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ABSTRACT

The paper is devoted to studying general features of
nonlinear regulation problems. It is shown, that in the
case when the optimal control is determined from the so-
lution of a receding horizon optimal control problem, it
may be interpreted as a dynamic network routing prob-
lem. There is also one-to-one correspondence between
the Bellman optimal cost-to-go function in the shortest
path problem and the Lyapunov function in the regula-
tion problem. Hence, to calculate the optimal feedback
control one may apply well known and very efficient net-
work optimization algorithms. At the end some results
of the application of the routing optimization algorithm
to an inverted pendulum regulation problem are pre-
sented. They show, that the obtained control rules are
very accurate and even have some advantages over those
calculated in the classical way.

GENERAL OPTIMAL CONTROL PROBLEM
FORMULATION

We consider a deterministic, stationary discrete-time
dynamic system described by the state equation:

xk+1 = f(xk, uk), k = 0, 1, 2, ..., τ (1)

where xk, uk, such that

xk ∈ S (2)

uk ∈ U (3)

are, respectively, the state and control vectors, and

f : S × U → S (4)

By S, C we denoted the subsets of some vector spaces
of dimensions, respectively, n and m.
For this system we would like to find a closed-loop

control strategy

π = {µ0, µ1, . . . , µτ} (5)

where µk(.), k = 0, 1, . . . , τ , is the k − th stage control
rule, admissible in the sense of state and control con-
straints, that is

uk = µk(xk) ∈ U, ∀xk ∈ S, (6)

that minimizes the cost functional:

J(x0) =

τ
∑

k=0

g (xk, uk) (7)

with respect to both the policy π and the terminal time
τ (i.e., the control horizon is free).
Let us select from the state space S a point x̄. We

will assume, that for all x 6= x̄ and any u ∈ U

g(x, u) > 0 (8)

and there exists ū ∈ U such that:

f(x̄, ū) = x̄ (9)

with
g(x̄, ū) = 0 (10)

For instance g may be a quadratic function:

g(x, u) = (x− x̄)′Q(x− x̄)+

+(u− ū)′R(u− ū) (11)

where the matrix Q is positive semidefinite and the
matrix R is positive definite.
Summing up, we consider an optimal control prob-

lem with a fixed terminal state, but free terminal time
defined by

min
π

{

J(x0) =

τ
∑

k=0

g (xk, uk)

}

(12)

xk+1 = f (xk , uk) (13)

uk = µk(xk) ∈ U (14)

x0 = x (15)

xτ = x̄ (16)

where ∀k xk ∈ S.
We assume, that the system (13)-(15) is control-

lable to the point x̄ from every point of the state space.



ANALYSIS

We will apply an analysis method inspired by Luen-
berger (1979).

First, let us notice, that in our problem all functions
are time-invariant (stationary). This means, that the
solution will not depend on time, either. More precisely,
the optimal trajectory from a given state x to the
endpoint x̄ is independent of the time k0 at which
xk0 = x. That is, if x0 = x leads to the optimal
trajectory {x̃k} for k > 0 with final time τ(x), then the
condition xk0 = x must lead to the trajectory {x̃k+k0}
with final time τ(x) + k0. Delaying the initial time
simply delays the whole solution and the terminal time
(i.e., the time of reaching the state x̄) is simply an
unknown function of the initial state only.

The optimal control rule is also a stationary func-
tion, that is for every k

uk = µ
∗ (xk) (17)

It must be so, because the initial control, as we have
just stated, depends only on the initial state, not on the
initial time, and we can repeat this reasoning at each
time instant. Because of the assumptions (8)-(10) there
will be:

µ∗ (x̄) = ū (18)

If µ∗(.) is the optimal control rule, then we will obtain
the following closed-loop system equation:

xk+1 = f (xk, µ
∗ (xk)) (19)

Let us notice, that due to (18) and (9) the point x̄ is an
equilibrium point of the system (19) and according to
the construction of the rule µ∗(.) the system eventually
reaches x̄. Hence, the system is stable.

Now, let us analyze formally the stability of the
system and consider the optimal value function (that
is the Bellman function, sometimes called ”the optimal
cost-to-go”) Vk(x) for this problem, expressed as:

Vk (xk) =

k+τ(xk)
∑

l=k

g (xl, µ
∗ (xl))) (20)

where the function g(., .) is defined by (10). This is
the optimal (minimal) cost of the passage to x̄ at time
k + τ(xk) when starting from a point xk at k. This
function satisfies the following conditions:

(i) Vk(x̄) = 0

(ii) Vk(x) > 0 for x 6= x̄

(iii) Vk+1(xk+1) − Vk(xk) = −g (xk, µ
∗(xk)) < 0 for

xk 6= x̄

Thus V - the Bellman function is a Lyapunov function
and we proved the stability of the system.

DISCRETE-STATE VERSION

In this section we will assume, that the sets S and U are
finite and have, respectively, T +1 and V + 1 elements.
For the sake of simplicity we denote them by subsequent
integers, that is:

S = {0, 1, 2, 3, . . . , T} (21)

U = {0, 1, 2, 3, . . . , V } (22)

Consequently we will have:

xk ∈ S ⊂ Z
n (23)

uk ∈ U ⊂ Z
m (24)

In these circumstances, for any state xk = i ∈ S, a
control uk = u ∈ U can be associated with a transition
from the state xk = i to the state f(i, u) = j ∈ S. This
passage is characterized by a cost:

cij = min
u∈U

f(i,u)=j

g(i, u) (25)

We assumed, that in the case when there are several
controls u ∈ U , such that:

f(i, u) = j (26)

we choose as the passage cost (25) the minimal cost
among all costs corresponding to this passage.
Let us define now as a destination state the state

T ∈ S. We will assume that the system may remain in
this state, that is

∃uT ∈ U f(T, uT ) = T (27)

and that the cost of being in this state equals zero that
is:

g(T, uT ) = 0 (28)

In these conditions the state T is absorbing, that is if
the system (1) passes to it, it remains in it for ever.
With this notation, we can interpret our determin-

istic optimal synthesis problem as a shortest path prob-
lem from an initial state 0 to the terminal state T (Fig.
1).
Let us denote now by N(i) the set of all direct

neighbours of the node i. The optimizing dynamic
programming algorithm for this problem will have the
form:

J(i) = min
j∈N(i)

{cij + J(j)} (29)

with the terminal condition:

J(T ) = 0 (30)

The above shortest path problem may be solved with the
help of the Bellman-Ford algorithm (e.g., used in the In-
ternet routing protocols RIP, IGP or Hello (Comer 2000,
Karbowski and Niewiadomska-Szynkiewicz 2001)).
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Figure 1: Graph describing deterministic discrete opti-
mal control problem with terminal state

INTEGRATION

Taking into account conclusions drawn from the previ-
ous sections, we can write the following:

1. The optimal control policy in the receding horizon
control problem for stationary systems with a
Lagrange-type performance index is stationary

2. When the terminal time is free, the optimal closed-
loop control problem consists in finding the minimal
cost trajectory from any point of the state space to
a given point x̄.

3. The deterministic closed-loop discrete optimal con-
trol problem with a fixed terminal state but free
terminal time (i.e. horizon) can be represented as
a shortest path problem

Thus, having discretized the problem (12)- (16),
connecting all resulting nodes according to the state
equation (13) and solving the shortest path problem
from all nodes to the node representing the point x̄,
we can transform the receding horizon optimal control
problem into the routing problem.

APPLICATION OF THE ROUTING
ALGORITHM TO THE STABILIZATION OF
AN INVERTED PENDULUM

To confirm experimentally the equivalence between
routing algorithms and the feedback regulation the
presented approach was tested on an example taken
from (Kreisselmeier, G. and T. Birkhölzer 1994).
A control law synthesis problem for a simple in-

verted pendulum was considered. The state variables of
this system are the angle ξ and the angular velocity ξ̇.
The input u is a torque in the shaft, which is bounded to
such an amount, that the pendulum cannot directly be
turned from the hanging into the upright position. In-
stead, it is first necessary to ”gain enough momentum”,
which requires a complex trajectory planning, even for

this simple system. This nonlinearity poses the main
difficulty for the feedback design in this example.
The system is described by the state equation:

ẋ1(t) = x2(t) (31)

ẋ2(t) = sinx1(t) + h(u(t)) (32)

where x1 = ξ, x2 = ξ̇ and h(.) is the linear function with
saturation, when the module of its argument exceeds
0.7, that is

h(u) =







−0.7 u ≤ −0.7
u −0.7 < u < 0.7
0.7 u ≥ 0.7

(33)

An interesting feature of the above system is that a con-
tinuous state feedback, which asymptotically stabilizes
the system for all initial conditions, does not exist! The
reason is, that for any continuous feedback there is a
different than origin equilibrium point. More precisely,
this point has a nonzero first coordinate. It must be so,
because the function

f(x1) = sinx1 + h(µ(x1, 0)) (34)

has the positive sign for x1 = π − arc sin 0.8 and the
negative sign for x1 = π+arc sin 0.8, which means (from
the Darboux theorem) that this function has a root in
the interval [π − arc sin 0.8, π + arc sin 0.8]. In other
words, the dynamic system (31)-(32) has an equilibrium
point with a zero second and a nonzero first coordinate.
The system (31)-(32) was discretized under the

following conditions:

• the conversion to the discrete-time representation
was obtained via the Euler scheme for a sampling
interval Ts = 0.5

• as the state coordinate x1 space, the interval [−4, 4]
was taken; it was discretized into 221 levels

• as the the state coordinate x2 space, the interval
[−1.6, 1.6] was taken; it was discretized into 121
levels

• the control space (the interval [−0.7, 0.7]) was
divided into 20 equal subintervals

• the cost function g (x(t), u(t)) was assumed to be
quadratic, that is

g(x, u) = x′Qx+ u′Ru (35)

with

Q =

[

5 0
0 2

]

(36)

and R = 2.

Several experiments for different initial points were
performed. The resulting trajectories of the state
and control variables for two simulations starting from
hanging freely and horizontal position of the pendulum
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Figure 2: Trajectories x1(−−), x2(..), u(−) for initial
condition [π, 0] and RB controller.
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Figure 3: Trajectories x1(−−), x2(..), u(−) for initial
condition [π2 , 0] and RB controller.

and are presented in Figures 2,3. The abbreviation RB
means Routing Based (controller).

For comparison, next figures (Figs. 4,5) present the
same trajectories, obtained with the help of LQ method-
ology, without saturation of the function h(.) (that is,
it was replaced by identity). In those experiments, the
system (31)-(32) was linearized in the origin, then the
optimal static feedback matrix K (that is u = K ·x) was
calculated, with the help of the Matlab Control Toolbox
(procedure ’lqr’).

It is seen, that although in both cases the LQ
controller was able to stabilize the pendulum, the
control u was very big, out of the admissible interval
[−0.7, 0.7] of the previous (RB) case.

After the series of experiments it turned out, that
in the case when the control constraints are taken into
account while implementing the LQ control law, even for
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Figure 4: Trajectories x1(−−), x2(..), u(−) for initial
condition [π, 0] and LQ controller.
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Figure 5: Trajectories x1(−−), x2(..), u(−) for initial
condition [π2 , 0] and LQ controller.

much greater values of the coefficient R, it is impossible
to conduct the pendulum from the free ([π, 0]) to the
upright position (Fig. 6). Let us recall, that it was
not a problem for RB controller (Fig. 2). However,
after giving the pendulum some momentum, the LQ
controller with saturation succeeded in regulating the
pendulum to this position (Fig. 7).

CONCLUSIONS

The paper presented connections between a nonlinear
stabilization problem and a network routing problem.
The may idea lies in the formulation of the original
regulation problem as a set of discrete-time receding
horizon control problems, solved for all initial states.
The optimal control rule may then be calculated (after
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Figure 6: Trajectories x1(−−), x2(..), u(−) for moving
pendulum and LQ controller with saturation for initial
condition [π, 0].
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Figure 7: Trajectories x1(−−), x2(..), u(−) for moving
pendulum and LQ controller with saturation for initial
condition [π, 0.5].

state discretization) by the application of the Bellman-
Ford algorithm, which is an elementary method for
calculation of the shortest paths in networks.

An inverted pendulum case study results showed,
that the regulator obtained in this simple way has some
advantages over classical LQ approach: it requires much
smaller controls to move the state of the system to the
equilibrium point neighbourhood, and it can successfully
control the system even for initial conditions lying very
far from the equilibrium point (that is, it is global).
The drawbacks of this regulator are small oscillations
around the terminal point, caused by discretization,
and the longer time of regulation. Because of that,
the best solution in the case of continuous nonlinear
systems would be probably a hybrid regulator: discrete

- routing based for points lying far from the terminal
point and continuous - LQ methodology based, in its
neighbourhood.
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