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1. Introduction

The fractal geometry, issued of a synthesis of
works done in Mathematics and in Physics since
more of one century, proposed in the  70’s new
concepts to understand some complex phenomenon
([Man77]). The notions of fractional dimension and
scale invariance have been recognized applicable
quickly for the description of many natural objects,
of the mountainous  to the maritime facades while
passing by the meteorological phenomenon, the
porous surroundings ([Adl92]) or the chemical
catalysis ([Avn89])... These tools make it possible
to understand the phenomenon of growth far from
the balance that appear in a spontaneous manner in
many domains, as the dielectric straining or the
dendritic growth. The physicists, the chemists, the
meteorologists or the astronomers could have new
quantitative measures thus to characterize the
objects that they study.

The applications in signal processing
appeared later, toward the beginning of the  80’s. A
characteristic of the first attempts is the essentially
descriptive vision that there was to the work: some
signals were analyzed and some behaviors fractals
was or non raised, the most often under the shape of
a scale invariance in a certain range of resolutions.
Then  a " fractal dimension  " was deducted, and the
developments stopped there.

Two important evolutions of different
nature made it possible to enter in an "operational"
phase in the beginning of the 90’s. The first, that
appears naturally in the developments of a this
young disciplines, is the enrichment of the tools of
basis of the theory in view of the applications to the
variety of the natural phenomenon: from the
characterization of a signal by its (only) " fractal
dimension  ", came to be added  finer measures, as
the lacunarity or the multifractal analysis; the
models of fractal process, first perfectly auto-
similar, diversified to take into account invariances
in generalized senses; finally, the statistical
methods of fractal signal processing improved to
provide some estimators more robust, and
applicable in more general situations.

The second evolution is  more conceptual,
and well adapted to signal processing. Instead of
continuing to research fractal phenomenon  (that
means scale invariant) and to describe this
invariance with the help of various measurements,
one realized  the profit that it could have there to
apply some fractal tools   to ordinary signals. In
other words, instead of analyzing a signal to know
if it is a fractal object, one makes it undergo some
fractal treatments  regardless of its possible scale
invariance. Image processing provides a striking
example of this change of point of view:  fractal
compression of images has been developed
([Fis98]), and not compression of fractal images! It
is the same way for segmentation ([Veh96]),
filtering ([Veh02]), or  watermarking: any pictures
are treated with fractal methods. This important
evolution can be compared with the application of
classic methods.  The fractal measures or
multifractal spectrum associated to a signal will be
calculated while making some hypotheses on this
one (adherence to a class of models, and
"regularization" or "extension" of the signal (in the
scales rather than in space)).
We applied this concept for the fractal
characterization  of pictures of laces. These pictures
(figure 1) are indeed very rich, and so very complex
to analyze. This complexity can be a handicap for
the constitution of a data base adapted to this
particular industry. Indeed, an important effort of
standardization of the objective criterion permitting
the classification of the motives of laces is set
currently in motion (creation of a" thesaurus " for
lace industry), and the fractal treatment  of the
pictures of laces makes it possible to get a reliable
attribute. We first present the method used for the
fractal treatment fractal (boxes method), the results
we obtain and the possible extensions then for this
work.

2. Basic theory and algorithm used

The notions of fractal object  and fractal dimension
are now well known  ([Vos86], [Bar88], [Man82]).
The mathematical analysis that is associated to a
fractal object  consists in covering this one by balls



of identical dimension to the one of the support, so
the measure of a curve in the plan (2D) will require
its recovery by "tablets" of diameter h, and of
surface η2 ([Tri93]).

2.1.  Hausdorff dimension
Let's recall the manner of which Lesbesgue defines
the "surface" of a set Γ in the plan. For a positive
number given η, he  considers the recovery of Γ by
balls Bj  of diameter rj lower than η. The set "
surface of Γ “ is bigger than the set than we try to
define, in particular if the balls encroach one on the
other. The most economic recoveries, in other
words in plane geometry (2D), are those given by
the lower value of the sum of the surfaces of tablets
µη (Γ) necessary:
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The outside mass of Lebesgue consists then in
putting:
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lim      with    η→ 0 (2)

In the space of d dimension, it is also
possible to define a measure of Lebesgue µd while
using balls of d dimension. But the value d = 2
chosen is in some case too big; a mean exists then
to reduce the total measure. The method is due to
Hausdorff. It is adapted to the fractal curves , and is
obtained in modifying the analysis of Lebesgue,
while replacing rj

2  by rj
α  and therefore as adding a

parameter α on behalf of the value of the power 2
of the diameter of the ball. Either therefore, the
measure of Haussdorff ([Bro92]) is about:
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2.2.  Minkowski – Bouligand dimension
To raise the dimension of Haussdorff, let's call Nη
(Γ) the minimum number of balls presenting all
same diameter η susceptible to cover the set Γ
completely (all balls are then strictly identical). It
results from the definition an overcharge of Hα,η (Γ)
as:
 Hα,η (Γ’) ≤ ηαNη(Γ)
One deducts that for all values of  α, as Hα = ∞, one
has:
lim (ηαNη(Γ) ) = ∞  for η→ 0
either again:
lim (α ln (η) +  ln Nη(Γ)) = ∞   for η→ 0

While putting ∆MB = lim
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drives to:

∆MB ( Γ ) ≥ α
in the limit where η→0, either:
dim Γ ≤  ∆MB ( Γ )
This new index ∆MB is called  Minkowski –
Bouligand dimension or, for obvious reasons,
logarithmic density of Γ. Let us consider the case of
a curve or a set Γ in the space of dimension 2, the
plan of the page, and let's define" the set of
Minkowski" as the union of the balls centered on Γ
of diameter η, that is to say ∪ Bη(Γ). Let us define
A2 (η) the area of the set ∪ Bη(Γ). It is easy to
understand that this area A2 (η)  can be written as
following:

A2 (η) = N (η) . η2

 if η is the measure jauge and N (η) the minimum
number of balls necessary to the recovery of Γ.
Otherwise, the formula of definition of ∆MB permits
to write, when η→ 0:

N (η) ≈ MB∆−η

The  Minkowski dimension  ∆MB is given therefore
by the relation:

A2 ( η) ≈ MB2 ∆−η

in the limit η→ 0, either again the relation:
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This formula is to compare to the expression of the
length of a fractal curve, , λη ≈ η1 - ∆  ([Man82]).
While affecting in the Γ curve a thickness η, it
comes  η . λη = A2 (η) ≈ η² - ∆, from where it results
that ∆ = ∆MB.
The formula becomes widespread without difficulty
in a space of dimension  d under the form:
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where one designates by Ad (η) the d-dimensional
volume of the set ∪ Bη(Γ).

If the method of assessment of ∆MB is
suitable enough easily to the calculation, for
example when the  fractal set is seen by means of a
CCD sensor , it is unfortunately little precise,
because it is rare that the alignment in the plane
"ln/ln" is good and reliable, contrary to what is
often affirmed. In a certain manner, the set of
Minkowski is too thick to permit good adjustments.
The most known method to determine the value of



∆MB then is the boxes method, proposed by Voss
([Vos86]).

2.3. Boxes method  in R2

It is about constructing a  decreasing sequence ηn

having for object to cover Γ by a network of
squared stitches of side ηn. The value of the fractal
dimension  is gotten by deduction of the number Nn
of squares meeting a point (white points in figure 4)
of  Γ. The dimension is then:
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The slope in the diagram {ln (Nn) vs ln (l /
hn)} corresponds therefore to the ∆MB dimension.
Very simple to use, this method presents however
some inconveniences. In particular if l / ηn is not
whole, the squares of side ηn are going to overflow
generally on the left and on the right of the graph of
Γ, what distorts the results and introduces some
irregularities in the diagram, especially when ηn is
big. Let’s suppose the defined graph on [0, 1]. So
that the projection on Ox of the squares meeting the
graph is always included in [0, 1], it agrees to
impose that the sequence ηn is dyadic, that means
under the form ηn ≈ 2- n.

If we consider this sequence, that stretches
enough quickly toward 0, the precision of the data
are quickly overtaken and the process stops there:
the diagram  is only formed of a small number of
points, insufficient to assure the validity of the
result. Some methods exist to correct these
problems, but it is however impossible to eliminate

them all, because they are inherent to the simplest
methods of treatment (for example, imprecision due
to the fact that ηn only takes whole values and vary
therefore always suddenly when one passes from ηn

à ηn – 1). However, in image processing, the
important format of these images, associated to a
least squares method evaluation  of the slope of the
cloud of points gotten with boxes of increasing size
(algorithm of Keller, [Kel89], [Sar92]), give a good
evaluation of the fractal dimension. We used this
method with success in the case of lace patterns, as
we are going to show it now.

3. Application

From the specific point of view of shape
characterization of patterns, the main aim of the
fractal approach is to find a measure to distinguish
between curves with complicated contours (it is
often the case with lace patterns). The main idea is
to describe the complexity of the curve through a
new parameter that makes it possible to identify a
lot of complex patterns using a precise number, and
thus to use this number in data bases indexation for
example.
We now present figure 1 an example of lace
pattern. This image is classically treated:

• Histogram treatment
• Filtering
• Contours detection

The result is presented figure 2. Then the Keller’s
algorithm (presented in section 2) is applied on this
binary image, and the result is presented figure 3.

Figure 1



Figure 2

Figure 2
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Figure 4: Results



We now present figure 4 the results (fractal index)
from some different lace patterns. For the moment
this treatment has been applied on some hundreds
of patterns, and the results are very interesting: each
pattern is perfectly characterised, and the fractal
index is so very interesting to build a data base
relative to lace patterns. Indeed lace patterns that
have close designs are set with close indexes.

4. Conclusion

Pattern recognition requires the extraction of
features from the images, and the processing of
these features with a pattern recognition algorithm.
In this paper, we presented some results which
aimed at showing that fractal feature, based on the
estimating fractal dimension, is relevant in pattern
recognition tasks. The motivation behind using
fractal transformation is to develop a high-speed
feature extraction (for complex patterns), and then a
high speed pattern index for graphical data bases.
The problem considered here was the possibility to
dispose a reliable feature to set numerous patterns
(some hundred of thousands patterns!).  Experiment
results show that this approach allows us to obtain
new and interesting descriptions of complex
patterns. It would be interesting now to use a multi-
fractal approach (or an other multiresolution
method ) to compute information conserving micro-
features, and to obtain a finest description of lace
patterns. We think that there will be a lot of
applications possible for the future in the lace
industry.
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