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Abstract

The objective of this article is to present an ap-
proach based on UML dynamic diagrams and on p-time
Petri Nets for scenario veri�cation of Real Time Sys-
tems. The main idea consists of translating the sequence
diagrams which express the initial speci�cations of the
system in a unique p-time Petri Net model which repre-
sents the global behaviour of the entire system. A To-
ken Player algorithm used for the scheduling problem of
Real Time Systems and which can be seen as a simula-
tion technique of a formal model is then applied to the
obtained p-time Petri Net model for scenario veri�ca-
tion. The approach is illustrated through an example of
a batch system which can be seen as a particular case
of a Real Time System.

I. INTRODUCTION

The dynamic behaviour of a system imposes a
scheduling of control ow. The scheduling problem con-
sists of organizing in time, the sequence of the opera-
tions considering time constraints (time intervals) and
constraints of shared resources utilization necessary for
operation execution. From the traditional point of view
of Software Engineering, the scheduling problem is sim-
ilar to the activity of scenario execution. A scenario ex-
ecution becomes a kind of simulation which shows the
system's behaviour in real time. In the real time system
case, several scenarios can be executed in parallel and
conict situations which have to be solved in real time
(without a backtrack mechanism) can occur if the same
non-preemptive resource is called at the same time for
the execution of tasks which belong to di�erent scenar-
ios.

Among all Object Oriented notations, UML [OM
1999] is one of the best accepted in industry. In partic-
ular, with the dynamic diagrams proposed by UML, it
is possible to represent the communication mechanisms
among several objects for a speci�c scenario. Some tools
associated with the UML notations allows one to simu-
late the UML dynamic diagrams. Therefore, UML no-
tations have their limitations when they are used for
specifying Real Time Systems. For example, it is not

possible with a unique UML diagram to represent the
set of all dynamic interactions that exist at a global sys-
tem level. As a consequence, it becomes very diÆcult to
verify that the execution of several sequence diagrams
simultaneously does not lead to a deadlock situation.
Another limitation is that UML does not provide for-
mal notations for specifying the time constraints of Real
Time Systems like date intervals or time-limited o�er-
ings.

Petri Nets [Murata 1989] are very suitable to
model Real Time Systems, as they allow for a good
representation of conict situations, shared resources,
synchronous and asynchronous communications, prece-
dence constraints and explicit time constraints, in the
time Petri Nets case. As was presented in [Cardoso
2001], translating sequence diagrams of UML in Petri
Net models allows one to de�ne an operational seman-
tic for the sequence diagrams in order to know how these
diagrams are executed in real time.

The main idea of this paper is to present an ap-
proach that combines UML dynamic diagrams and a
p-time Petri Net model for scenario veri�cation of Real
Time Systems.

II. SPECIFYING REAL TIME SYSTEMS

USING SEQUENCE DIAGRAMS

The batch system in �gure 1, which can be seen
as a particular Real Time System, will be used to il-
lustrate the speci�cation activity of Real Time Systems
using UML diagrams. A batch is a quantity of material
which is transformed passing through di�erent equip-
ment and respecting a speci�c recipe which de�nes the
sequence of the operations. This production system ex-
ecutes two di�erent recipes. Both of them use common
equipment,that being the thermal exchange TE3, the R3
reactor and the thermal exchange TE4 in certain steps
of their execution.
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Fig. 1. Batch Production System



A sequence diagram shows the chronological or-
der of the operations and the interaction between the
objects for a particular scenario. The sequence diagram
of �gure 2 is used to represent the scenario correspond-
ing to Recipe 1. Initially the object batch 1 calls the
method of R1 for the processing operation. Then the
object R1 calls the method of TE1 to transfer batch 1
from supply tank 1 to reactor R1 and at the end of the
�rst processing stage, a message is sent to the recipe and
the object batch 1 can call the method of the object R3
to the second processing stage. The object R3 calls the
method of the object TE3 to transfer batch1 from re-
actor R1 to reactor R3. Once batch 1, is transferred to
R3, an asynchronous message is sent to R1 so that it
becomes available and a synchronous response is sent to
object R3 so that the processing in reactor R3 begins.
At the end of the processing in reactor R3, the ther-
mal exchange TE4 is requested to transfer batch 1 to
the storage tank 1 for product liberation. At the end of
the transfer operation an asynchronous message is sent
to R3 so that it becomes available for other operations.
The sequence diagram for Recipe 2 is similar to the one
of Recipe 1. To build it, it is necessary to change the
objects batch 1,TE1 and R1 from the sequence diagram
shown in �gure 2, for the objects batch 2, TE2 and R2
respectively.
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Fig. 2. Sequence diagram for recipe 1

By analysing sequence diagrams separately, it is
not possible to verify if a conict situation can occur
that could be dangerous. For example, during real time
execution, both sequence diagrams may have to request
some common objects at the same time interval. An-
other limitation of this speci�cation model is that ex-

plicit time constraints like the initial date of a scenario
execution do not appear on the diagram. The follow-
ing part of this article will show how to deal with these
limitations using a p-time Petri Net model.

III. PETRI NET BASED MODELING

A. Autonomous Petri Net model

It has been shown in [Kanacilo 2002] that Petri
Nets allow one to describe synchronous and asynchronous
communication mechanisms between objects. Based on
the interactions between the objects speci�ed in the se-
quence diagram of �gure 2 and merging all the Petri Net
objects involved in the scenario execution, the Petri Net
model of �gure 3a is obtained. On this Petri Net model,
each object called by the object batch 1 of the sequence
diagram is represented by a non-preemptive resource.
The Petri Net model corresponding to Recipe 2 can be
obtained in a similar way and is shown in �gure 3b. In
order to obtain the global model which corresponds to
the whole system (Recipe 1 + Recipe 2), the models of
Recipe 1 and Recipe 2 can be merged through the com-
mon places TE3, R3 and TE4 as illustrated in �gure 4.
The obtained global model shows the global behaviour of
the entire system without explicit time considerations.
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Fig. 3. Petri net model for recipe 1 and recipe 2

B. p-time Petri Net model

As was shown in [Julia 2000], explicit time con-
straints which exist in a batch system can be formally
de�ned using a p-time Petri Net [Khansa 1996]. With
this kind of time Petri Net, a static interval Ipi = [ai; bi]
associated with each place pi has to be de�ned. It repre-
sents the permanency duration (sojourn time) of a token
in pi. In the batch system case, these intervals represent
the time the batches remain in reactors or in interme-
diary bu�ers. The dynamic evolution of a p-time Petri
Net depends on the marking of the net and on the time
situation of the tokens which is given by visibility inter-
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Fig. 4. Global model

vals [(Æp)min; (Æp)max] associated with each token of the
net. In particular, a visibility interval associated to a
speci�c token represents the earliest date (Æp)min when
the token in p becomes available for the �ring of a tran-
sition and the latest date (Æp)max after which the token
becomes non-available (\dead") and cannot be used for
the �ring of any transition.

d=3

[5,9]s

O1

[8,12]v

Fig. 5. Visibility interval

For example, in �gure 5, if the arrival date of the
token in place O1 is Æ = 3, knowing that the static in-
terval of this place is [5,9]s, then, the visibility interval
of this token is [5+3, 9+3]v=[8,12]v. In the context of
batch systems, the \death" of a token means a time con-
straint has been violated and the corresponding batch
has been damaged.

Considering a speci�c production plan, the static
and the visibility intervals can be associated to each
place of the global model and the p-time Petri Net of
�gure 6 is obtained. The visibility intervals associated
with the starting places of each recipe represent the time
interval (interval of dates) inside which a scenario cor-
responding to a recipe must be iniciated.

IV. SCENARIO VERIFICATION

One of the approaches which permits one to ex-
ecute dynamically a Petri Net is the one based on a
token player algorithm. A token player algorithm is a
special inference mechanism which allows the �ring of
the enabled transitions. When the model is based on a
p-time Petri Net, the token player algorithm must take
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Fig. 6. p-time Petri Net model

into account the conict situations in real time in or-
der to avoid the possibilities of deadlock which can be
caused by a \token death". The token player algorithm
presented in [Julia 2000] which is used for the scheduling
problem of Real Time Systems allows one to treat con-
ict situations in real time when the system is modelled
by a p-time Petri Net. One of the particularities of this
algorithm is that it does not �re transitions, necessar-
ily, at the earliest dates. It works on a short temporal
projection that permits one to emphasize possible future
conicts. Applying this algorithm to a p-time Petri Net,
an acceptable scenario is obtained. Before explaining
how this algorithm works, it is necessary to de�ne what
a conict is for a p-time Petri Net.

A. Conict for a p-time Petri Net

With a p-time Petri Net, conicts for shared re-
sources are visible during a time interval and not only at
a single time point. The de�nitions (enabling interval of
a transition and conict time interval) necessary to un-
derstand the conict notion of a p-time Petri Net were
given in [Julia 2000]. Figure 7 helps one to remember
these de�nitions. The static intervals associated with
the places P1, P2 and P3 are the following ones :

Fig. 7. Conict for a p-time Petri Net

[(dP1)min;(dP1)max]=[1;6]
[(dP2)min;(dP2)max]=[0;7]
[(dP3)min;(dP3)max]=[2;6]



If at date 0 a token arrives in P1, at date 2 a to-
ken arrives in P3, and �nally, at date 3, a token arrives
in P2, then, the visibility intervals of these tokens are:

[(Æp1)min; (Æp1)max]=[1; 6]
[(Æp2)min; (Æp2)max]=[3; 10]
[(Æp3)min; (Æp3)max]=[4; 8]

The enabling interval of the transition t1 is then
[1; 6] \ [3; 10] = [3; 6] and the enabling interval of the
transition t2 is [4; 8] \ [3; 10] = [4; 8]. The conict time
interval associated to the pair (t1;t2) is given by the in-
tersection of the enabling intervals : [3; 6]\[4; 8] = [4; 6].

Considering the p-time Petri Net of �gure 6, if the
transitions of the global model are �red as soon as they
are enabled, at date Æ=23 a token appears in place P3
and its visibility interval is [35;54]. The next event is
the �ring of t7 at date Æ=30 which creates a new token
in place P9 with its visibility interval [36;36]. At date
Æ=35, the token in place P3 becomes available for the �r-
ing of t3 which is in structural conict with t9. It is then
necessary to calculate the possible arrival date of a token
in P10 between the dates 35 and 54 which correspond to
the minimum and the maximum bounds of the visibility
interval of the token in P3. After the �ring of t8 at date
Æ=36, a token will appear in place P10 with a visibility
interval equal to [36+6;36+10]=[42;46]. Since the visi-
bility intervals of the resources are [0;+1[, the enabling
interval of t3 is [35;54] and the enabling interval of t9 is
[42;46]. The conict time interval of the pair (t3;t9) is
then equal to [35;54] \ [42;46]=[42;46]. So, an e�ective
conict between t3 and t9 is able to occur during the
interval [42;46]. As there are two shared resources TE3
and R3 that are input places for both transitions, two
cases must be isolated and analysed separately. For ex-
ample, the useful part of the net for conict analysis of
the shared resource R3 is represented in �gure 8.
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Fig. 8. Useful part of the conict for R3

B. Conict Resolution

Considering the conict for resource R3 at date
35 illustrated in �gure 8, it seems normal to �re t3 as
soon as possible, since there is not token in P10 at that
time. If t3 is �red at date 35, a new token appears in
P4 and its visibility interval is equal to [35+3;35+3]=
[38;38]. From this new state, the consequences of this
decision (�ring of t3 at date Æ=35) on the rest of the
net have to be analysed. In particular, it is important
to verify that this decision will not cause a constraint vi-
olation, i.e. the death of a token. The tool which allows
one to represent all the possible evolutions of a p-time
Petri Net is the class graph [Khansa 1996].

Figure 9 represents the class graph of the net of
�gure 8 after the �ring of t3 at date Æ=35. The classes
of the graph are the following ones:

C0 :M0 = fP4; P9g; (3 � dP4 � 3) ^ (1 � dP9 � 1)
C1 :M1 = fP4; P10g; (2 � dP4 � 2) ^ (6 � dP10 � 10)
C2 :M2 = fP5; P10g; (20 � dP5 � 24)^ (4 � dP10 � 8)

C0 C1 C2
8 [1,1] 4 [2,2]t t

“Death Token Class”

Fig. 9. Class graph for conict of R3

The class C2 is a \death token class", which rep-
resents a deadlock in the case of a p-time Petri Net.
In fact is is possible to see that for the class C2, the
token in P5 has to stay in this place, at least for a du-
ration equal to 20. The shared resource R3 will not be
available before this duration for the �ring of t9. On
the other hand, the token in P10 can only stay in this
place for a duration equal to 8 at most. If the token
remains for a longer duration in this particular place,
then the death of the token will occur and batch 2 will
be damaged. As a consequence of this class graph, the
transition t3 cannot be �red at date 35 when the token
in P3 becomes available and the transition t9 will have
to be �red before t3, expecting then that the death of
the token in P3 will not occur later.

C. Token Player Algorithm

Figure 10 shows how the Token Player algorithm
works. The algorithm has a decision making system
which has to be used each time a conict for a resource
appears in the meaning of a p-time Petri Net model. The
Token Player uses a calendar containing a sequence of
events scheduled in time. These events are the minimum
and the maximum bounds of all visibility intervals. Each
time a minimum bound of a visibility interval is reached
in the calendar, it means that a token becomes available.
If the corresponding token enables a transition and if the
transition is not in structural conict, then the transi-
tion is �red. If the transition is in structural conict,
the conict state is isolated (the corresponding Petri



Net fragment) and the conict resolution mechanism is
called. If the conict resolution mechanism allows one
to �re the corresponding transition as soon as the token
becomes available, then the transition is �red. If a max-
imum visibility interval is reached in the calendar, the
death of a token occurs. The only solution is then to
relax a constraint: increase the value of the maximum
bound of a static interval or delay the beginning of one
of the recipes increasing the values of the bounds of the
initial visibility interval of the corresponding recipe.

Applying the Token Player algorithm to the global
model of �gure 6, the following result is obtained: date
21= t1 �red; date 23= t2 �red; date 30= t7 �red; date
35= t3 enabled, but not �red; date 36= t8 �red; date
42= t9 �red; date 45= t10 �red; date 51= t11 �red; date
53= t12 �red; date 53= t3 �red; date 56= t4 �red; date
76= t5 �red; date 80= t6 �red.
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Fig. 10. Token Player Algorithm for a p-time Petri Net

As a result of the simulation, an acceptable sce-
nario corresponding to the �ring sequence is obtained.
This scenario can be translated into the collaboration
diagram illustrated in �gure 11. In this diagram it is
clear that batch 2 has to be processed in reactor R3
before batch 1.

V. CONCLUSION

UML dynamic diagrams are a very well accepted
tool to model speci�cations through an Object Oriented
approach. In particular, they are very well adapted for
the speci�cation of partial aspects of a system. Never-
theless, in the real time system case, they do not allow
the detection, in an explicit way, of conict situations.
Most of the simulation tools available at this moment
for the validation of speci�cations given through UML
dynamic diagrams generally only allow one to simulate
sequence diagrams separately and without taking into
consideration explicit time constraints.

This article showed that the initial UML spec-
i�cations (the set of sequence diagrams) can be trans-
lated into a unique p-time Petri Net which represents the
global behaviour of the entire system with explicit time
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Fig. 11. Collaboration diagram

considerations. Based on this model, a Token Player al-
gorithm, used for the scheduling problem of Real Time
Systems was applied for scenario veri�cation. The �nal
result of the global simulation was given through a se-
quence of transition �rings which can be translated in a
collaboration diagram. The �nal diagram provides then
an acceptable scenario which respects the initial set of
constraints.
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