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INTRODUCTION 
 
The goal of our research works is to build a software for 
fabric modeling. Our research team wants to simulate any 
fabric deformations due to mechanic stresses.  
This paper deals with our solutions to speed up calculus 
convergence of fabric model simulation. These solutions are 
based on clever propagation algorithm, multi sampling and 
displacement prediction.  
Into bibliography, there is several models based on stress-
geometric approach as [8-23] and others based on finite 
element method (FEM) as [1-7]. Our approach, more 
ambitious, is based on a scale swap from yarn to fabric. 
Indeed, from mechanical properties of yarn and its geometric 
shape into fabric, our model simulates fabric behavior under 
mechanical stresses.  
First, we present quickly our fabric model. Then, the 
solutions to speed up simulation calculus are exposed.  
 
DYNAMIC FABRIC MODELING  
 
Unlike the others fabric models, for our works, we decided to 
model fabric from yarn properties and fabric datas. In fact, 
fabric is yarn interlacing. Fabric is sampling with crossing 
points. This crossing point is the base element of our model. 
Then, fabric is modeled by spring links between neighbor 
crossing points.  Every point is linked to close neighbors by 
four spring links as show in figure 1.  

Figure 1 : base element of our model  

 
The base element of our model Mi,j is considering as keep 
shaping, according the assumption that there is no slip 
between warp yarn and weft yarn. Such a mesh model of 2D 
fabric from a 3D representation to 2D one.  
Representation is shown on Figure 2.  
 

 

Figure 2 : plain weave fabric  
 

From stresses statement on one crossing point Mi,j, it 
possible to write the equation of mass point move [22]. 
Figure 3 present our symbols.   
 
i & j position of one crossing point into 2D meshing,  
C or T  symbolized Warp or Weft,  
µi,j mass of two half warp springs and two weft springs,  
νi,j coefficient of air viscosity, 
θi,j C   angle between two warp springs,  

θi,j T   angle between two weft springs, 

u
→

i,j,C  displacement vector of Mi,j C,  

u
→

i,j,T  displacement vector of Mi,j T,  

u
→

i,j   displacement vector of Mi,j ,  

R
→*

i,j  external fabric stresses sum,  

g
→

  gravity,  

F
→

ext, i,j  stresses on fabric,  

F
→

jamming  jamming stresses,  

H
→

( u
→

i,j)  internal fabric stresses sum, 

F
→

tr, i-1,j,i,j & F
→

tr, i,j,i+1,j stress due to yarn traction behavior,  

F
→

fl, i,j,C & F
→

fl, i,j,T   stress due to yarn bending behavior,  



 

 

 

Figure 3 : notation set 

So, Newton law could be written, calling u
→

i,j the 
displacement of point Mi,j  as :  

 R
→*

i,j = µi,j 
d 2 u

→
i,j 

d t2  + νij
d u

→
i,j 

d t  - H
→

( u
→

i,j)   (1) 

with  

 R
→*

i,j = µi,j,C g
→

+µi,j,T g
→

+ F
→

ext, i,j + F
→

jamming  (2) 

and   H
→

( u
→

i,j) = F
→

tr, i-1,j,i,j + F
→

tr, i,j,i+1,j   

  + F
→

tr, i,j-1,i,j + F
→

tr, i,j,i,j+1  

  + F
→

fl, i,j,C + F
→

fl, i,j,T  (3) 

 
Equations (1), (2) et (3) are movement equations of crossing 
point Mi,j. Remark that equation (1) is a non linear one. [19-
23] 
 
INTEGRATION METHOD AND OPTIMISATION  
 
Integration of the dynamic system 
 
Equation (1) is a non linear ODE which could be written at 
time t as :  

 R*(t) = µ 
d 2u,(t) 

d t2  + ν 
d u,(t) 

d t  + H(u(t))  (4) 

In order to integrate equation (4), time t is sampled by a 
sampling period te (so t=nte). Value of te is obtained 
following SHANNON theorem. Because this value is very 

small (about 10-7 s), we choose finite differences method as 
follows. 
 
Equation (4) is integrated by successive steps. First, we 
defined :    

 R(t,u(t)) = R*(t) + H(u(t))  (5) 

so : 

 R(t,u(t)) = µ 
d 2u 
,d t 2(t) + ν

d u
d t  (t)  (6) 

then, we set the dynamic system :  



Rn= R(n te,u(n te))

 
d u
d t  (n te) = V(n te),µ 

d V
d t (n te) + ν V (n te) = Rn   (7) 

and, with Finites Differences method, we have :  

 
d V
d t  (nte) = 

V((n+1)te) - V((n-1)te)
2 te   (8) 

and 
d u
d t  (nte) = 

u((n+1)te) - u((n-1)te)
2 te   (9) 

system (7) could be written :  





Rn= R(n te,u(n te))

V((n+1)te) = 
2 te
µ (Rn - ν V(n te) ) + V((n-1)te)

u((n+1)te) = 2 te V (n te) + u((n-1)te) 

 (10) 

Such integrating solution gives good results but calculus 
times is too important [19-20]. Therefore, we developed 
specific solutions.  
 
Optimization of convergence calculus  
 
The first adopted solution in order to speed up convergence 
to fabric dynamic balance has been set from a fine analyze of 
yarn deformation leading to fabric deformation. Indeed, one 
crossing point would have a non null displacement if one of 
its neighbors has a non null displacement.  
A clever propagation algorithm has to follow displacement 
information of one point to others and a rank is set to each 
point according its neighbor ranks.  
On the example of figure 4, fabric is under traction stresses. 
Points M1,1 to M1,6 are set fitting (rank 0). Points M6,1 to M6,3, 
are stressed (rank 1). In that case, the first points moved by 
displacements of points M6,1 to M6,3 are M5,1, M5,2, M5,3, M6,4 
. Theirs ranks are rank 2. Points with rank 3 are points M4,1, 
M4,2, M4,3, M5,4, M6,5.  

Figure 4 : point rank 
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The second adopted solution in order to optimize a calculus 
is based on the idea of scales swap. Our model simulates 
geometric scale of Fabric from geometric scale of Yarn. So, 
we proposed to do a temporal scale swap.  
We need two sampling period : one for the fabric, one for the 
yarn. This is multi sampling. Then, sampling period Te is set 
for the fabric. It is the base of time to watch fabric 
deformation (mesoscopic scale). Sampling period te is set for 
the yarn. This is the time scale for watching mechanical wave 
propagation. Therefore, we have : Te > te. We choose (as 
shown on figure 5) to set : Te = N te, N is an integer.  

Figure 5 : multi sampling 
 

Sum of stresses out of fabric structure are set constant for 
each sampling Te. Every sampling period te, there is an 
integration calculus in order to determine wave progression 
into yarn.  
Observations of results show that the convergence calculus 
leads to structure dynamic balance with N’ sampling period 
te less than N sampling period te : N’ << N. So, we decided 
to swap to next sampling period Te as shown on figure 6.  

Figure 6: modified multi sampling 
 

With such a solution, a convergence time of calculus is 
strongly decreased.  
The third solution use estimation of move. We make the 
assumption that yarn have a homogenize elasticity. As shown 
on figure 7, such an assumption leads to predict crossing 
points moves. If points N5,1 to N5,5 have a move of X, then 
we do the prediction :  
• points N1,1 to N1,5 move of 1/5 X,  
• points N2,1 to N2,5 move of 2/5 X,  
• points N3,1 to N3,5 move of 3/5 X,  
• points N4,1 to N4,5 move of 4/5 X.  

  (a) before (b) after 

Figure 7 : prédiction of point moves  

As figure 8 shows, we apply the prediction to each period Te. 
The error of prediction is corrected by our calculation 
algorithm over the periods te 
Such an approximation is very effective and it reduces the 
computation time enormously and it strongly contributes to 
deformation propagation in fabric structure. It is significant 
to note that the prediction assignement to fabric elementary 
points allows more quickly to reach the dynamic state of 
structure balance.  

Figure 8 : Prediction application  
 

Figure 9 compares convergences of one point towards three 
successive positions of balance in two cases. Case 1  is 
without prediction. Case 3  is with prediction.  
On Figure 9, the third displacement was set voluntarily a 
little weaker than first two. This makes it possible to validate 
the adaptability of calculation technique. Whatever the 
prediction error, the algorithm enables the structure 
convergence towards balance dynamic position.  
From t=0  to t=Te, the prediction  allows to converge more 
quickly towards dynamic balance position of fabric structure 
in the case 2 than in the case 1. From t=Te to t=2Te case 2 
avoids any calculation. The period of t=2Te to t=3Te  makes 
it possible to see that case 3 corrects the prediction errors.  

Figure 9 (a) : no prediction 
 

Figure 9 (b) : prediction 
 

Moreover, simulation times of case 1 were divided by 
approximately 100 than in case 3.   
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SIMULATION  
 
Traction test 
 
In order to validate our model and our three solutions 
enabling the speed of computation increasing, at first we 
decide to simulate traction test. Virtually, we weave yarn to 
fabric. Then, stresses on warp yarn are applied on virtual 
fabric and Force (N) vs. Elongation (%) curves are saved.  
The comparaison with reality is presented on Figure 10 tp 
point out differences between the model and expérimental 
results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 : traction test simulation and reality 
 
The both curves are quite close compare for this  phenomene. 
Therefore it is important to notice that the proposed 
computation speed increasing based on the convergence 
calculus optimization methods does not change the final 
results and that the proposed model is well adopted to such 
methods.  
 
Pushing test 
 
With such a quality of result, we do simulation of pushing 
test. Results are presneted on Figure 11. Three steps of fabric 
deformation is vizualized. Its seems very realistic, and takes 
only 3 days of calculus with  one PC PENTIM II 400MHz. 
So, it is acceptable.  
 
CONCLUSION 
 
Our team developed a calculation algorithm to simulate 
fabric behavior.The proposed model is defined starting from 
fabric geometry, made up of a network of adapted springs, 
and mathematical equations giving it a mechanical character. 
As the fabric is considered as yarn assembly, this model is 
able to predict fabric mechanical properties starting from 
yarn mechanical properties. 
Besides, convergence calculus optimization with our three 
methods strongly decrease the computation time and then 
allows us to make several simulation tests. 
 
 
 
 
 
 

Figure 11 : Simulation of pushing test 
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