

A NEW PARADIGM FOR THE NUMERICAL SIMULATION OF
STOCHASTIC PETRI NETS WITH GENERAL FIRING TIMES

Graham Horton

Computer Science Department
University of Magdeburg

Universitätsplatz 2,
39106 Magdeburg, Germany

graham@cs.uni-magdeburg.de

KEYWORDS

Proxel, Stochastic Petri Net, State Space, Simulation,
Supplementary Variables.

ABSTRACT

This paper is concerned with the simulation analysis of
discrete-state stochastic models such as queueing systems
or stochastic Petri nets, in which arbitrary probability
distributions may be assigned to the activities. The analysis
is performed on the state space using a numerical approach,
rather than the usual discrete-event simulation at the model
level. A new computational paradigm, the so-called Proxel
(probability element) is introduced, which allows an
approximation to the continuous stochastic process of the
Petri net to be developed which does not require the use of
differential equations. This proxel-based computational
model directly yields a simulation algorithm which is
readily understood and implemented. Simulation
experiments are used to illustrate the behaviour of the
method and to discuss the advantages and disadvantages of
the method compared to the alternatives.

INTRODUCTION AND OVERVIEW

The goal of this paper is to present a new computational
model for discrete-state stochastic models such as
Stochastic Petri Nets (SPN) or queueing systems. This
computational model is based on the concept of a Proxel, or
probability element, as the basic unit of computation.

Discrete-state stochastic models are almost always analysed
using discrete-event simulation, which directly mimics the
behaviour of the model, using random numbers to obtain
samples of the probability distributions of the activities and
multiple replications of the simulation to obtain statistically
useful results.

In principle, an alternative approach is possible, whereby
the state space of the SPN is generated and a partial
differential equation (PDE) is set up which describes the
stochastic process of the model. This PDE can then be
solved numerically to obtain information about the
behaviour of the model. In practice, this approach is never
used, owing to the significant difficulties involved in setting
up and solving the PDE.

The new, proxel-based method approaches the problem of
analysing the model from a different angle. A proxel
represents a certain state of the model, together with its
probability at a given point in simulation time. The method
generates the state space of the model and computes as
solution variables the probabilities of each state of the
model. The simulation method then simply consists of
tracing the path of probability as it moves around and is
redistributed within the state space. Starting from any given
proxel, successor proxels may be easily derived, which
represent the reachable states of the model and their
probabilities at subsequent points in simulation time. The
iterative process of generating proxels is a deterministic
simulation of the user model. By contrast to the
computational model based on partial differential equations,
the proxel-based approach is algorithmic, rather than
analytic, although it is otherwise similar in many respects.
For this reason, it directly yields a simulation technique
which is comparatively easy to understand and implement.

The paper is organised as follows. In the next section,
Stochastic Petri Nets and current methods for their
simulation analysis are briefly described. We then introduce
the Proxel formally and explain the instantaneous rate
function and method of supplementary variables, which
form the basis of the simulation algorithm, which is
presented next. Various aspects of the algorithm are then
discussed, in particular its memory requirements and
computational complexity. Next, a simple SPN is used to
illustrate the behaviour of the new algorithm and to allow a
comparison with the alternative approaches. Finally, the
conclusions are presented and directions for further
research are suggested.

STOCHASTIC PETRI NETS (SPN)

Modelling with SPNs

Stochastic Petri Nets are a well known modelling paradigm
which are used, for example, to model traffic and material
flow, computer networks, and manufacturing systems, as
well in safety and reliability modelling. They represent user
models whose behaviour is stochastic and is discrete in both
time and space. Some advantages of SPNs are that they
allow graphical editing of the model, they are easy to
understand, they are powerful and flexible, and they can be
simulated automatically by a computer.

The term "Stochastic Petri Net" was originally used to
denote those Petri nets in which all firing times were
exponentially distributed (Molloy 1980). In this paper, the
term "SPN" will be used to denote a Petri net whose
transition firing times may have any distribution.

SPN Analysis with Discrete-Event Simulation

The simulation analysis of SPNs and similar user models,
such as Stochastic Activity Networks (SAN) and queueing
systems, is usually performed using a discrete-event
simulation. These computational models use computer-
generated pseudo-random numbers to sample the
distributions of the random variables describing the
activities in the model. They directly mimic the behaviour
of the user model in that they compute directly on the states
of the user model and are themselves discrete in time and
space and are stochastic in nature. Owing to the stochastic
nature of the simulation, multiple replications must be
carried out, in order to obtain statistically useful results, for
example in the form of confidence intervals.

The primary advantages of this computational model are
that it is conceptually simple, and that it has very low
memory requirements. The simplicity results from the
similarity to the user model (it is also stochastic, and
discrete in space and time); this allows discrete-event
simulators to be implemented relatively easily. The
memory requirements are proportional to the size of the
user model, which, in the case of an SPN, is seldom larger
than 100 places.

On the other hand, difficulties can arise, such as:

• Stiff models. Models can be stiff when they contain
competing activities whose rates or probabilities vary
strongly in magnitude. In such cases, the simulator will
only rarely choose the slower or less probable event.
This can lead to a significant loss of accuracy.

• Very high accuracy requirements. High accuracy is
required, for example, in safety and reliability
modelling, where failure probabilities are measured in
fractions of one per cent.

• Measures with a large statistical variance. The random
variable describing the quantity of interest in the model
may have a large variance.

Models with one or more of these attributes can require a
very large number of replications in order to achieve
sufficient accuracy, this number may be as high as 105 or
106. This can result in very long computation times for the
simulation experiment. An additional difficulty is the
uncertainty in the accuracy of the simulated result; in
general, there is no way of knowing whether the number of
replications performed is sufficient to accurately capture the
behaviour of the model.

There are many examples of discrete-event Petri net
simulators to be found in the literature. For example, Heller
et al describe one such tool which is used to research safety
and reliability issues in the automotive industry (Heller et al
2002).

SPN Analysis with Differential Equations

Alternatively, SPNs can be simulated using an analytical
approach based on partial differential equations (PDEs).
This approach is based on the method of supplementary
variables described by Cox in (Cox 1955), and for SPNs by
German in (German 2000). This method considers the
density functions for the elapsed times of all transitions
which are enabled in each marking of the SPN, and
constructs a PDE describing the behaviour of these
densities over time. The PDE can be derived by creating a
balance equation for the probability flow into and out of
each state. In order to describe the rate of flow of
probability between discrete markings, supplementary
variables are introduced, which represent the elapsed
enabling times of the transitions, and the rate of probability
flow is then given by the instantaneous flow rate of the
transition’s firing time. This is described in more detail for
the proxel-based simulation method in the following
section.

In contrast to the user model, this computational model is
deterministic and continuous in both time and space. The
resulting system of PDEs is linear, first-order and
hyperbolic, with complex boundary conditions. This PDE is
then discretised and solved numerically.

The primary advantage of this mathematical, analytic
approach is that it yields a deterministic simulation
algorithm. It is thus free from the above-mentioned
problems resulting from the use of random numbers during
the simulation. More specifically, no replications are
necessary, and the accuracy of the result can be controlled
easily, since it depends continuously on the discretisation
step size. For many very simple models, a higher accuracy
can be achieved than by using a discrete-event simulation,
at lower cost and with a higher degree of certainty.

The disadvantages of this approach are twofold: memory
requirements and complexity. The size of the state space
grows exponentially with the number of concurrently
enabled transitions; Even comparatively small and simple
SPNs can yield computational models that exceed the
available memory space. The equations to be solved are
quite complex, making them hard to understand and to
implement. For these reasons, to the author’s knowledge,
analysis based on PDEs has never been used in a general-
purpose SPN simulator.

PROXELS

A Proxel (probability element) is the basic unit of
computation that will be used to develop the new method
for the analysis of SPNs and similar user models. Its name
was chosen in analogy to the well-known pixel (picture
element) from Computer Graphics. A pixel contains
application information concerning a computer image
(RGB values), together with coordinates (x and y
coordinates on a computer screen) at which this information
is located. In an analogous manner, a proxel contains
application information concerning the state of a simulation
model (a probability value p), together with its location (in

the state space of the SPN). As will be shown in the next
section, the state S of an SPN consists of the marking m of
the net, a vector of activation times τ for the transitions
enabled in that marking, and the simulation time t.

Definition (Proxel):
A Proxel P = (p, S) is a vector consisting of a state S = (m,
τ, t) of an SPN, and a probability p, such that p
(approximately) represents the probability that the SPN is
in state S.

In order to derive a numerical simulation algorithm, we will
define a discrete time step ∆. For any proxel P = (p, S) at
time t, successor proxels P' = (p', S') at time t+∆ can be
readily determined, which describe how the probability p is
redistributed among successor states at the new time step.

INSTANTANEOUS RATE FUNCTION AND
METHOD OF SUPPLEMENTARY VARIABLES

In order to construct the proxel-based simulation method,
the method of supplementary variables is used. This
approach is described for SPNs in more detail by German
(German 2000).

We consider a random variable Φ, which is described by its
cumulative distribution function F(τ) and corresponding
probability density function f(τ). Then the instantaneous
rate function h(τ) of Φ is defined as

The instantaneous rate function (IRF) represents the
continuous rate of flow of probability for the random
variable Φ. The function h is also known as the hazard rate
or instantaneous failure rate.

Figure 1 (left) shows an SPN with places A and B and
transition T. From the perspective of the user, the states of
the system are defined by the markings of the SPN, and the
state changes are stochastic and instantaneous. Figure 1
(right) illustrates the method of supplementary variables,
which considers the probabilities πA, πB for each of the
states A and B.

Figure 1: Dual View of the Stochastic Process

πA and πB are continuous variables which are governed by
the equations

(1)

hT(τ) is the IRF of the firing time distribution of transition
T, where τ is the elapsed enabling time of T. Note that in
this example, τ is equal to t, since T becomes enabled once
only at t=0. In general, this is not true; at any point in
simulation time t, the enabling time τ of each transition
may take on any value τ ≤ t. It is for this reason that the
stochastic process is described by partial differential
equations, and not merely ordinary differential equations.

Given a transition Ti with firing time Φ, and markings mi,
mj of an SPN, we write mj = succ(mi,Ti) to denote that the
firing of Ti in marking mi leads to marking mj. Let πi(t) and
πj(t) be the probabilities for the markings mi and mj at time
t. The rate of probability flow from πi(t) to πj(t) is then
given by πi(t) · hT(τ), where τ is the length of time that Ti
has been enabled at time t, and hT(τ) represents the IRF of
the firing time distribution of transition T.

We now define the time-dependent enabling time vector
τ (t) = (τ1, ..., τn). At any time t, τ (t) represents the times
for which transitions T1 ... Tn have been enabled and n the
number of currently enabled transitions plus the number of
currently disabled transitions with an age memory policy
and a partially expended firing time. The enabling time
vector τ (t) is part of the specification of the state of the net.
The overall state S of the Petri net is thus described by the
vector S = (m, τ1, ..., τn, t).

Each transition in an SPN has a memory policy. The
permissible types are called AGE and ENABLE. The
memory policy determines the behaviour of a transition
when it becomes re-enabled after having been previously
enabled and then disabled. In the case of AGE, the
transition “remembers” the firing time consumed during the
first enabling phase, and the remaining firing time is
correspondingly reduced. In the case of ENABLE, the
previous enabling time is forgotten, and the transition firing
time starts once again from the beginning when the
transition is re-enabled.

S is a random variable, and the stochastic process of the
SPN is described by a system of linear, hyperbolic first-
order partial differential equations for the density of S. The
number of unknowns in the system is equal to the number
of discrete states of the net, and the dimension of the
differential equation is ℜn. For a number of reasons, this
system of differential equations is very difficult to solve
numerically in the general case. It is for this reason that,
although the method of supplementary variables has been
known for a long time, to the author's knowledge, no
attempt has yet been made to create a general-purpose
simulation tool for SPNs using this approach.

.
)(1

)()(
τ

ττ
F

fh
−

=

AT
AB h

dt
d

dt
d πτππ

⋅=−=)(

A

B

T

πA

πB

hT()τ

πA

πB

t

t

PROXEL-BASED SIMULATION ALGORITHM

The Basic Idea

The idea behind the proxel-based simulation method is to
use proxels P = (p, S) to represent states S of the SPN
model and their probabilities p. For any state S, we can
determine each possible successor state, compute the
probabilities that the model will transition into each of
those states within a discrete time step ∆, and create new
proxels accordingly. ∆ is a discretisation parameter of the
derivative in Equation (1), whose value is chosen by the
user; the stochastic process itself is continuous.

Successor states are found by determining which transitions
are enabled in the marking of the current proxel, and the
transition probabilities are computed from the instantaneous
rate functions of the enabled transitions. As the simulation
progresses, proxels can be created, stored temporarily in a
queue, removed, and destroyed.

In the usual case, the simulation begins with the initial
proxel P0=(1, m0, 0, 0), which states that with a probability
of 1, in the initial marking m0, all transition enabling times
are 0 and the simulation time is 0. Of course, if the user
model specifies several initial markings (whose
probabilities must then sum to 1), then more than one initial
proxel can be specified appropriately. As the simulation
progresses, a logical tree of proxels is generated (see Figure
3 for an example), in which the k-th level of the tree
contains all the proxels reached at the k-th discrete time
step. Generation of new proxels ceases when the maximum
simulation time has been reached, and the simulation
terminates when the proxel queue Q is empty.

In general, during the course of the simulation, many
proxels will be generated whose values of both m and t are
identical, but whose values of τ differ. These proxels all
represent the same discrete marking of the SPN, but are
reached via different “routes” during the course of the
simulation. The sum of the probabilities for such a set of
proxels yields the overall probability for the discrete
marking m at time t.

Specification of the Algorithm

We define a queue Q for the temporary storage of proxels.
The implementation of Q is crucial for the performance of
the algorithm and is discussed in the next section. We write
P.x to denote an element x contained in proxel P. The
variable πm(t) is used to store the simulation result, i.e. the
probability that the SPN will be in marking m at time t. The
constant tmax represents the maximum simulation time
specified by the user. ∆ represents the discrete time step;
the real-valued simulation time t takes on the values k ⋅ ∆,
where the integer-valued k denotes the number of the
discrete time step. ∅ denotes the empty set, and T a
transition in the SPN. Assignments are denoted by the ←
symbol.

Algorithm 1 describes the proxel-based numerical
simulation of the SPN.

1: Q ← ∅
2: addproxel(1 , m0 , 0 , 0)
3: WHILE Q ≠ ∅
4: P ← getproxel()
5: πP.m(P.t) ← πP.m (P.t) + P.p
6: IF (P.t < tmax)
7: addproxel(P.p * (1 – ∆*ΣT hT(τ)) , P.m ,
 update(P.τ , P.m , ∅), P.t + ∆)
8: ∀T: IF (enabled(P.m , T))
9: addproxel(P.p * ∆*hT(τ) , succ(P.m , T),
 update(P.τ , P.m , T), P.t + ∆)

Algorithm 1: Proxel-Based Simulation of an SPN

The following functions are used by the algorithm:

succ(m, T) returns the marking reached from marking

m by firing transition T.
enabled(m, T) returns TRUE if transition T is enabled in

marking m.
addproxel(P) inserts proxel P to proxel queue Q.
getproxel() deletes a proxel from Q and returns its

value.
update(τ, m, T) updates the enabling time vector τ when
 transition T fires in marking m.
memory(T) returns memory policy of transition T (i.e.

ENABLE or AGE).

Explanation of the Algorithm

First, we give a line-by-line commentary of the algorithm:

Line 1: The proxel queue Q is initialised to the empty set.
Line 2: The initial proxel P0 representing the initial state
 of the model is inserted into the queue.
Line 3: Loop until the proxel queue is empty.
Line 4: Get the next proxel P from the queue.
Line 5: Add the probability of the current proxel P.p
 to the solution.
Line 6: Continue only if maximum simulation time tmax

has not yet been reached.
Line 7: Add a new proxel representing the case that
 the SPN remains in the marking P.m.
Line 8: Consider all transitions T that can fire in the

marking of the current proxel P.m.
Line 9: Add a new proxel to the queue for each of
 these cases.

Line 7 describes the case in which the SPN remains in the
same marking as time advances from t to t + ∆. The
probability for this case is equal to 1 minus the probability
of leaving the state during this interval, which is computed
as the sum of the corresponding probabilities for each
individual enabled transition firing.

The function update() modifies the j-th element of the
vector τ, according to the behaviour and type of the j-th
transition as follows:

update(τ, m, T):
FOR j = 1 TO n DO
CASE 1. (Tj = T):

τj ← 0 
CASE 2. (enabled(m, Tj)) ∧ (Tj ≠ T):

τj ← τj + ∆
CASE 3. (¬enabled(m, Tj)) ∧ (memory(Tj) = ENABLE):

τj ← 0
CASE 4. (¬enabled(m, Tj)) ∧ (memory(Tj) = AGE):

τj ← τj

The function update considers all j=1..n supplementary
variables which are active in marking m and modifies their
values as appropriate. Case 1 concerns the transition which
fires, resetting its enabling time to 0. In case 2, a transition
is considered which is enabled, but does not fire. Here, the
enabling time is incremented by ∆. Case 3 treats disabled
transitions with memory policy ENABLE, for which the
value of τ is set to (or remains at) 0. Finally, in case 4,
disabled transitions with memory policy AGE retain their
stored enabling times.

Note that supplementary variables can be mapped to
different transitions in different markings. A general-
purpose SPN simulator must automatically determine the
number of variables needed and determine this mapping.

The algorithm essentially uses an explicit Euler-like
discretisation of Eq. (1) and then performs an exhaustive
search of the thus discretised state space of the SPN. In this
sense the algorithm is analogous to many other discrete
search methods, such as chess-playing programs. In the
form given here, the number of proxels created grows
exponentially with the number of time steps tmax/∆.
Obviously, this is much too expensive. In the next section,
techniques for reducing the complexity are discussed.

DISCUSSION AND IMPLEMENTATION ISSUES

Reducing Complexity

The time and space complexity of the algorithm in this
form is exponential in the number of discrete time steps.
This is obviously far too expensive for practical use.
Fortunately, heuristics for reducing the complexity are
available. The simplest of these is based on the observation
that during the course of the simulation, the probability of 1
for the initial state is just redistributed among the different
states at each new discrete time step. Specifically, for any
proxel P' that is generated from a predecessor proxel P, we
have P'.p ≤ P.p. This allows us to define a threshold value ε
for proxel probabilities such that any proxel created with a
probability value less than ε will be discarded, since its
contribution to the overall solution is not significant. We
can then replace Line 6 in Algorithm 1 by:

6': IF ((P.t < tmax) AND (P.p > ε))

This can lead to a substantial saving in the complexity of
the algorithm, since the state space tree is pruned wherever
the probabilities are too small to be of interest. By summing

the probability values that are discarded, the total error
incurred using this approach can be computed easily.

Further reductions in complexity can be achieved by using
appropriate storage schemes for Q. These are described in
the next section.

Temporary Proxel Storage

Proxels that are generated are stored temporarily in a data
structure Q. Different implementations of Q can
significantly affect the efficiency of the algorithm.

The basic queueing strategies LIFO and FIFO yield a
depth-first and breadth-first enumeration of the state space,
respectively. The depth-first strategy minimises memory
requirements, needing O(b*tmax/∆) proxels, where b is the
branching factor, i.e. the average number of transitions that
are enabled at any time. Both of these simple strategies
have exponential computational complexity, and are thus
too expensive to be practical.

A better storage scheme would allow proxels P = (p, S)
with a given value of S to be located quickly. This would
allow two proxels with identical values of S to be combined
by simply adding their probability values. This in turn
would significantly reduce both memory requirements and
computational complexity, since it would permit substantial
pruning of the proxel tree.

The fastest simulation algorithm is achieved when proxels
are stored in an array that is indexed by S. This allows
proxels to be accessed in O(1) time. However, this requires
storing a array that is large enough to be indexed by all
possible values of S. This is prohibitive, since it essentially
leads to the same data requirements as the PDE solver.

An appropriate compromise is probably to be achieved
using a sorted dynamic tree. This would lead to a data
structure whose size corresponds to the number of currently
active proxels, and which allowed an access time which is
only O(log tmax/∆).

EXAMPLE AND EXPERIMENTS

In order to illustrate the proxel-based simulation algorithm
and its behaviour, we use the simple SPN of Figure 2.

Figure 2: Example SPN

A B C

T_AB

T_BA

T_BC

T_CB

We choose the following distributions for the transition
firing times:
FAB = Exponential (0.5)
FBA = Uniform (0.3, 0.5)
FBC = Deterministic (1.0)
FCB = Uniform (0.2, 0.3)
Transition T_BC has memory policy AGE, all others have
the policy ENABLE.

Since at most two transitions can have non-zero enabling
times simultaneously, we will require two enabling time
variables τ = (τ1, τ2). We use τ1 to represent the enabling
time of transition T_BA in marking B and of transition
T_AB in marking A. Similarly, τ2 represents the enabling
time of transition T_BC in markings B and A, and of
transition T_CB in marking C.

The proxels (p, m, τ1, τ2, t) generated by the simulation
algorithm for the first three discrete time steps are shown in
Figure 3, whereby the ? symbol signifies computed
probabilities, and the times τ1, τ2 and t are shown as integer
multipliers of ∆, i.e. a 2 represents 2∆. From the initial
proxel representing the marking B, all three successor states
are reachable, depending on whether transition T_BA,
transition T_BC, or no transition fires during the time
interval (0, ∆).

Figure 3: First Steps of the Proxel-Based Simulation

Numerical results from the proxel-based simulation are
shown in Figure 4. The probabilities for each of the three
system states A (red), B (green), and C (blue) are shown for
the first 10 time units of operation (upper diagram); a
detailed view for the first two time units is shown in Figure
4 (lower). In this simulation, all transition memory policies
were of type ENABLE. A time step of ∆=0.005 was used,
yielding an estimated maximum error of no greater than
0.01. The solution contains both discontinuities and non-
differentiable points. The solution tends towards a steady
state, which has almost been reached by t=10. Since the
proxel algorithm conserves probability, the solution values
sum to 1 at all times during the simulation.

Figure 4: Simulation Results for the Example SPN

Figure 5 shows the number of variables needed by the
proxel and the PDE methods to simulate the example model
for maximum simulation times tmax from 0.5 to 15. In the
case of the proxel-based method of Algorithm 1, these
variables are proxels, in the case of the PDE solution they
are floating-point numbers. The green curve shows the case
where Q is implemented as FIFO queue, i.e. the simulation
proceeds as a breadth-first enumeration of the state space.
without storing the proxels in a special data structure in
order to prevent duplication. The red curve shows the
proxel algorithm in which Q is implemented as an array
indexed by S and duplicate proxels are eliminated. The blue
curve shows the results for the numerical solution of the
PDE. The integration of the differential equation was a
first-order characteristic method on a 500x500 spatial grid.
A time step of ∆=0.01 was used for both methods and a
threshold value of ε =1e-8 was used for the proxel
simulation. A logarithmic scale has been used for the
vertical axis. The green curve shows the exponential growth
in the number of proxels needed for the basic algorithm.
This is clearly unacceptable. The proxel algorithm using
array storage is approximately three orders of magnitude
cheaper than the PDE solution This is due to the fact that
the PDE solver accesses all variables at all time steps,
whereas the proxel-based algorithm truncates the
processing of proxels whose probability values drop below
the threshold ε. The actual memory savings are a factor of
four smaller, since in this implementation, one proxel
requires four times as much memory as a floating-point
number (32 bytes compared to 8).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

t

P

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

t

P

(1, B, 0, 0, 0)

(?, B, 1, 1, 1)

(?, A, 0, 1, 1)

(?, C, 0, 0, 1)

(?, B, 2, 2, 2)

(?, A, 0, 2, 2)

(?, C, 0, 0, 2)

(?, B, 0, 1, 2)

(?, A, 1, 1, 2)

(?, C, 0, 1, 2)

(?, B, 0, 0, 2)

Figure 5: Computational Complexity

Figure 6 shows the solution value obtained for the
probability of state B at time t=5 for the proxel-based
simulation using different values of the discrete time step ∆.
The linear convergence towards a value close to 0.7 as
∆→0 towards is evident. This linear convergence results
from the first-order discretisation of the first derivatives
used by the proxel method. This allows us to use solutions
obtained with two different values of ∆ in order to
extrapolate linearly to ∆=0, obtaining an even more
accurate solution. Higher order extrapolations using more
than two individual solutions are also possible. The solution
values for states A and C also exhibit linear convergence.

Figure 6: Convergence of Proxel Solution

This contrasts with the convergence behaviour exhibited by
the stochastic discrete-event simulation. This is shown in
Figure 7 for the mean and 99% confidence interval for the
probability of state B for 10, 20, 40, … 5120 replications. In
this case, the stochastic nature of the simulation results in
non-monotonic convergence towards the solution. The
general-purpose simulator SIMPLEX 3 (Schmidt 2001) was
used for this experiment.

Figure 7: Convergence of Discrete-Event Solution

Figure 8 shows the relationship between computation time
and solution error for the proxel-based (blue) and discrete-
event (red) simulation methods on a log-log scale. The
estimate of accuracy is based on a comparison with the
solution obtained by linear extrapolation of the proxel
solutions obtained for ∆=0.0005 and ∆=0.001 to ∆=0 in
Figure 6. The proxel method is clearly more efficient,
achieving a comparable error within a computation time
which is approximately one order of magnitude shorter.
Furthermore, the proxel method shows monotonic
behaviour, whereas the discrete-event simulation is
stochastic.

Figure 8: Error vs. Computation Time

Caution should be used, however, when drawing
conclusions from this result, since SIMPLEX 3 appears to
have a high computational overhead per replication.

SUMMARY AND OUTLOOK

In this paper, a new paradigm for the numerical simulation
of discrete-state stochastic models such as stochastic Petri
nets has been presented. The concept of a proxel as a basic
unit of computation was introduced. Proxels yield a
deterministic, continuous computational model, which is
approximated using a discretisation of the time variable.

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 40 80 160 320 640 1280 2560 5120

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000

The model is based on the concept of tracing the movement
of probability as it moves around in the state space. This
computational model is similar in principle to the partial
differential equation obtained by application of the method
of supplementary variables. The advantages of the new
approach over the differential equation are its conceptual
simplicity, the opportunities it gives for reducing the
number of variables computed, and the fact that it
immediately suggests a straightforward simulation
algorithm.

In its simplest form, the proxel-based algorithm is very
expensive, and techniques for bounding the state space that
is generated are needed. Some such bounding techniques,
such as threshold-based pruning and storage schemes which
allow searching have proven to be effective. Further
research will look at using a tree-based storage scheme.

More experience with the new algorithm is needed in order
to fully determine its usefulness. Situations in which it is
expected to prove more efficient than a discrete-event
simulation based on pseudo-random numbers include cases
where the behaviour of the random number generator leads
to very long simulation times, such as is the case for stiff
models, or when there is a large statistical variance in the
simulation results, as is found in some safety and reliability
analyses.

One added advantage of the proxel computational model is
that it is also capable of analysing hybrid systems
containing both continuous, deterministic components as
well as stochastic, discrete ones. One example of such
systems are the Hybrid, or Fluid Stochastic Petri Nets
(Horton et al 1998). This implies that these models can also
be simulated using a proxel-based algorithm. This
possibility is currently being investigated.

Further work will also include the creation of a general-
purpose proxel-based SPN simulator. This will allow
comparisons of accuracy and efficiency to be made for a
wide range of models.

REFERENCES

Cox, D. 1955. “The analysis of non-Markov stochastic
processes by the inclusion of supplementary variables.”
Proc. Camb. Phil. Soc. (Math. And Phys. Sciences) 51, 443-
441.

German, R. 2000. Performance Analysis of Communication
Systems. Modeling with Non-Markovian Petri Nets. John
Wiley & Sons, Chichester.

Heller, S., S. Greiner, G. Horton. 2002. "PeNeTo: A Petri
Net Simulator for Fast Safety and Quality Analysis and
Cost Prediction". In Proceedings of the European
Simulation Multiconference 2002 (Darmstadt, Germany).
Society for Computer Simulation. San Diego.

Horton, G., Kulkarni, V. G., Trivedi, K., Nicol, D. 1998.
“Fluid Stochastic Petri Nets: Theory, Applications and

Solution Techniques.” European Journal of Operations
Research 105, January 1998, 184-201.

Molloy, M., “Performance Analysis Using Stochastic Petri
Nets.” IEEE Trans. Comput. C-31(9), Sept. 1982, 913-917.

Schmidt, B. 2001. The Art of Modelling and Simulation.
Introduction to the Simulation System SIMPLEX 3. Society
for Computer Simulation, San Diego.

AUTHOR BIOGRAPHY

Graham Horton studied Computer Science at the University
of Erlangen, Germany, obtaining his Masters Degree
(Diplom) in 1989. He obtained his PhD (Dr.-Ing.) in 1991
for research in parallel simulation algorithms, and his
Habilitation in 1998 for work involving the numerical
solution of Markov chains and hybrid modelling
techniques. He has been Professor for Simulation and
Modelling at the University of Magdeburg, Germany since
2001. His research interests include efficient simulation
methods, multi-level algorithms, hybrid modelling, and
creativity techniques. He can be reached via email at
graham@cs.uni-magdeburg.de and in the WWW at
http://wwwisg.cs.uni-magdeburg.de/~graham.

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

