 
number (32 bytes compared to 8). 
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Figure 5: Computational Complexity 
 
Figure 6 shows the solution value obtained for the 
probability of state B at time t=5 for the proxel-based 
simulation using different values of the discrete time step ∆. 
The linear convergence towards a value close to 0.7 as 
∆→0 towards is evident. This linear convergence results 
from the first-order discretisation of the first derivatives 
used by the proxel method. This allows us to use solutions 
obtained with two different values of ∆ in order to 
extrapolate linearly to ∆=0, obtaining an even more 
accurate solution. Higher order extrapolations using more 
than two individual solutions are also possible. The solution 
values for states A and C also exhibit linear convergence. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Convergence of Proxel Solution 
 

This contrasts with the convergence behaviour exhibited by 
the stochastic discrete-event simulation. This is shown in 
Figure 7 for the mean and 99% confidence interval for the 
probability of state B for 10, 20, 40, … 5120 replications. In 
this case, the stochastic nature of the simulation results in 
non-monotonic convergence towards the solution. The 
general-purpose simulator SIMPLEX 3 (Schmidt 2001) was 
used for this experiment. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Convergence of Discrete-Event Solution 
 

Figure 8 shows the relationship between computation time 
and solution error for the proxel-based (blue) and discrete-
event (red) simulation methods on a log-log scale. The 
estimate of accuracy is based on a comparison with the 
solution obtained by linear extrapolation of the proxel 
solutions obtained for ∆=0.0005 and ∆=0.001 to ∆=0 in 
Figure 6. The proxel method is clearly more efficient, 
achieving a comparable error within a computation time 
which is approximately one order of magnitude shorter. 
Furthermore, the proxel method shows monotonic 
behaviour, whereas the discrete-event simulation is 
stochastic.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Error vs. Computation Time 
 
Caution should be used, however, when drawing 
conclusions from this result, since SIMPLEX 3 appears to 
have a high computational overhead per replication. 

SUMMARY AND OUTLOOK 

In this paper, a new paradigm for the numerical simulation 
of discrete-state stochastic models such as stochastic Petri 
nets has been presented. The concept of a proxel as a basic 
unit of computation was introduced. Proxels yield a 
deterministic, continuous computational model, which is 
approximated using a discretisation of the time variable. 

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 40 80 160 320 640 1280 2560 5120

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000



 

The model is based on the concept of tracing the movement 
of probability as it moves around in the state space. This 
computational model is similar in principle to the partial 
differential equation obtained by application of the method 
of supplementary variables. The advantages of the new 
approach over the differential equation are its conceptual 
simplicity, the opportunities it gives for reducing the 
number of variables computed, and the fact that it 
immediately suggests a straightforward simulation 
algorithm.  
 
In its simplest form, the proxel-based algorithm is very 
expensive, and techniques for bounding the state space that 
is generated are needed. Some such bounding techniques, 
such as threshold-based pruning and storage schemes which 
allow searching have proven to be effective. Further 
research will look at using a tree-based storage scheme. 
 
More experience with the new algorithm is needed in order 
to fully determine its usefulness. Situations in which it is 
expected to prove more efficient than a discrete-event 
simulation based on pseudo-random numbers include cases 
where the behaviour of the random number generator leads 
to very long simulation times, such as is the case for stiff 
models, or when there is a large statistical variance in the 
simulation results, as is found in some safety and reliability 
analyses. 
 
One added advantage of the proxel computational model is 
that it is also capable of analysing hybrid systems 
containing both continuous, deterministic components as 
well as stochastic, discrete ones. One example of such 
systems are the Hybrid, or Fluid Stochastic Petri Nets 
(Horton et al 1998). This implies that these models can also 
be simulated using a proxel-based algorithm. This 
possibility is currently being investigated. 
 
Further work will also include the creation of a general-
purpose proxel-based SPN simulator. This will allow 
comparisons of accuracy and efficiency to be made for a 
wide range of models. 
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