
MANUFACTURING SIMULATION USING BSP TIME WARP
WITH VARIABLE NUMBERS OF PROCESSORS

Malcolm Yoke Hean Low
Programming Research Group, Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail: mlow@comlab.ox.ac.uk

ABSTRACT

The performance of an optimistic parallel simulation
run depends on many factors. These factors range from
the inherent complex nature of the simulation workload
to the overhead in using the available parallel computing
resources. Very often, using the maximum number of
available processors for a parallel simulation run will not
yield the best performance achievable. In this paper, we
describe a new approach for executing BSP Time Warp
optimistic parallel simulations using variable number of
processors. Processors are automatically added or removed
during the simulation runtime based on a performance cost
model. Experiment results using this new approach on a
real-world semi-conductor factory model is presented.

1 INTRODUCTION

The performance of an optimistic parallel simulation pro-
tocol [Jefferson 1985] such as the BSP Time Warp (BSP-
TW) [Marı́n 1998] depends on different numbers of factors,
both internal and external. In order to maximize the per-
formance of a long running parallel simulation, the simu-
lation protocol needs to adapt to its surrounding environ-
ment and make the necessary changes when required. These
changes can range from throttling the event-limit between su-
persteps [Low 2001] to dynamic load-balancing via migra-
tion of simulation objects between processors [Low 2002].
Depending on the amount of overhead and the granularity of
events of the simulation model, using the maximum number
of processors available in a parallel system throughout the
whole duration of a simulation run may not always yield the
best performance. The simulation protocol must make deci-
sion whether to make use of additional available processors
or discard some of the processors by migrating simulation
objects out of them.

In this paper, we propose a new approach for executing BSP-
TW simulation by varying the number of processors during
the runtime of a simulation. The new algorithm automati-
cally adds or removes processors from the parallel simulation
environment based on a performance cost model. We carried
out experiments on a real-world semi-conductor wafer fab-

rication model using this new algorithm and compared its
performance with the BSP-TW DLB ����� algorithm described
in [Low 2002].

The rest of this paper is organized as follows. We first de-
scribe the BSP model and the BSP Time Warp optimistic
protocol in section 2. The performance cost model that is
used for determining whether to add or remove processors
from a simulation run is described in section 3. Based on
the performance model, the new algorithm for automatically
adding or removing processors during runtime is described in
section 4. Section 5 describes the Sematech wafer fabrication
model used in the experiments as well as presents the exper-
iment results comparing the performance of the new BSP-
TW DLB � ����� algorithm and the BSP-TW DLB ����� algorithm.
Some related work are described in section 6. Section 7 sum-
marizes the paper and outlines future research directions.

2 BSP TIME WARP

The bulk synchronous parallel (BSP) model [Valiant 1990] is
developed to be a general purpose approach to parallel com-
puting. It has features such as simple programming inter-
faces, scalable performance and a simple cost model for per-
formance prediction. The BSP model allows the separation
of concerns between the computation, communication and
synchronization costs when designing a parallel algorithm.
A BSP programming model consists of

�
processors linked

by an inter-connecting network and each with its own pool
of memory. BSP processors communicate with one another
by exchanging messages using the inter-connecting network.

The BSP-TW algorithm [Marı́n 1998] is designed to be an
efficient realization of an optimistic synchronization protocol
on the BSP model. The algorithm for the original BSP-TW
is shown in Figure 1. Each processor manages a group of
logical processes (LPs) in the system. In BSP-TW, LPs are
also referred to as simulation objects and the two terms are
used interchangeably in this paper. LPs in the same processor
share a common event-list. The BSP-TW algorithm proceeds
in a series of supersteps as indicated by the outer while loop
and the bsp sync() statement at the end of the loop.

bsp begin();
[A] Initialization
while GVT

�
SimEndTime do

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limit ��� every ��� supersteps;
[D] Execute ��� events;
bsp sync();

endwhile
bsp end();

Figure 1: Algorithm for BSP Time Warp

The BSP-TW algorithm uses event-rollback to correct any vi-
olations in time-order relationship between events on LPs lo-
cated in different processors. The global virtual time (GVT)
measures the progress of a simulation run. An estimate of
GVT is computed after every ��� supersteps; �	� is also known
as the GVT update interval. Memory for events or states in
an LP with time-stamps smaller than GVT are reclaimed af-
ter each GVT computation (fossil collection). The body of
the loop is executed till the processor’s GVT value is greater
than the simulation end time.

The algorithm provides an automatic means of throttling the
number of events, ��
 , being simulated per superstep based
on statistics from fossil collected events. The aim of the al-
gorithm is to complete the simulation in the least number of
supersteps possible. The BSP cost model for a BSP-TW al-
gorithm

�
can be expressed as

cost
 ����� ���� � ���
���
�� ��� �"!
�� ���$#"% (1)

where ��& is the total number of supersteps;
�
'� � is the com-

putation cost for superstep � ; and
!
�� � is the maximum num-

ber of messages sent or received respectively by any proces-
sor in superstep � . The architecture dependent parameters

�
and
#
represent the communication and synchronization costs

respectively. The values of
�

and
#

for some commonly used
parallel systems are listed in [Skillicorn et al. 1997].

Although the cost model is relatively simple, we can see that
the performance of a BSP-TW algorithm relies on three fac-
tors: a) computation balance; b) communication balance; and
c) � & , the total number of supersteps.

3 PERFORMANCE COST MODEL

In order to decide the number of processors needed for a par-
allel simulation, the following factors have to be considered:

(Computation and communication load-imbalance(Communication and synchronization overhead(Event rollback rate(Event granularity/overhead.

Let the cost of executing an event using the sequential simu-
lation engine be)*
 and the total number of events executed
in the sequential execution be �+
 . The total cost of sequential
execution, , &
.- , is given by

, &
/- � ��
0)*
21 (2)

Let
�

be the number of processors used in the parallel exe-
cution of the simulation.

Let 34
6587 be the event overhead in the parallel execution.
The event overhead accounts for the additional cost of state-
saving and fossil collection for each event in the parallel ex-
ecution. The cost of executing an event in the parallel exe-
cution will be 3
)
 . Let 349:5<; be the event rollback ratio
for the parallel execution such that the total number of events
executed in the parallel execution is
/7 � 3=9 � �
 .
Let 3?> (;$@A34>B@ �

) be the load-imbalance factor for the
parallel execution of the simulation such that

3 > � ��C �0DFE
.7 � 349 � �
�
.7 � 3 9 � ��

� G (3)

� C �0D �
/7 � 3?> �
.7 � 3 9 � ��

� (4)

where � C �0D is the maximum number of events executed by
any of the

�
processors.

From the BSP cost equation, the total cost of parallel execu-
tion, ,�H � 9 , is given by

, H � 9 � I H � 9 � �=JK� ��& # (5)

where
�

and
#

are the BSP communication and synchroniza-
tion parameters.

I H � 9 is the accumulated total computation
cost for every superstep.

J
is the accumulated total of the

maximum bytes of data sent or received by any processor in
every superstep.

The cost
�"J<� � & # constitutes the overhead for communica-

tion and barrier synchronization. We can define 3 � to be the
overhead ratio such that

3 � � �=JK� � & #I H � 9 1 (6)

The cost of parallel execution can be rewritten as

, H � 9 �
.7 � 3 � �/I H � 9 1 (7)

Using equation 4, we can rewrite
I H � 9 as

I H � 9 �
.7 � 3 > �
.7 � 349 � 3
 �
)

� 1 (8)

The total cost for parallel execution can be expressed as

, H � 9 �
/7 � 3 � �
.7 � 3 > �
.7 � 3�9 � 3
 �
)

� 1 (9)

The achievable speedup,
�

, is given by

� � ��
)

.7 � 3 � �
/7 � 3 > �
.7 � 349 � 3
 �
)

�

(10)

� �

.7 � 3 � �
/7 � 3?> �
.7 � 3 9 � 3?
 1 (11)

4 BSP-TW DLB � ����� ALGORITHM

Using the DLB cost equation for BSP-TW, we propose a
new BSP-TW algorithm that automatically determines the
required number of processors for a parallel simulation ex-
ecution.

This algorithm is an extension of the dynamic load-balancing
(DLB) algorithm BSP-TW DLB ����� described in [Low 2002].
The BSP-TW DLB ����� algorithm is enhanced with a module
to automatically add or remove processors by comparing the
current performance and the expected performance using the
cost model developed in section 3.

Figure 2 shows the new BSP-TW DLB � ����� algorithm. The
difference between BSP-TW � ����� and BSP-TW DLB ����� is the

bsp begin();
[A] Initialization;
while GVT

�
SimEndTime do

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limit ��� every ��� supersteps;
[D] After each

�
GVT computation:

D0 add remove cpu();
D1 balance computation();
D2 balance communication();
D3 optimize lookahead();

[E] Execute � � events;
bsp sync();

endwhile
bsp end();

Figure 2: Algorithm for BSP-TW DLB � �����

addition of module D0. From part D, the load-balancing al-
gorithm is performed at each migration interval. A migration
interval consists of � GVT computations. Modules D1 to D3
were previously introduced in [Low 2002]. These three mod-
ules provide support for balancing computation and commu-
nication workload, as well as optimizing lookahead for the
BSP Time Warp runtime system. A detailed description of
these three modules is beyond the scope of this paper, read-
ers are referred to [Low 2002] for more details.

Module D0 is added to provide functionality for adding or re-
moving processors based on predicted performance derived
from the cost equation. The pseudo-code for the function
add remove cpu() is shown in Figure 3. In order for the
algorithm to decide whether to add/remove processor or to
maintain the current number of processors used, the follow-
ing terms for speedup based on equation 11 are computed:

(� ��� 9 : the achievable speedup for the current migration
interval.(�
����� : the achievable speedup if processors are added.(� 9
 C : the achievable speedup if processors are re-

moved.

To obtain 3 � for the respective speedup terms, we consider
equation 6. Since we are considering the achievable speedup
for the current migration interval, �+& is set to ��� � for all three
cases. Table 1 shows the values of BSP parameters

�
and
#

for different numbers of processors used in the experiments
in section 5.

In the experiments, the number of processors is doubled or

Table 1: BSP Parameters for a Cluster of Sun UltraSparc
Workstations Connected via a 100Mbits TCP/IP Network

� �
(� s/byte) � (� s)

1 0.0025 2.332
2 0.3275 1210.143
4 0.5225 2069.116
8 0.7235 3186.775
16 1.2695 8287.531

add remove cpu()
let
���

: the set of current active processor, (0
����� � -1);

compute �
	���
 , �
����� and ��
 ��� ;
if �
��������� 	���
 and �
���������
 ��� then

// adding � processors
let
����

: a set of inactive processor, (0
����� � -1);

foreach
���

(0
����� � -1) do

migrate half of
� �

’s simulation objects to
� ��

;
set

� ��
as active;

endfor
else if �
 ������� 	���
 and �
 ������������� then

// removing � � processors
sort

� �
in descending order by computation workload

foreach
���

(0
����� � � -1) do

migrate all of
� �

’s simulation objects to
� ���! "

;
set

� �
as inactive;

endfor
endif

Figure 3: Pseudo Code for add remove cpu() Procedure

halved each time a decision is made to add or remove pro-
cessors from the parallel simulation system. We make the
assumption that the event overhead, 3=
 , is 1 no matter how
many processors are used. In reality, 3=
 should be greater
than 1 and should remain constant regardless of the number
of processors used. We also set the load-balance ratio, 3"> ,
to 0 and use the average computation workload among the
active processors as

I H � 9 . Load-balancing among the set of
active processors will be handled by modules D1 to D3 in
Figure 2.

We can simplify equation 11 to

� � �

/7 � 3 � �
.7 � 3 9 � 1 (12)

Assuming a well balanced communication workload across
all processors, the current communication workload

J
will

be the average of the maximum amount of data sent or re-

ceived by all processors in the current migration interval. We
make estimates to the values of

J
used to compute

�
� ��� and� 9
 C . The value of

J
for
�
� ��� will be twice the current

J
value. For

� 9
 C , half the current
J

value is used.

The current value of 3?9 is obtained using the ratio between
the total number of events rolled back and the total number
of events committed in the current migration interval. We
assign twice the value of 3 9 for

�
����� ; and half the value of3 9 for

� 9
 C .

Again assuming a well balanced computation workload be-
tween all processors, the computation workload

I H � 9 is
taken to be the average of the total computation workload
on all processors. We use half the value of

I H � 9 for
�
� ���

and twice the value of
I H � 9 for

� 9
 C .

The assumptions for the values of
J

and 3?9 will be veri-
fied in section 5. Using the values of

�
��� 9 , � ����� and

� 9
 C ,
processors are added or removed based on the following con-
ditions:

(If the estimated value of
�
����� exceeds both

�
��� 9 and� 9
 C , then the algorithm allocates a set of processors

from the inactive processor pool. For each of the cur-
rent active processor, half the simulation objects on the
active processor are migrated to one of the inactive pro-
cessors and the status of the inactive processor is set to
active.(If the estimated value of

� 9
 C exceeds both
�
��� 9 and�

����� , then the algorithm merges the simulation objects
between each pair of active processors and set the status
of one of the processors to inactive. When selecting the
pair of processors, processor with the highest compu-
tation workload is grouped with the processor with the
lowest computation workload.(If the value of

�
��� 9 exceeds both

�
����� and

� 9
 C , then
the number of processors is kept unchanged.

Note that processors that are removed from computation are
flagged as inactive and modules D1 to D3 in Figure 2 only
act on the set of active processors.

5 EXPERIMENT RESULTS

5.1 Simulation Model

In this section, we present experiment results comparing the
new BSP-TW DLB � ����� and the BSP-TW DLB ����� algorithms.
The simulation model used to benchmark the two algorithms
is a manufacturing process of a wafer fabrication plant. The
data model is based on the Sematech Modeling Data Stan-
dard (MDS) project [Sematech 1997]. The aim of the project

Table 2: Statistics on Sematech Data-sets

Data-set
1 2 3 4 5 6

No. of products 2 7 11 7 177 9
No. of process flows 2 6 11 1 21 9
No. of process steps 455 1606 4138 111 4176 2541
No. of machines 83 97 73 35 85 104
Steps/machines ratio 5.48 16.56 56.68 3.17 49.13 24.43

is to “develop a set of standard that will enable the seamless
exchange, sharing and re-use of data among modeling appli-
cations and Manufacturing Execution Systems (MES)”.

The MDS data models are realistic examples from real-world
applications. The MDS uses several files to define the man-
ufacturing processes. These files define the process flow, re-
work, tool set, operator set and volume release.

For example, the process flow file defines the workflow of
products and contains the information for the different pro-
cessing steps that wafer lots need to flow through. Each step
specifies attributes such as the machine and operator sets that
are needed as well as the processing time, load time and un-
load time etc.

Table 2 shows some statistics for the six Sematech data-sets
used in the experiments. The steps/machines ratio measures
the average number of processing steps sharing a given ma-
chine.

The simulation models used in the experiments are strip-
down versions of the detailed model described by Sematech.
Some features such as operators, reworks and machine down
time are not modelled. The models also use only first-come-
first-served wafer-lot processing and do not split wafer-lots
on batch-processing machines. These simplifications do not
reduce the complexity of the simulation models in terms of
the amount of sharing of machines between different pro-
cessing steps.

5.2 Experiments

For all the experiments, the GVT computation interval,� � , is fixed at 50 supersteps. The migration interval � is
set to 5. The experiments are conducted on a cluster of
16 350MHz Sun UltraSparc workstations connected via a
100Mbits TCP/IP network. All execution times shown are
the average of three runs. A fixed simulation run length of
one year (525600 time units) is used for all simulation runs.

The experiments are executed using different spin-loop val-
ues to artificially increase the event granularity. We exper-
imented with event granularities of 0, 10, 100 and 1000

Table 3: Execution Times (sec.) for Sematech Data-sets us-
ing Sequential Simulation Engine

Event Granularity (� �)
Data-set 0 10 100 1000

1 10.6 72.3 596.1 5851.4
2 14.7 97.1 850.0 8336.4
3 18.6 137.9 1198.3 11758.6
4 1.2 9.8 87.7 868.2
5 8.6 52.8 440.9 4323.5
6 7.5 54.9 467.5 4594.7

Table 4: Execution Times (sec.) for Sematech Data-sets us-
ing BSP-TW DLB ����� on 16 Processors

Event Granularity (� �)
Data-set 0 10 100 1000

1 906.5 932.0 1107.9 2784.1
2 809.2 879.3 942.8 2093.8
3 2700.4 2680.5 3055.2 7570.8
4 302.7 301.1 338.2 632.0
5 630.9 600.2 757.3 1742.0
6 519.1 545.8 628.9 1443.2

� s. The typical event granularities in a detailed simulation
model [Jain et al. 1999] are in the range of 10-100 ��� .

Table 3 shows the execution times obtained using an op-
timized sequential simulation engine for the six Sematech
data-sets with different event granularities. Data-set 4 has
the shortest execution times as it is the smallest model in
the Sematech data-sets with only 35 machines and one short
wafer-lot process flow.

Table 4 shows the execution times using BSP-TW DLB �����

on 16 processors. Comparing Tables 3 and 4 we can see
that the runs with low event granularities suffer from poor
performance by using all 16 processors.

Table 5 shows the corresponding percentage of the execution
time due to synchronization overhead. We see that the poor
performance for runs with low event granularities is due to

Table 6: Execution Times (sec.) for Sematech Data-sets using BSP-TW DLB � ����� on 16 Processors

Start with 1 Processor Start with 16 Processors
Event Granularity (� �) Event Granularity (� �)

Data-set 0 10 100 1000 0 10 100 1000
1 435.1 510.8 972.1 2574.9 494.6 556.3 1029.5 2437.2
2 400.6 510.3 978.7 2488.2 489.1 581.2 1038.5 2052.4
3 423.0 808.2 1902.7 6189.9 782.4 935.4 2110.2 5946.9
4 122.0 133.1 236.6 655.6 186.8 193.4 283.1 631.3
5 122.8 335.4 601.2 2496.7 249.1 321.9 573.9 1716.7
6 194.4 303.6 558.1 1724.8 285.4 337.2 661.3 1459.3

Table 7: Average Number of Processors Used by BSP-TW DLB � �����

Start with 1 Processor Start with 16 Processors
Event Granularity (� �) Event Granularity (� �)

Data-set 0 10 100 1000 0 10 100 1000
1 1 1 4 8 1 1 4 8
2 1 1 4 16 1 2 8 16
3 1 1 4 8 1 2 4 8
4 1 1 2 8 1 1 2 8
5 1 2 8 8 1 2 8 16
6 1 1 4 16 1 2 8 16

Table 5: Percentage of Execution Times Spent on Synchro-
nization using BSP-TW DLB ����� on 16 Processors

Event Granularity (� �)
Data-set 0 10 100 1000

1 73.7 72.9 63.9 25.0
2 79.7 77.7 69.2 29.6
3 66.4 68.4 56.4 23.0
4 89.9 89.7 78.9 40.1
5 60.6 56.9 51.4 18.2
6 68.5 64.4 59.3 21.4

the high synchronization overhead using all 16 processors.
The performance improves with higher event granularities as
the synchronization overhead decreases proportionally.

Table 6 shows the execution times using BSP-TW DLB � ����� .
The experiments are carried out using two configurations.
For the first configuration, 16 processors are allocated at the
start of the run but all the simulation objects are initially par-
titioned onto a single processor. For the second configura-
tion, the simulation objects are uniformly partitioned onto all
16 processors at the start of the run.

Table 7 shows the actual average number of active processors
used during the simulation runs. Comparing Tables 4 and 6,
we see that the BSP-TW DLB � ����� protocol is able to auto-
matically select the number of processors to use in order to
achieve better performance.

However, we note that the performance for the runs with low
event granularities is still very much worse than sequential
runs. This is attributed to the fact that the inherent synchro-
nization overhead of 16 processors is still present using BSP-
TW DLB � ����� even though the protocol uses only a small sub-
set of the processors for computation. To verify this, we car-
ried out experiments using BSP-TW DLB ����� with different
fixed numbers of processors.

Table 8 shows the execution times for the Sematech data-sets
for this set of experiments. The numbers in bold show the
execution times using the number of processors determined
by the BSP-TW DLB � ����� protocol in Table 7 for the con-
figuration starting with 1 active processor. We see that the
runs using the number of processors determined by BSP-TW
DLB � ����� give the best performance achievable in most cases.

Comparing Tables 6 and 8, we can see the additional syn-
chronization overhead in using a subset of processors out of
the full 16 processors allocated. For example, the run for
data-set 4 with event granularity 0 only takes 8.5 seconds
to complete using BSP-TW DLB ����� on one processor (with
only one processor allocated), as opposed to 122.0 seconds
on BSP-TW DLB � ����� on 1 processor (16 processors allo-
cated, but all simulation objects are initially mapped onto a
single processor).

In order to verify the assumptions on (doubling/halving) the
values of rollback ratio 3?9 and communication workload

J
when processors are added or removed, the corresponding

Table 8: Execution Times (sec.) for Sematech Data-sets using BSP-TW DLB ����� with
�

Processors

Set1 Set2 Set3
Event Granularity Event Granularity Event Granularity�

0 10 100 1000 0 10 100 1000 0 10 100 1000
1 40.3 96.6 625.2 5913.5 45.4 131.3 887.1 8367.3 51.7 169.1 1231.6 11803.5
2 216.9 255.2 601.9 4107.3 208.8 269.5 704.7 5177.4 365.9 443.0 1132.3 8176.9
4 336.7 349.7 551.9 2498.6 308.3 330.8 586.4 3149.3 631.2 673.5 1044.6 5023.2
8 489.7 517.6 638.3 2087.8 480.7 517.5 689.3 2404.7 1156.0 1221.2 1487.8 4832.7
16 906.5 932.0 1107.9 2784.1 809.2 879.3 942.8 2093.8 2700.4 2680.5 3055.2 7570.8

Set4 Set5 Set6
Event Granularity Event Granularity Event Granularity�

0 10 100 1000 0 10 100 1000 0 10 100 1000
1 8.5 16.8 95.4 880.7 17.3 62.6 450.3 4366.0 22.2 68.8 481.6 4609.7
2 38.9 43.5 93.2 591.5 115.3 134.5 362.9 2645.5 156.3 175.6 432.5 3001.3
4 94.3 94.6 127.9 439.0 183.4 194.0 328.9 1680.8 206.9 221.0 370.0 1837.3
8 170.5 184.9 198.9 321.0 274.4 279.7 355.9 1227.3 291.7 307.9 391.5 1279.7
16 302.7 301.1 338.2 632.0 630.9 600.2 757.3 1742.0 519.1 545.8 628.9 1443.2

values of 3 9 and
J

on different numbers of processors are
recorded during the simulation runs. Tables 9 and 10 show
the percentages of events rolled back and the communication
workload for the Sematech data-sets using BSP-TW DLB ����� .
Although our assumptions do not produce an exact match on
the variations of 349 and

J
for all six data-sets, they do reflect

the general trend in the increasing values of 3=9 and
J

when
more processors are added to the system.

6 RELATED WORK

A study reported in [Iqbal et al. 2002] examined the be-
haviour of different load-balancing algorithms when the
number of processors is dynamically changed during the life-
time of a multi-stage parallel computation. The approach is
to add or remove processors at different stages of the paral-
lel computation based on the memory requirement. While
the partitioning algorithms used in the study do try to mini-
mize communication cost among processors, the decision to
add or remove processors does not take into consideration
the communication cost for adding or removing them.

In another related study reported in [Hill et al. 1998], the au-
thors used regular check-pointing to save the states of a BSP
computation. The computation is terminated when one or
more of the processors used in the computation becomes
heavily loaded with jobs from other users. The BSP com-
putation is then restarted on another set of less loaded pro-
cessors.

We note that this is a viable approach for dynamically vary-
ing the number of processors in the system without the over-
head of synchronization cost due to the presence of inac-
tive processors. In this case, the BSP-TW computation can
be check-pointed, terminated, and restarted on a larger or

Table 9: Percentage of Events Rolled Back for Sematech
Data-sets using BSP-TW DLB ����� with Fixed Number of Pro-
cessors

Number of Processors
Data-set 1 2 4 8 16

1 0.0 13.4 11.7 17.1 30.6
2 0.0 4.8 7.5 15.5 21.0
3 0.0 16.4 17.9 31.5 58.3
4 0.0 9.7 17.9 30.5 37.6
5 0.0 8.4 9.9 18.4 45.0
6 0.0 11.9 12.5 18.5 34.5

Table 10: Communication Workload (sec.),
J

, for Semat-
ech Data-sets using BSP-TW DLB ����� with Fixed Number of
Processors

Number of Processors
Data-set 1 2 4 8 16

1 0.0 9.3 15.7 21.7 49.7
2 0.0 9.0 14.9 17.3 21.0
3 0.0 17.1 31.3 54.6 140.6
4 0.0 1.0 2.4 3.9 7.4
5 0.0 5.8 10.3 12.1 31.7
6 0.0 7.3 10.9 10.4 21.1

smaller set of processors.

7 CONCLUSION

In this paper, we have described a new BSP-TW DLB � �����

protocol that is capable of automatically varying the num-
ber of processors during the simulation runtime. We have
demonstrated the effectiveness of this protocol in providing

consistent performance on a set of real-world semi-conductor
wafer manufacturing simulation models that have different
event granularity characteristics.

Our study shows that optimal performance could be achieved
if the underlying runtime library support efficient synchro-
nization and communication for a subset of processors. Fur-
ther work will be carried out in this area.

ACKNOWLEDGEMENT

This work is supported by Singapore Institute of Manufac-
turing Technology (SIMTech).

AUTHOR BIOGRAPHY

Malcolm Low received his master degree from Nanyang
Technological University, Singapore, in 1999. He was an
Associate Research Fellow with the Singapore Institute of
Manufacturing Technology from 1997 to 1999. He is cur-
rently a DPhil student in the Oxford University Computing
Laboratory. His research interests are in the areas of adap-
tive tuning and dynamic load-balancing of parallel discrete
event systems.

REFERENCES

[Hill et al. 1998] Hill, J. M., S. R. Donaldson, and T. Lanfear.
1998. “Process Migration and Fault Tolerance of BSPlib Pro-
grams Running on Networks of Workstations”. In EuroPar’98,
ed. D. Pritchard and J. Reeve, Volume 1470, 80–91.

[Iqbal et al. 2002] Iqbal, S., G. Carey, M. Padron, J. Suarez, and
A. Plaza. 2002. “Load Balancing with Variable Number of Pro-
cessors on Commodity Clusters”. In Proceeding of the High
Performance Computing Symposium 2002. San Diego, Califor-
nia.

[Jain et al. 1999] Jain, S., C.-C. Lim, B.-P. Gan, and Y.-H. Low.
1999. “Criticality of Detailed Modeling in Semiconductor Sup-
plyChain Simulation”. In 1999 Winter Simulation Conference
(WSC’99): Institute of Electrical and Electronics Engineers, Pis-
cataway, New Jersey.

[Jefferson 1985] Jefferson, D. 1985. “Virtual Time”. In ACM
TOPLAS, Volume 7, 404–425.

[Low 2001] Low, M. Y. H. 2001. “Adaptive BSP Time Warp”. In
Proceedings of the Fifth UK Simulation Society Conference (UK-
Sim 2001), 14–20. Cambridge, UK.

[Low 2002] Low, M. Y. H. 2002. “Dynamic Load-Balancing for
BSP Time Warp”. In Proceeding of the 35th Annual Simulation
Symposium, 267–274. San Diego, California.

[Marı́n 1998] Marı́n, M. 1998. “Discrete-Event Simulation on the
Bulk-Synchronous Parallel Model”. Ph. D. thesis, Oxford Uni-
versity.

[Sematech 1997] Sematech 1997. “Modeling Data Standards, ver-
sion 1.0”. In Technical report, Sematech Inc. Austin, TX78741.

[Skillicorn et al. 1997] Skillicorn, D., J. Hill, and W. McColl.
1997. “Questions and answers about BSP”. Journal of Scien-
tific Programming 6 (3): 249–274.

[Valiant 1990] Valiant, L. G. 1990. “A Bridging Model for Parallel
Computation”. Communications of the ACM 33:103–111.

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

