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ABSTRACT

In operations research numerous approaches and algorithms
exist to solve design and control problems for systems of
such different areas like inventories, logistics,
transportation, manufacturing etc. Nevertheless, the
complexity of real-world systems prevents the application
of almost all classical approaches. One method to overcome
these difficulties is simulation optimisation where a
simulator for the considered system is combined with an
appropriate optimisation tool.

In our presentation we suggest to combine simulation with
the genetic optimisation tool LEO. We briefly discuss the
application of that software tool to find optimal order
policies for multi-location inventory models and to design
an optimal Kanban controlled manufacturing system.
Finally, we report on some experiences and further
developments.

INTRODUCTION

One main topic in operations research is the optimal control
and / or design of stochastic systems. Such systems may
come from various application areas like inventories,
logistics, manufacturing etc. However, the complexity of
real-world systems prevents the application of almost all of
the classical solution approaches. One method to overcome
these difficulties is to combine a simulator for the system to
be considered with an appropriate optimisation tool
(simulation optimisation). The basic idea of such a
combination is very simple. The results of a simulation
experiment will be used to estimate performance measures
that relevant for the problem. Next, on the basis of such
estimations one has to answer two questions: To stop or to
continue searching for a good solution, and, if to continue,
how to find an improved solution. Whereas the first
question can be answered by defining various stopping
criteria, the second question is the crucial one.

The present paper is dealing with the solution of complex
optimisation problems, which are actually for multi-
location systems and for Kanban systems. Our approach
combines simulation with the non-standard genetic
optimisation tool LEO (Laboratory of Evolutionary
Optimisation), developed at Chemnitz University of
Technology. Such a combined implementation has at least
three advantages. First, the searching process for a good
solution can be realised without intermediate actions of the
designer. Second, by defining suitable interfaces in fact
arbitrary simulators and optimisers can be connected. Third,
parallel processing can be realised either for the simulation
or for the genetic algorithm as well as for both.

The paper is organised as follows. In the next section we
give a brief introduction into the simulation optimisation
approach. Then that approach is applied to solve the
optimal design problem for Kanban systems followed by
the application to the optimal control problem of Multi-
location inventory models. Finally, we report on some
experiences and further developments.

THE SIMULATION OPTIMISATION APPROACH

To find a sufficiently good solution for the above-
mentioned complex optimisation problems we will follow
the simulation optimisation approach as outlined in figure
1. An optimiser gets an optimisation problem as input. Now
the following cycle will implement the search process –
proposal of a solution, realisation of a simulation
experiment and accumulation of data that are relevant for
the problem, performance analysis on the basis of these
data, decision to accept the proposed solution or not. That
cycle will be repeated until a stopping criterion is fulfilled.

We remark that once started, the search process runs
automatically without interaction of the user. After stopping
the search process, the best solution of all up to now
considered ones will be returned. We remark that the output
of the whole process can be more extensive. Thus it is
possible to return the second best solution and further
information on the optimisation process.



To apply simulation optimisation in the described form in
general, we need only two things – a simulator and an
optimisation tool. For the latter, we prefer genetic
algorithms (GA), since they possess several advantages –
independence of the application domain, suitability for very
general optimisation problems, robustness with respect to
starting points. Furthermore, they excellently deal with the
random output of simulation experiments, they leave local
optima and find the global one, and finally they need only a
small amount of input information. For problems of the
here-considered type we used the possibilities of LEO –
Laboratory of Evolutionary Optimisation. See e.g.
(Nieländer 1999) for more information.

OPTIMAL DESIGN OF KANBAN SYSTEMS

To implement the Just-In-Time (JIT) idea in production,
logistics or supply chain systems efficient control
mechanisms such as Kanban are necessary. To explain that
Kanban control mechanism we use a single-item, multi-
stage, serial production system as shown in figure 2.

Since items will be produced and moved through the
system in lots with corresponding lot sizes, containers with
given capacity are used. Stage n, which is represented in
figure 2 in more detail, owns a finite number of Kanbans
(cards). The Kanbans are collected in the Kanban box KB.
If there is at least one Kanban in that box, and if there is at
least one full container in the output hopper OH of stage n–
1, then one of those containers is moved to stage n. Here
that container is tied with one Kanban from the Kanban box
of stage n. Now the pair (container, Kanban of stage n)
moves to buffer B. In case the server S is busy the pair has

to wait, otherwise processing starts immediately. After
processing, the pair goes to the output hopper OH where it
is waiting for withdrawal by the succeeding stage n+1.
Withdrawal takes place as soon as in the Kanban box of the
succeeding stage n+1 there is a Kanban. Then the pair
(container, Kanban of stage n) is separated, the Kanban of
stage n is returned to its box, and the container is moved to
stage n+1. To understand that control principle of Kanban
systems, it is not necessary to explain the kind of Kanbans
used. Throughout this section we consider one-card systems
only, and we remark that in modern information systems a
Kanban may be represented by a corresponding signal.

In the context of the present paper we are interested in
solutions to the optimal design problem of the Kanban
system in order to maximise the steady-state expected gain
(per time unit). For that reason, we assume gain and cost
factors denoting the selling reward of one item final
product, the holding cost of one unit Work-In-Process
(WIP) in stage n per time unit for every single item for the
period from entering stage n to entering the succeeding
stage, transportation cost for the transport of one container
from stage m to stage n, shortage cost, waiting cost per time
unit and per backlogged demand unit, and rejection cost per
rejected demand unit. The decision variables in our model
represent the number and the volume of the Kanbans /
containers in the stages of the system. We remark that
choosing the gain and cost factors in an appropriate way,
the optimal design problem can be reduced to a problem
where one of the classical, important steady-state
performance measures such as throughput, average WIP,
average flow time of items, or average queue length of
waiting customers has to be optimised. Now the Kanban
allocation problem can be verbally formulated as ‘the
problem to allocate a given total number of Kanbans among

the stages of a multi-stage system such that a given
criterion will be optimised’. To apply the scheme of figure
1 to the optimal design problem of Kanban systems we had
to implement a simulator KaSimIR (see Köchel et al. 2002
for more information) for such systems, and currently a
new version of KaSimIR is being developed (see next
section for some remarks).

Let us now report on results for two examples that are
based on the following manufacturing system (see figure 3).
It was chosen to demonstrate that our approach yields

Figure 1: Scheme of simulation optimisation
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appropriate solutions for sufficiently complex systems, and
the examples shall underline our point of view that for an
optimal system design various cost factors should be taken
into account. For that reason we define a solution for the
Kanban allocation problem, where the throughput is
maximised under the assumption of constant volumes equal
to one. This solution is compared to the solution for the
optimal design total cost minimising problem.

The exemplary manufacturing system has four external
suppliers 1 to 4 of raw material and six manufacturing
stages #1 to #6, the latter one being the warehouse. The
transport of raw material from outside suppliers to the
factory is rather expensive and time consuming, whereas
transportation within the factory is cheaper and faster. Note
that all transportation times are constant throughout the
examples, and we use minutes as time unit. Demand orders
of one unit each arrive according to a Poisson process with
a rate of 0.01 per minute and max 10 demand orders can be
backlogged in the waiting queue with waiting costs of 1
monetary unit per minute and backlogged demand order.
Rejection costs of 20 monetary units result from each
demand order that meets a full waiting queue, since that
order is rejected and lost. We assume no selling reward, i.e.
we are interested in the minimising the steady-state total
costs of the system. All shortage costs are 0, and the
following table contains further cost and time data for all
the stages to finally specify the exemplary system. We
remark that N stands for a normal distribution, whereas U
indicates a uniform distribution.

Firstly, we examine the Kanban allocation problem, where
all costs are set to be zero and the volumes of the
Kanbans / containers in the stages of the system are
v1 = … = vN = 1. A total of 33 Kanbans are to be allocated,
and the goal is to maximise the system’s throughput. The
simulation experiments consisted of three runs that each
had a transition phase of 2.85 years followed by

190.25 years simulated real time with about 1 000 000
demand unit orders. Our simulation optimisation solution is
k(1) = (6, 6, 11, 3, 1, 1, 1, 1, 1, 1, 1) as the number of
Kanbans / containers in the stages of the system (from the
left to the right in the data table 1), and it was found as
840th evaluated decision with an estimated throughput of
14.376 units per day. Simulating this solution (k(2),
(1, …, 1)) with the costs according to table 1, an estimated
total of 221 019.273 monetary units arise per day as sum of
1 441.466 waiting costs, 0.601 rejection costs, 160 726.239
transportation costs, and 58 850.967 holding costs
respectively.

Secondly, we are interested in the solution for the optimal
design total cost minimising problem for this example with
the additional constraints kn ≤ 11 and vn ≤ 11 ∀ n = 1 (1) N
respectively. The simulation experiments again consisted of
three runs that each had a transition phase of more than
25 years followed by 190.25 years simulated real time with
about 1 000 000 demand unit orders. Our simulation
optimisation solution is k(2) = (1, 1, 1, 1, 1, 1, 5, 2, 5, 1, 4)
and v(2) = (2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1) as the number and
the volume of the Kanbans / containers in the stages of the
system (from the left to the right in the data table 1), and it
was found as 7 127th evaluated decision with estimated total
costs of 42 032.348 monetary units per day as sum of
14 233.839 waiting costs, 256.079 rejection costs,
13 855.987 transportation costs, and 13 686.443 holding
costs respectively.

Comparing this solution (k(2), v(2)) with the one
(k(1), (1, …, 1)) above we remark that the estimated total
costs decreased by more than 80 %, whereas the estimated
system’s throughput decreased by nearly 90 %. Of course
this result seems to be contra productive – the total cost
minimising solution results in only 10 % of the throughput
of the throughput maximising solution. But this is the
consequence of the chosen cost parameters in table 1,
where the cost for transportation from the suppliers are very
high and in fact dominate the total cost. Thus, one should
consider both, the total costs and the system’s throughput
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Figure 3: Layout of the exemplary manufacturing system

Table 1: Further cost and time data for the st

Manufacturing stage n #1 #2

 Service time per item in stage n N
(5;2)

N
(5;1)

 Holding cost in stage n 2 2
 Supplier m 1 2 3
 Holding cost for supplier m 1 1 1
 Transportation cost from m to n 1 000 1 000 2 000
 Transportation time from m to n 240 240 300
ages of the exemplary manufacturing system

#3 #4 #5 #6
U

[2;6]
N

(10;4)
U

[6;12]
N

(4;1)
3 4 5 7

4 #1 #2 #3 #2 #3 #4 #5
1

500 20 20 20 20 20 20 20
120 5 10 2 15 10 5 5
when designing a real system.

We remark that in (Köchel and Nieländer 2002b), further
examples can be found that have a more general structure,
i.e. the number of used parts per manufactured item is not
just equal to one. Thus, one item of the final product no
longer consists of two units of raw material from the



suppliers 1, 2, and 4 respectively, and three units of raw
material from supplier 3.

OPTIMAL CONTROL OF MULTI-LOCATION
INVENTORY MODELS

One of the main topics in mathematical inventory theory is
the definition of optimal order and transhipment policies in
multi-location inventory models (MLIM). Up to now, the
multitude of the investigated MLIM’s can be divided into
models with vertical, horizontal, and mixed structure.
Broadest investigated are models with a vertical structure,
the multi-echelon models. For a review on these models see
Chapters 3 and 4 in (Graves et al. 1993).

Although the first paper on MLIM with horizontal structure
is about 50 years old, up to now the analytical results on
such systems are less voluminous. The main reason for that
is due to the complexity of the problem caused by the
consideration of later possible transhipments at the ordering
moments in the locations. Thus for a long time only single-
period models were considered. (Köchel 1982) was the first
who derived results on the dynamic model. A survey on
MLIM with horizontal structure can be found in (Köchel
1998). Since we cannot expect to get analytical solutions
for real-world MLIM’s we started at Chemnitz University
of Technology to apply the simulation optimisation
approach to a horizontal structured MLIM with lateral
transhipments (Arnold and Köchel 1996). Last of all,
results are known on MLIM’s with mixed structure, where
the flow of goods through a given number of locations is
realised according to a defined predecessor–successor
relation and where lateral transhipments are allowed
between locations. To investigate those models the simple
search method in (Arnold and Köchel 1996) is replaced by
a GA in (Köchel and Nieländer 2002a).

To give an impression of how to realise simulation
optimisation for an MLIM we describe the essential things.
For this we assume an exemplary echelon system composed
of N serial stages. The whole system has to satisfy a
random demand for a single product. Stage N is the
producer, and stage 1 the retailer who meets the demand.
The intermediate stages represent various storages. Orders
can be made to the previous stage only. The optimisation
goal is to define such order policies that minimise the
expected average cost of the whole system. Costs arise,
among others, from an order of product as well as from
transportation, holding inventory, rejection of demand, and
shortage of product. To apply a GA we parameterise the set
of admissible policies. This can be done by considering for
instance so-called (s, Q) order policies (we order the
quantity Q if and only if the inventory position at a location
dropped below s). In that case the decision vector for the N-
stage echelon problem consists of 2·N variables si and Qi
for i from 1 to N. The cyclic search process according to the
scheme of figure 1 works as follows. To define a solution
for each of the N stages of the echelon model we choose a
real number s and a positive real number Q. These
parameter values are given to the simulator who realises a

simulation experiment with corresponding output data.
These data are used to compute sample averages for the
expected average cost and other performance measures
needed. The resulting values are given back to the GA
which – on the base of that information – either stops the
search process or defines new solutions.

The use of simulation optimisation to a MLIM has some
important advantages. First of all, the application variety
depends only on the available MLIM-simulator. At present
we are implementing a simulator, which allows to simulate
very general MLIM’s including the multi-item case,
arbitrary structures, different inventory policies, arbitrary
delivery and demand processes, random lead and
transportation times and others. A second advantage is that
we can optimise with respect to various goals (expected
cost, average cost, service levels) without and with
restrictions. Finally, we remark that from the simulation
data we can compute estimations for the separate parts of
the goal function, and thus we are able to investigate the
influence of several decision variables on different cost
parts.

More details and first numerical results can be found in
(Köchel and Nieländer 2002a). Future work will
concentrate on a more empirical research to answer such
essential questions like “Which first and second order
properties hold for a given performance measure?” or
“Under which conditions a given set of policies dominates
another one?“

Finally, we want to point to an important similarity between
Kanban systems and MLIM’s. By defining numbers,
volumes, and trigger points of Kanbans in a suitable way
we can realise various order policies for a MLIM. That
circumstance will be used in the new version of KaSimIR,
which allows to model as well Kanban systems as MLIM’s.

CONCLUSION

In the past we applied the simulation optimisation approach
to complex control and design problems. Here we briefly
reported on applications to inventory problems as well as to
manufacturing systems. An other problem, which is
important for practice, is investigated in (Köchel et al.
2002). In all cases we found solutions whose performance
was better than the performance of before known solutions.
Moreover, since our approach is based on a simulator for
the system to be investigated we could solve problems in a
very general formulation. From our collected experiences
with the simulation optimisation approach we can deduce
some generally valid consequences.

Consequences with respect to the approach:

1. If the interface between the optimiser and the simulator
is defined in an appropriate way then as well the same
optimiser can handle problems from various application
areas as different optimisers can solve a given problem.



2. Clearly, the simulator consumes most of the computing
time. Thus a parallel simulator seems to be
advantageous. However the considered problems resp.
systems are dealing with a set of very interdependent
elements. Thus a parallel simulator does not make
sense. We expect more from the parallelisation of as
well the simulation experiment as the Genetic
Algorithm.

3. Analytically proved properties of the optimal policies
do not decrease the solution time considerably but they
improve the solution quality.

Consequences with respect to the application areas:

1. For all problems where we have to control some
common resources there exist a lot of solutions, which
criterion value is in a neighbourhood of the optimal
value.

2. Existing analytical or approximation algorithms can
lead to very bad solutions in situations, where
corresponding assumptions are not fulfilled.

3. The approach allows to handle more realistic systems or
problems.

4. The approach allows a holistic investigation of systems.
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