
Graphically Oriented System for Textile Processes Models Building.

Jiří Militký,
Dept. of Textile Materials, Textile Faculty

Technical University of Liberec
46117 Liberec, Czech Republic

E-mail: jiri.militky@vslib.cz

KEY WORDS
Linear regression, Models building, Prediction, Partial
regression graphs

ABSTRACT

 Multiple linear and nonlinear models building in textile
branch belongs to the most complex problems solved in
practice. Interactive approach to model building can be
divided into the following steps (Meloun, Militky and
Forina 1998):

i) Selection of provisional models,

ii) Analysis of assumptions about model, data and
used regression methods (regression diagnostic),

iii) Extension and modification of model, data and
regression method,

 iv)  Testing of model validity, their prediction
capability, etc.

 Some interactive strategy of multiple regression model
building based on the above steps is described in book
(Meloun, Militky and Forina 1998). Many problems in
realization of step i) are caused by strong multicollinearity.
Multicollinearity in multiple linear regression analyses is
defined as approximate linear dependencies among the
explanatory variables (columns of design matrix X). It is
well known that under strong multicollinearity the
individual scatter plots between response y and explanatory
variables xj cannot be used for model building. Models of
textile processes are usually created by the classical
methods of experimental design. This approach enabling
the optimization of experimental conditions is formally
very general but in practice often leads to the incorrect
models containing often too parameters. In this
contribution, the graphically oriented method of textile type
models building will be presented. This method is based on
the special projection enabling the investigation of partial
dependence of response on the selected exploratory
variable. The aim of graphical analysis is to evaluate the
type of nonlinearities due to function of predictors
describing well the experimental data. For selection of
suitable model the characteristics based on the cross
validation principle will be proposed. The program
MULTIREG in MATLAB is mentioned. This methodology

is demonstrated on the example of PET/cotton type yarns
tenacity prediction.

INTRODUCTION

A regression type model building is a relatively specific
discipline capable to solve a lot of practical problems in
textile research. Classical tasks solved by the regression
model building are:

• Description of dependence between fibers
properties and properties of fibrous structures.

• Quantification of influence of process parameters
on the structural parameters and properties of fabrics

• Prediction of directly non-measurable properties
of textiles form some directly measurable ones (eg. hand or
comfort prediction) called multiple calibration

• Optimization of technological processes based on
the models of Taylor expansion type (experimental design
approach)

In all above-mentioned cases the interdependencies are very
complex. And therefore data based models with good
predictive capability are useful. Data based multiple linear
and nonlinear model building belongs generally to the most
complex problems solved in practice. In many cases is not
possible to construct the mathematical form of model based
on the information about system under investigation. In
these cases the interactive approach to regression type
models building could be attractive. In the proposed
strategy of regression models building, the graphically
oriented methods for estimation of model correctness and
identification of spurious data are selected. These methods
are based on the special projections enabling the
investigation of partial dependencies of response on the
selected exploratory variable. Classical ones are partial
regression graphs or partial residual graphs. Nonlinear or
special patterns in these graphs can be used for extension of
regression model and including nonlinear terms or
interactions. For identification of spurious data the so-
called LR graphs can be used as well. For evaluation of
model quality the characteristics derived from predictive
capability are used. Some statistical tools for realization of
above-mentioned techniques are described in the book [1].



For realization of regression models building in practice is
necessary to have software for simple and interactive data
analysis by linear and nonlinear regression with extensions
for above mentioned graphically oriented strategy of model
building and evaluation of their quality. Example of this
software type is ADSTAT, which was built on the ground
of the author long time experience with regression
modeling and teaching of this topic at technical university.
Using of the same strategy the program MULTIREG in
Matlab was created. The application of this program for
graphically oriented strategy of model building is
demonstrated on the example of prediction of PET/cotton
type yarns tenacity from selected process and raw materials
characteristics.

SUMMARY OF LINEAR REGRESSION

A linear regression model is a model which is formed by a
linear combination of explanatory variables x or their
functions, yi = β0 + β1 x1,i + β2 x2,i + ... + βm xm,i + εi, i = 1,
..., n, written in matrix notation y = X β + ε. Vector y has
dimensions (n H 1) and matrix X (n H m). Linear means
linear according to model parameters. Therefore for linear
models the following conditions are valid
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If for any parameter, βj, the partial derivative is not a
constant, we say that the regression model is nonlinear.
For additive model of measurements errors the linear
regression model has the form

εβ += Xy (1)
In eqn. (1) the n x m matrix X contains the values of m

explanatory (predictor) variables at each of n observations,
ββββ is the m x 1 vector of regression parameters and εi is n x 1
vector of experimental errors. The y is n x 1 vector of
observed values of the dependent variable (response).
Columns xj i. e. individual explanatory variables define
geometrically the m-dimensional co-ordinate system or the
hyperplane L in n-dimensional Euclidean space En. The
vector y usually does not have to lie in this hyperplane L.
The least squares are the most frequently used method in
regression analysis. For a linear regression, the parameter
estimates b may be found by minimization of measure
between the vector y and the hyperplane L. This is
equivalent to finding the minimal length of the residual
vector y - y = e P , where b X = y p  is the predictor
vector. This is equivalent to requirement of minimal length
of residual vector

Pyye −=
In Euclidean space is the length of residual vector
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Geometry of linear least squares is shown on fig. 1.
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Figure 1: Geometry of linear least squares

The classical least squares method is based on the following
assumptions:

1. regression parameters ββββ are not restricted,

2. regression model is linear in parameters and additive
model of measurements is valid(see eqn (1)),

3. design matrix X has a rank equal to n,

4. errors εi are i.i.d. random variables with zero mean
E(εi)=0 and diagonal covariance matrix D(εεεε)=σ2 E, where
σ2 <∞

 For testing purposes it is assumed that errors εi have
normal distribution N(0, σ2 ). When these four assumptions
are valid the parameter estimates b found by minimization
of least squares criterion
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 are called as best linear unbiased estimators (BLUE). The
conventional least squares estimator b has the form

yXX)(Xb T1T −= (3)
where symbol A-1 denotes inversion of matrix A. The term
best estimates b means that any linear combination of these
estimates has the smallest variance of all linear unbiased
estimates. That is, the variance of the individual estimates
D(bj) are the smallest from all possible linear unbiased
estimates (Gauss-Markov theorem). The term linear
estimates means that they can be written as a linear
combination of measurements y with weights Qij which
depend only on the location of variables xj, j = 1, ..., m, and
Q = (XT X)-1 XT for the weight matrix, we can then say

yQ = b iij

n

1=i
j  � . Each estimate bj is the weighted sum of

all measurements. Also, the estimates b have an asymptotic
multivariate normal distribution with covariance matrix
D(b) =σ2 (XTX)-1.  The term unbiased estimates means that
E(β - b) = 0 and the mean value of an estimate vector E(b)
is equal to a vector of regression parameters β. It should be
noted that there exist biased estimates, the variance of
which can be smaller than the variance of estimates D(bj).



The perpendicular projection of y into hyperplane L can be
made using projection matrix H and may be expressed as

y X  b X(X X) X yP
T 1 T= = − (4)

 where H is projection matrix. Residual vector e = y - yP  is
orthogonal to subspace L and has the minimal length.
Variance matrix corresponding to prediction vector yP has
the form D(yP) = σ2 H and variance matrix for residuals is
D(e) =σ2 (E - H). Residual sum of squares has the form

yPyyHEyeebRSC TTT =−=== )()(S , and its
mean value is ) - m(n )E( 2σ=RSC . Unbiased
estimator of measurements variance 2σ  is equal
to
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Statistical analysis related to least squares is based on
normality of estimates b. Quality of regression is often (not
quite correctly) described by the multiple correlation
coefficient R defined by relation
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For model building the multiple correlation coefficient is
not suitable. It is non-decreasing function of number of
predictors and therefore the over-parameterized model
results. Prediction ability of regression model can be
characterized by quadratic error of prediction (MEP)
defined for linear models by relation
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Here b(i) is the estimate of regression model parameters
when all points except the i-th are used. The statistics MEP
for linear models uses the prediction yPi = xi

T b(i) which was
constructed without the information about the i-th point.
The estimate b(i) can be computed from least squares
estimate b

b(i) = b - [(XTX)-1 xi ei] / [1 - Hii ] (7)
Here Hii is a diagonal element of projection matrix H.
Optimal model has minimal value of MEP. The MEP can
be used for definition of the predicted multiple correlation
coefficient PR (Meloun, Militky and Forina 1998). The PR
is attractive especially for empirical model building.
Analysis of various types of the regression residuals, or
some transformation of the residuals, is very useful for
detecting inadequacies in the model or problems in data.
The true errors in the regression model are assumed to be
normally and independently distributed random variables
with zero mean and common (i. e. constant) variance ε .
N(0, Iσ2).
(a) Classical residuals ei  are defined by the expression

b x - y = e iii  , where xi is the ith row of matrix X.
Classical analysis is based on the wrong assumption that
residuals are good estimates of errors εi. Reality is more
complex, the residuals e  are a projection of vector y into a
subspace of dimension (n - m),

εεεβ  ) H - E ( =  P = ) +  X( P = y P = e
and therefore, for the ith residual it is valid
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Each residual eiˆ  is a linear combination of all errors εi. The
distribution of residuals depends on
(a) the error distribution,
(b) the elements of the projection matrix H,
(c) the sample size n.
Because the residual ei  represents a sum of random
quantities with bounded variance, the supernormality effect
appears for small sample size: Even when the errors ε do
not have a normal distribution, the distribution of residuals
is close to normal. In small samples, the elements of the
projection matrix H are larger and the main role of an
actual point is to influence the sum of terms Hii εi. The
distribution of this sum is closer to a normal one than the
distribution of errors ε. For large sample size, where 1/n is
approaching to 0, we find that ie → εi and analysis of the
residual distribution gives direct information about the
distribution of errors. Classical residuals are always
associated with non-constant variance; they sum to be more
normal and may not indicate strongly deviant points. The
common practice is to use residuals for investigation of
model quality and for identification of nonlinearities As it
has been shown above for small and moderate sample sizes
the classical residuals are not good for diagnostic or
identification of models quality.
(b) Normalized residuals /s e = e ii N,  are often
recommended in practice. It is falsely assumed that these
residuals are normally distributed quantities with zero mean
and variance equal to one. In reality these residuals have
non-constant variance. When normalized residuals are used,
the rule of 3σ is classically recommended: “quantities with
e i N,  of magnitude greater than 3σ are classified as the
outliers”. This approach is quite misleading and may cause
wrong decision about data.

(c) Standardized residuals )H - 1 s/( e = e iiii S,  exhibit
constant unit variance and their statistical properties are the
same as those of classical residuals. Here Hii is the ith
diagonal element of H matrix. The standardized residuals
behave much like a Student random variable except for the
fact that the numerator and denominator of e i S,  are not
independent.

(d) Jackknife residuals 
e - m - n
1 - m - n e = e 2

i S,
i S,i J, , are

residuals which with an assumption of normality of errors,
have the Student distribution with (n - m - 1) degrees of
freedom. The principle is standardization each residual with
an estimate of its standard deviation that is independent of
the residual. This is accomplished by using, as the estimate
of σ2 for the ith residual, the residual mean square from an
analysis where that observation has been omitted. This
variance is labeled s2

(i), where the subscript in parentheses
indicates that the ith observation has been omitted for the
estimate of σ2. The result is jackknife residual or also called
the fully Studentized residual. It is distributed as Student t
with (n - m - 1) degrees of freedom when normality of



errors ε holds. As with ei  and e iS, , residuals e iJ,  are not
independent of each other. The e iJ,  are called the cross-
validatory or jaccknife residuals (Atkinson 1985) and are
often used for identification of outliers

GRAPHICAL AIDS FOR MODEL CREATION

In multiple regression one usually starts with assumption
that response y is linearly related to each of predictors. The
aim of graphical analysis is to evaluate the type of non-
linearity due to function of predictors describing well the
experimental data. The power type function of predictors is
suitable when relation is monotone. Several diagnostic plots
have been proposed for detection of curve between y and xj
(Berk and Booth 1995, Atkinson 1985). Very useful for
designed experiments without marked collinearities is
partial regression plot (PRL). This plot uses the residuals
from the regression of y on the predictor xj, graphed against
the residuals from the regression of xj on the other
predictors. This graph is now the standard part of modern
statistical packages and can be constructed without
recalculating of least squares. To discuss the properties of
this plot type let assume the regression model in the matrix
notation

y = X(j) ββββ* + xj c + εi (8)
 Here X(j) is matrix formed by leaving out the j-th column xj

from matrix X, ββββ*is (n-1) x 1 parameter vector and c is
regression parameter corresponding to the j-th variable xj.
For the investigation of partial linearity between y and j-th
variable xj the projection into subspace L orthogonal to
space defined by columns of matrix X(j) is used.
Corresponding projection matrix into space L has the form
P(j) = E - X(j) (X(j)

T X(j))-1 X(j)
T .

Using this projection to the both sides of eqn.(8) the
following relation results

P(j) y = P(j) xj c + P(j) εεεε (9)
 The product P(j) X(j) ββββ* is equal to zero because the space
spanned by X(j) is orthogonal to the residuals space. It is
clear that the term vj = P(j) xj is the residual vector of
regression of variable xj on the other variables which form
columns of the matrix X(j) and the term uj = P(j) y is the
residual vector of regression of variable y on the other
variables which form columns of  the matrix X(j).  The
partial regression graph is then dependence of vector uj on
vector vj. If the term xj is correctly specified the partial
regression graph forms straight line. Systematic
nonlinearity is indication of incorrect specification of xj .
Random pattern shows unimportance of xj for explaining
the variability of y. The partial regression graph (PRL) has
the following properties:

1. The slope c in PRL is identical with estimate bj in a full
model.

2. The correlation coefficient in PRL is equal to the partial
correlation coefficient Ryxj.

3.  Residuals in PRL are identical with residuals for full
model.

4.  The influential points, nonlinearities and violations of
least squares assumptions are markedly visualized.

Therefore the PRL are useful for inspection of data quality
and model quality as well. Form nonlinearities in PRL
graphs the proper transformation or inclusion of nonlinear
functions of explanatory variables cane be deduced.

MATLAB PROGRAM

The program MULTIREG serves for creation of linear and
linearized regression models, estimation of their parameters
and corresponding statistical analysis. For linear regression,
special algorithms have been implemented. The least
squares method is the only special case among a series of
biased parameter estimation, controlled by a single
parameter. Before computations, the data can be
transformed to a polynomial form, the Taylor expansion (up
to quadratic terms) or generally (any variable is
transformed by a user function). A matrix left division is
used for solving of over determined system of equations
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in the least squares sense. Variety of regression
characteristics including partial regression graphs is
computed. The PRL is created very simply from matrix P(j)
created by using of matrix oriented expressions in
MAATLAB  For diagnostic purposes, the plenty of graphs
for proving the assumptions about data, models and least
squares criterion have been included (Meloun, Militky and
Forina 1998).

EXAMPLE

The main aim is the description of PET/cotton yarn tenacity
(response) in dependence on the following parameters
(rotor diameter (x1), rotor speed (x3), yarn fineness (x2)
,PET fibers length (x5) and fineness (x4)). The n = 189
experimental points were specified Details of yarn creation
and tenacity measurements are given in thesis (El Shahat
1994). For the purpose of right setting of rotor machine and
selection of cotton fibers is necessary to known the
dependence of tenacity on the above-mentioned
explanatory variables especially from point of view of
trends. In the first run by using of MULTIREG program the
linear regression model was created. The partial regression
graph for rotor speed is in Fig 2.



 Figure 2: Partial regression graph for rotor speed

Formally, the linear regression model is fully acceptable.
All regression parameters are significant on the significance
level 0.05 and multiple correlation coefficient is equal to
R= 0.9425. Other statistical characteristics are:

 Predicted correlation coefficient equal to PR= 0.93862
Mean quadratic error of prediction MEP =0.19738.

It is known that the increase of rotor speed leads to increase
of tenacity. The negative sign of coefficient for rotor speed
variable is therefore not acceptable from the point of view
of the textile interpretation.. From partial regression graphs
is clear that there are some nonlinearities in variables x2 and
x3 mainly. In the second run the full quadratic model
equivalent to the Taylor expansion of the unknown function
to the quadratic terms was used. Partial regression graph for
rotor speed is shown on the fig. 3.

Fig 3 Partial regression graph for rotor speed

It is clear that x3 (rotor speed, see Fig. 3) is now
significantly linear and has the right positive sign. The
significance of the other variables is hidden in the
interactions or quadratic terms (see table 1). In the table 1
there are only significant terms of the full quadratic model
computed by least squares.

Table 1: Significant Parameters for Full Quadratic Model

Parameter Variable Estimate σ Estimated
B[ 2] x2 1.1017E+00 1.2989E-01
B[ 3] x3 5.8685E-04 6.6282E-05
B[ 6] x1 x2 -7.8860E-03 2.8638E-03
B[ 7] x1 x3 -1.1992E-05 1.2090E-06
B[ 9] x1 x5 -1.3611E-02 5.4958E-03
B[10] x2 x 3 -9.8261E-07 3.4311E-07
B[17] x2

2 -1.3584E-02 1.0781E-03
B[18] x3

2 -1.1339E-09 1.3846E-10
B[19] x4

2 -5.1025E+00 8.4249E-01
B[20] x5

2 -1.6550E-02 .6391E-03

The multiple correlation coefficient is R= 0.98455. Other
statistical characteristics are:

 Predicted correlation coefficient PR= 0.98451
Mean quadratic error of prediction MEP =0.05097.

Quadratic model has here therefore better predictive ability
than linear one. Contributions of individual terms exhibit no
nonlinear trends (see PRL graphs). The right interpretation
of this model is now without problems.

CONCLUSION

The utilization of partial regression graphs and suitable
criterion expressing the predictive ability is very useful for
building of statistical models especially based on the
experimental design arrangements. The MATLAB program
MULTIREG is useful for interactive building of empirical
regression models. These nonlinear models are often very
simple and are attractive especially for selection of optimal
technological processes conditions.
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