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ABSTRACT

The technique of Multiple Replications in Parallel
(MRIP) has been proposed for speeding up sequential
stochastic discrete-event simulation. In this scenario,
multiple processors concurrently produce statistically
equivalent sequences of observations that are pooled
by a global analyser. Such distributed production of
observations shortens the time spent on collecting the
number of observations needed for obtaining the final
results with acceptably small statistical errors.

The distributed generation of output data in MRIP
simulation requires using new estimators. In this pa-
per we discuss the basic properties of an MRIP estima-
tor of steady-state mean values that is a linear combi-
nation of non-distributed estimators of the method of
Spectral Analysis proposed by Heidelberger and Welch
(SA/HW). The MRIP version of SA/HW has been as-
sessed on the basis of its practical implementation in
Akaroa2.

1 INTRODUCTION

Sequential stochastic discrete-event simulation, i.e.
stochastic simulation with on-line analysis of output
data, is generally accepted as the most effective way to
secure representativeness of samples of observations col-
lected during simulation (Heidelberger and Welch 1983,
Law 1983, Law and Kelton 1992). In this scenario, a
simulation experiment is stopped when the statistical
error of estimates reaches the required (low) level.

Practical applications of sequential simulation are often
hindered by extremely long times required for collect-
ing satisfactory large numbers of observations needed

for producing the results with acceptably small sta-
tistical errors. This problem can be overcome by ex-
ecuting stochastic simulation using Multiple Replica-
tions in Parallel (MRIP); see (Pawlikowski, Yau and
McNickle 1994). In this scenario, multiple processors
concurrently produce statistically equivalent sequences
of observations that are pooled by a global analyser.
Such distributed production of observations shortens
the time spent on collecting the number of observa-
tions needed for obtaining the final results with a re-
quired level of statistical error; see (Pawlikowski and
McNickle 2001) for theoretical limitations of the result-
ing speedup.

The concept of MRIP has been implemented in a fully
automated way in Akaroa2; see (Ewing, Pawlikowski
and McNickle 1999). A user of Akaroa2 needs only
to specify a required (relative) statistical error, a confi-
dence level for each performance parameter whose mean
value is sought, and the number of processors of a lo-
cal computer network to be used as simulation engines,
see Figure 1. During the simulation, Akaroa2’s central
controlling process (akmaster) repeatedly estimates the
confidence interval of each mean value, at the specified
confidence level. When the required statistical preci-
sion of the all results has been reached, the simulation
is automatically stopped.

However, the distributed generation of output data in
MRIP simulations requires the use of special estima-
tors, constructed from linear combinations of ordinary
sequential estimators. In this paper we discuss the ba-
sic properties of an MRIP estimator of steady-state
mean values, defined as a linear combination of non-
distributed estimators of the method of Spectral Anal-
ysis proposed by Heidelberger and Welch (SA/HW) in
(Heidelberger and Welch 1981). The MRIP version of
SA/HW is here assessed on the basis of its practical
implementation in Akaroa2.
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Figure 1: Block diagram of a typical Akaroa2 process struc-
ture, showing the central controlling process (“akmaster”)
with two simulations in progress, each using three simula-
tion engines spread over different physical processors. The
“akrun” processes provides the user interface for launching
simulations, monitoring their progress and reporting the re-
sults.

Our focus on this method of simulation output data
analysis is motivated by the fact that SA/HW is the
only currently known method of sequential estimation
of steady-state mean values in which designers have
large freedom of deciding about the granularity of se-
quential data analysis. Having selected the appropriate
granularity one should be able to achieve a speedup lim-
ited only by the truncated Amdahl law formulated in
(Pawlikowski and McNickle 2001).

2 METHOD OF SPECTRAL ANALYSIS

The Spectral Analysis method of estimation of the vari-
ance of steady-state mean µX from an auto-correlated
sequence of observations x0, x1, ... was originally pro-
posed by Heidelberger and Welch (Heidelberger and
Welch 1981). The variance is obtained as the value
of the periodogram Π(f) (of the analysed sequence of
observations) at frequency f = 0. Because of high vari-
ability of a typical periodogram at low frequencies, in
SA/HW its value at f = 0 is obtained through a regres-
sion fit to the logarithm of the averaged periodogram,
where fitting is done using a polynomial of degree d
(typically d ≤ 2). The fitting is done using K fixed
points of the periodogram Π(f). As was proved in (Hei-
delberger and Welch 1981), if d = 2, then the confidence
interval of µX can be obtained using quantiles of the
Student t-distribution with the number of degrees of
freedom df = 7 (if K = 25) , or df = 16 (if K = 50).
By virtue of spectral analysis of output data, the pe-

riodogram can be calculated either over the sequence
of individual observations or over the sequence of their
batch means. In the latter, observations can be grouped
into batches of arbitrary size m, m ≥ 1, purely for the
purpose of data aggregation.

In Akaroa2, a sequential version of SA/HW described
in (Pawlikowski 1990) is used by each simulation engine
participating in MRIP simulation. If P simulation en-
gines are employed, then whenever simulation engine i,
i = 1, 2, ..., P , reaches a consecutive checkpoint of (its
replication of) the simulation, it calculates the local es-
timate X̄i(ni) of an analysed mean value µX and the
estimate of its variance V̂ [X̄i(ni)], using all ni observa-
tions that it has so far generated. In the current version
of Akaroa2, the latter estimates are obtained from the
regression fit of parabolas, i.e. assuming d = 2.

The central controlling process takes the most recent
local estimates produced by each of participating simu-
lation engines whenever a simulation engine reaches its
new checkpoint and combines them into a global esti-
mate X̄(P ) of mean µX and the estimate of variance
V̂ [X̄(P )] of this pooled estimator, by using the formu-
las:

X̄(P ) =
1
n

P∑

i=1

niX̄i(ni)

V̂ [X̄(P )] =
1
n2

P∑

i=1

n2
i V̂ [X̄i(ni)]

where ni, ni ≥ 0, is the number of observations from
engine i used by the central analyser at a given check-
point of its sequential analysis, and n =

∑P
i=1 ni is the

total number of observations available from all engines
at that checkpoint. Then, having used these estimates
for calculating statistical error of results at the given
checkpoint, it undertakes a decision about continuation
or stopping of the simulation.

Like the original SA/HW, SA/HW in its MRIP version
can be also applied to sequences of batch means, in-
stead of individual observations. Thus, by selecting an
appropriate batch size, one can greatly reduce storage
and processing costs at each simulation engine.

Note that the pooled estimates are calculated from a set
of independent sub-sequences of (correlated) observa-
tions generated by multiple simulation engines, each of
which runs a different, statistically independent repli-
cation of the same simulation. This results in linear
increase of degrees of freedom in Student t-statistics
used for obtaining the confidence interval of the pooled



mean. With P participating simulation engines, such a
statistic will have dfMRIP = 7P or 16P degrees of free-
dom, depending on the assumed K and d. Thus, one
could expect that the quality of the final results ob-
tained by applying SA/HW in its MRIP version should
be better than that of SA/HW in its original version
(with just one simulation engine): the more degrees of
freedom, the more stable are the confidence intervals
produced. To check this supposition, let us consider
the results of coverage analysis of the final results from
MRIP SA/HW.

3 PERFORMANCE EVALUATION

Coverage analysis is widely used for assessing the qual-
ity of different methods used for constructing confidence
intervals on the basis of simulation output data. By
performing a large number of experiments we estimate
the fraction of the generated confidence intervals which
actually contain the true value of the parameter. If the
method is accurate then when the theroretical confi-
dence level has been set for example to 95%, this frac-
tion should also be close to 95%.

We performed sequential analysis of coverage, using
the methodology presented in (Pawlikowski, Ewing and
McNickle 1998), to produce coverage of MRIP SA/HW
estimates with a relative precision of 0.01 at 95% con-
fidence level. It is worth noting that for each setting of
the parameters of the reference models, getting cover-
age results with the statistical accuracy required meant
that up to 14,000 separate experiments were needed.

Experiments were conducted for a number of reference
models. Here we give only the results for an M/M/1
queueing system model with traffic intensities ranging
from 0.1 to 0.9. When the degree of the fitting polyno-
mial was fixed, the quadratic fit (d = 2) produced the
best results when compared with d = 1 or d = 3.

Figure 2 shows the results obtained for d = 2 with K =
25 and 50, and a single simulation engine. It can be
seen that the coverage obtained agrees well with the
required coverage at low to medium traffic intensities,
falling off slightly at high intensities. There appears to
be little to choose between K = 25 and K = 50; the
latter perhaps giving a small improvement in coverage
at high traffic intensities.

Figure 3 compares the results obtained from a single
simulation engine to those from P = 2 or 4 simulation
engines. It can be clearly seen that, apart from re-
duction of simulation time, use of multiple simulation
engines leads to better quality of simulation results as
measured by the coverage of the final confidence inter-

vals.

4 CONCLUSIONS

The method of SA/HW, in its MRIP version imple-
mented in Akaroa2, has been found experimentally to
produce coverage values which agree very well with
those expected. Recent work by the authors sug-
gests that further improvements in coverage of MRIP
SA/HW can be obtained by dynamically selecting the
value of d (the degree of the polynomial for regression
fit) at run time. Another important issue is to find
an implementation of MRIP SA/HW that could offer
not only a good coverage of the final results but also
speedup close to the value theoretically achievable ac-
cording to the Truncated Amdahl Law. For that pur-
pose, one needs to look at the granularity of sequential
data analysis at individual simulation engines. At the
same time, locations of the first checkpoints should be
carefully selected, to insure that a quickly finished sim-
ulation still allows simulation engines to produce valid
local estimates.

In addition, the authors continue their investigations
of other methods of simulation output analysis for in-
creasing functionality of Akaroa2.
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(b) K = 50

Figure 2: Coverage obtained from M/M/1 queueing model running on a single simulation engine.
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Figure 3: Comparison of coverage obtained using K = 25 and varying numbers of simulation engines.
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