

Interoperating COTS Simulation Modelling Packages: A Call for the Standardisation of
Entity Representation in the High Level Architecture Object Model Template

Simon J E Taylor

Centre for Applied Simulation Modelling
Department of Information Systems and Computing

Brunel University, Uxbridge, Middx, UB8 2DD, UK.
simon.taylor@brunel.ac.uk
www.brunel.ac.uk/~csstsjt

KEYWORDS

Discrete Event Simulation, Simulation Modelling, COTS
Simulation Modelling, Distributed Simulation, High Level
Architecture, Object Model Template.

ABSTRACT

The High Level Architecture is the defacto standard for
distributed simulation. Although widely used in defence-
related real-time, virtual distributed simulations, the High
Level Architecture has yet to make a significant impact in
other simulation application areas that use COTS simulation
modelling packages. There are many possible reasons for
this. In an attempt to make progress in the development of
distributed COTS simulation modelling applications, this
paper discusses the use of the OMT in this area. This paper
argues that the entity is the basis of information exchange
between distributed models and that there is a the need for
the standardisation of entity representation in the HLA
Object Model Template. The paper attempts to do this by
presenting a simple distributed simulation and demonstrates
how entities can be represented in the Object Model
Template as attributes and as interactions. The paper
concludes that while neither representation is ideal, both can
be used to represent entities and that standardisation is
urgently needed.

INTRODUCTION

In the year 2000 the High Level Architecture (HLA) became
the defacto standard for distributed simulation. It was
developed to provide a common architecture for distributed
modelling and simulation. Geographically remote models
(federates) interact and share information via software to
give the appearance of a single model (federation). The
HLA is composed of three parts: a Framework and Rules
(IEEE 2000a), a Federate Interface Specification (IEEE
2000b), and an Object Model Template (OMT) Specification
(IEEE 2000c). The Framework and Rules define the general
principles of the HLA, the Federate Interface Specification
defines the standard services and interfaces of software
(called the runtime infrastructure (RTI)) used facilitate
communication between federates, and the OMT defines the
format and syntax for recording information in HLA object
models. The HLA is widely used in defence to support the
interoperation of real-time, virtual simulations. So far,
however, despite attempts made by several researchers, the

HLA has yet to make any significant impact in other
simulation modelling areas such as business, health,
manufacturing, and transportation.

There are many possible reasons for this lack of impact
outside of the defence sector. Taylor, et al. (2002) discuss
some of these. However, one possible reason is that many
simulation practitioners outside of the defence sector tend to
use commercial-off-the-shelf (COTS) simulation packages
(such as Arena, Extend, Simul8, Taylor, or Witness for
example – see www.groupsim.com for links to the home
pages of these packages) rather than object-oriented, or at
least object-based, software engineered code. It might be
argued that there is some difficulty in matching the
requirements of COTS simulation packages to the HLA. To
contribute to this discussion, this paper considers how the
Object Model Template can be used to represent model
information that must be shared between models running in
distributed COTS simulation packages. The paper is
structured as follows. Section 2 discusses COTS Simulation
Modelling. Section 3 introduces a simple case study.
Section 4 discusses how the OMT might be used to represent
the shared model information of the simple case study.
Finally Section 5 concludes the paper with some reflections
on this representation and identifies the need for
standardisation.

COTS SIMULATION MODELLING

COTS Simulation Modelling refers to the methods and tools
employed by simulation practitioners who use commercial-
off-the-shelf simulation packages to support their role.
COTS simulation packages are used mostly for model
building, experimentation, and animation/visualisation
(reporting). We concern ourselves with only those packages
based upon some variant of the discrete event simulation
paradigm, i.e. models change state at discrete points in time
by scheduled or conditional events and typically represent
entities (documents, patients, parts, trains, etc.) passing
through networks of queues and workstations (work queuing
at a desk in an office, patients waiting to see a doctor, parts
buffered for machining, trains waiting at a station, etc.)
Generally, each package typically has a range of basic model
elements (queue, workstation, resource, source, sink, etc.)
that are used to build a model via a drag and drop visual
interface. Each model element can be modified as is
required, either by a menu system or by a package
programming language, to better represent the system being
studied (for example the queuing logic of a queue or the

appearance of a resource). Different entities passing through
a model can be identified. If necessary individual entity
differences can be identified by adding entity attributes. In
addition to model building, the visual interface of a package
will also support animation for model debugging and
demonstration purposes. Statistical experimentation
facilities are also usually provided by the package for model
experimentation and reporting. Terminology between
packages differs as there is no internationally recognised
naming convention.

For purposes of orientation, figure 1 shows a simple factory
model that might be built in a COTS simulation package to
study the mean throughput for a variable product mix. The
model consists of an arrival source So1, a queue Q1, a
machine M1, a resource R1, and an exit sink Si1. The
entities passing through this factory are generically known as
Parts. Parts have three attributes: Type, Entry time, and Exit
time. Type specifies the type of the part (which for the sake
of argument are designated by different suppliers General
Electric, PurpleTC, and Brunel) and Entry/Exit time are used
for analysis purposes to determine, for example, the mean
time it took a type of Part to go though the factory. Parts
(entities) arrive in the factory at the source So1 according to
an arrival time distribution and are placed in the queue Q1.
Parts wait in Q1 until the machine M1 is free and not
undergoing repair. If M1 is free, a part is loaded and
processed according to a processing time/part type
distribution. When processing is finished, the part exits the
factory via the sink Si1 and, if there are parts waiting in Q1
and the machine does not breakdown, another part is
processed. If the machine does breakdown a repairman must
be available. If one is, then the machine will be repaired
according to a machine repair distribution. The repairman is
modelled by resource R1 (and for purposes of this simple
model will always be available as there is no competition!)

Various details such as arrival time distribution, processing
time distribution, machine breakdown distribution, etc. are
detailed by using menus associated with each model
element. Note that most COTS packages save such a model
as a simple text file that records the relevant details of each
model element – it is not saved as an executable nor as
source code (as the simulation/execution of a model is
performed by the package).

A SIMPLE DISTRIBUTED SIMULATION

In order to discuss the options for entity representation that
the OMT can provide us, let us consider the simple
distributed simulation of two factories, F1 and F2, shown in
figure 2. Both are identical to the simple factory model
described above with one exception. The sink Si1 in F1 and
the source So2 in F2 are replaced by a direct link agreed with
the stakeholders of both factories (i.e. the link is a
consequence of simulation methodology and not as a result
of technological intervention). The combined models
represent the combined factory as parts finishing machining
in M1 are transferred directly to queue Q2 to await
machining in M2.

In terms of HLA distributed simulation, each model and the
COTS simulation package in which it runs is a federate. The
federation therefore consists of the two federates (F1 and F2)
that run on different machines connected by a network and
distributed simulation software (an RTI). Focusing on the
information requirements of the two federates (and not on
RTI issues such as object ownership/transfer, distributed
management, time management, distributed experimentation
control, and RTI-COTS simulation package integration, etc.)
all that must be represented in this case is the transfer of
individual part entities and their attributes between federate
F1 and federate F2. In other words some common
representation of the entity Part and the three attributes
Type, Entry time and Exit time must be agreed. Let us now
examine the options available to us in the HLA OMT.

REPRESENTING ENTITIES WITH THE OBJECT
MODEL TEMPLATE

To understand how entities can be represented in the HLA
by the OMT, let us first consider some of the concepts of the
OMT Specification (IEEE 2000c). The HLA requires that
federations and individual federates be represented by an
object model that identifies the data that is to be exchanged
during the execution of a federation/federate. The

Figure 1: Simple Factory Model

Factory F1

So1 Q1 M1 Si1

R1

Factory F2Factory F1

So1 Q1 M1

R1

Q2 M2 Si2

R2

Figure 2: A Simple Distributed Simulation

description of this data is the purpose of the OMT. An HLA
object model can be used to represent the information
exchange characteristics of a federate in an HLA Simulation
Object Model (SOM), or a federation in an HLA Federation
Object Model (FOM). The SOM specifies the information
that a federate can generate and the information that the
federate needs. The FOM specifies the entire information
exchange of a federation (and therefore the federates).

In the HLA, object models are represented as classes (with
each particular member referred to as an instance). Each
class has a set of named data characteristics called attributes
(which are semantically different to entity attributes) and a
set of interaction classes that represent explicit actions taken
by a federate that may have some effect or impact on another
federate (ibid, p.7). Federates essentially share information
indirectly via HLA services (the runtime infrastructure
software) by updating attribute values or by sending
interactions (an explicit action taken by a federate that may
have some effect or impact on another federate). There are
fourteen tables in the OMT that must be included in a SOM
or FOM (irrespective of a table being empty). For purposes
of this discussion we shall restrict ourselves to the following
tables:

• Object Class Structure Table.

This records the namespace of all federate or federation
object classes.

• Interaction Class Structure Table
This records the namespaces of all federate or federation
interaction classes.

• Attribute Table
This specifies features of object attributes in a federate
or federation.

• Parameter Table
This specifies features of interaction classes parameters
in a federate or federation.

• Datatype Tables
These are various tables used to specify the
representation of data in the object models.

As we will see, this gives us two principle opportunities to
represent the entities that are to be exchanged between our
two federates: as published attribute values or as published
interactions..

Exchanging Entities as Attribute Values

If we are to represent the exchange of entities as published
attribute values, we can represent entities in the OMT using
four tables. These are:

• Object Class Structure table
• Attribute table
• Fixed Record Datatype table
• Enumerated Datatype table

The Object Class Structure table declares the classes of the
object model and the Attribute Table declares the specific
named characteristics of each class that are to be accessible
by another federate. If we consider federate F1, we might
argue that as the model it represents needs to exchange

entities with federate F2, then as each federate consists of a
factory model we might declare a factory model as being a
class with the publicly accessible attribute Part. In this case
our federate F1 would repeatedly publish Part attributes
which would be received (via the RTI) by the federate F2.
Table 1 shows a possible Object Class Structure table for our
federate F1, table 2 shows its Attribute table, and table 3
shows the Fixed Record Datatype table, and table 4 shows
the Enumerated Datatype table. In table 1 the
HLAobjectRoot is the root class for all object models –
Factory F1 is therefore a subclass of this. N (Neither) and P
(Publish) denote that the federate is incapable of
publishing/subscribing to any attributes of the object class
and that the federate is capable of publishing at least one
attribute of the object class respectively. This denotes that
the class FactoryF1 is capable of publishing at least one
attribute which is detailed in Table 2. Table 2 shows that the
class FactoryF1 publishes the single attribute Part which is
of type PartEntity. Table 3 describes the detail of the
PartEntity datatype as a fixed record datatype. Finally Table
4 enumerates the possible values of PartType. (Note that a
complete discussion of the details of these tables is outside
the scope of this paper. Also note that the HLAobjectRoot
has been omitted in the Attribute table for clarity).

Exchanging Entities as Interactions

An alternative to representing an entity as a published
attribute is to represent an entity as an interaction between
one federate and another. If we do this, we might use the
following tables of the OMT.

• Interaction Class Structure table
• Parameter table
• Fixed Record Datatype table
• Enumerated Datatype table

The Interaction Class table declares the interactions of the
object model, the interactions that the federate is capable of
sending or receiving to/from another federate. Taking this
view, we might argue that federate F1 interacts periodically
with federate F2 by notifying F2 of the arrival of a new Part
entity. If we choose to do this, then we may represent this
interaction with the Interaction Class table shown in table 5,
the Parameter table of table 6, the Fixed Record Datatype
table of table 3, and the Enumerate Datatype table of table 4.
In table 5 the HLAinteractionRoot is the root class for all
interactions– ProducePart is therefore a subclass of this.
Similarly to attribute values, N (Neither) and P (Publish)
denote that the federate is incapable of
publishing/subscribing any instances of the interaction class
and that the federate is capable of publishing at least one
instance of the interaction class respectively. This therefore
denotes that the interaction ProducePart capable of being
published by federate F1 at lease once. Each interaction has
a set of parameters. In this case the interaction ProducePart
has a single interaction Part as shown in table 5. Part has
the same datatype details as the attribute Part which are
detailed in table 3 and 4. (Again note that a complete
discussion of the details of these tables is outside the scope
of this paper. Also note that the HLAinteractionRoot has
been omitted in the Parameter table for clarity).

Table 1: Object Class Structure Table for Federate F1

HLAobjectRoot(N) FactoryF1(P)

Table 2: Attribute Table for Federate F1

Object Attribute Datatype Update
Type

Update
Condition

D/A P/S Available
Dimensions

Transp-
ortation

Order

FactoryF1 Part PartEntity Condi-
tional

When
Ready

D P NA HLAReliable Time-
stamp

Table 3: Fixed Record Datatype Table for Federate F1

Field Record name
Name Type Semantics

Encoding Semantics

Type PartEntityType Type of
PartEntity

EntryTime HLAinteger32BE Entry Time of
Part in factory

PartEntity

ExitTime HLAinteger32BE Exit Time of
Part from
Factory

HLAfixedRecord A Part
manufactured
by Factory F1

Table 4: Enumerated Datatype Table for Federate F1

Name Representation Enumerator Values Semantics

GeneralElectric 0
PurpleTC 1

PartEntityType HLAinteger32BE

Brunel 2

Possible types of
Part produced by
factory F1

Table 5: Interaction Class Structure Table for Federate F1

HLAinteractionRoot(N) ProducePart(P)

Table 6: Parameter Table for Federate F1

Interaction Parameter Datatype Available

Dimensions
Transportation Order

ProducePart Part PartEntityType NA HLAreliable Timestamp

CONCLUSION

To conclude this paper I ask the question, which
representation is best? Amongst the many options available,
the options for representation that this paper has identified
are:

• An entity is represented as an attribute of a class model,

with entity attributes represented as datatypes.
• An entity is represented as a parameter of an interaction,

with entity attributes represented as datatypes.

The answer to this question is difficult. The two options as
presented are good as the cohesion between the entity and its
entity attributes is preserved as a datatype of an HLA
attribute or interaction. The problem is that neither really
fully capture the semantics of an entity passed between
models. An entity is neither an attribute of a model nor a
interaction between models – it is a construct in its own
right.

Irrespective of an ideal “fit”, the problem of entity
representation in the HLA must be solved for any chance of
HLA distributed simulation making any significant impact in
industry. The standardisation of entity representation is a
key element to this. The integration of the HLA with various
COTS simulation packages is a non-trivial matter. However,
as the major unit of information exchange between most
models is the entity, there is an urgent need to agree how the
OMT must be used to represent entities. It is hoped that this
paper will foster discussion on this matter.

REFERENCES

IEEE 2000a. IEEE Standard for Modelling and Simulation
(M&S) High Level Architecture (HLA) – Framework and
Rules. IEEE Std 1516-2000. IEEE Computer Society, New
York, NY.
IEEE 2000b. IEEE Standard for Modelling and Simulation
(M&S) High Level Architecture (HLA) –Federate Interface
Specification. IEEE Std 1516.1-2000. IEEE Computer
Society, New York, NY.

IEEE 2000c. IEEE Standard for Modelling and Simulation
(M&S) High Level Architecture (HLA) – Object Model
Template (OMT) Specification. IEEE Std 1516.2-2000.
IEEE Computer Society, New York, NY.
Taylor, S.J.E, Bruzzone, A., Fujimoto, R., Gan, B.P.,
Straßburger, S., and Paul, R.J. 2002. “Distributed Simulation
and Industry: Potentials and Pitfalls.” In Proceedings of the
2002 Winter Simulation Conference, E. Yücesan, C.-H.
Chen, J. L. Snowdon, and J. M. Charnes, eds. To Appear.
Association for Computing Machinery. New York, N.Y.

AUTHOR BIOGRAPHY

SIMON J.E. TAYLOR is the Chair of the Simulation Study
Group of the UK Operational Research Society and the
collaborative simulation modelling forum, the GROUPSIM
Network (www.groupsim.com). He is a Senior Lecturer in
the Department of Information Systems and Computing and
is a member of the Centre for Applied Simulation Modelling,
both at Brunel University, UK. With Dr Gary Tan of the
School of Computing, National University of Singapore he is
joint leader of the UK(EPSRC)/Singapore(DSTR)-funded
BRUNUSIM distributed simulation research programme.
He has an undergraduate degree in Industrial Studies
(Sheffield Hallam), a M.Sc. in Computing Studies (Sheffield
Hallam) and a Ph.D. in Parallel and Distributed Simulation
(Leeds Metropolitan). His main research interest is
collaborative simulation modelling. He is also a member of
the London-based Purple Theatre Company.

	KEYWORDS
	ABSTRACT
	INTRODUCTION
	A SIMPLE DISTRIBUTED SIMULATION
	REPRESENTING ENTITIES WITH THE OBJECT MODEL TEMPLATE
	Exchanging Entities as Attribute Values
	Exchanging Entities as Interactions
	CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHY

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

