
An XML-based DEVS Modeling Tool to Enhance Simulation Interoperability

 Yung-Hsin Wang Yao-Chung Lu
Department of Information Management Department of Computer Science and Engineering

Tatung University Tatung University
40 Chungshan N. Rd., 3rd Sec, Taipei 104, Taiwan 40 Chungshan N. Rd., 3rd Sec, Taipei 104, Taiwan

 E-mail: ywang@mis.ttu.edu.tw E-mail: g8906023@mail.ttu.edu.tw

KEYWORDS
Modeling and Simulation, DEVS, XML, Interoperability.

ABSTRACT

There is a need to develop standards for a computer
processable representation of DEVS (Discrete Event
System Specification) models that supports common
understanding, sharing and interoperability of distinct
DEVS implementations. To achieve the goal, this paper
focuses on the adoption of XML in model description and
development to generate a standard intermediate format to
entitle sharing between different DEVS simulation
environments that will facilitate simulation interoperability
standards and reuse.

INTRODUCTION

With advances of computer technology, simulation has been
used extensively in all aspects of industry, government and
academia as powerful methodology for analyzing and
designing the performance and characteristics of complex
systems. In general project of simulation, model builder
creates an all-new simulation model from basic constructs,
and quite often the simulation model had been built cannot
share to others in different simulation environments. This is
a kind of waste of model designer's efforts and sometimes
causes inconvenient. Therefore, it is important to integrate
different simulation tools to enhance the model reusability
and exchangeability between simulation practitioners.

In this paper we focus on DEVS (Discrete Event System
Specification) approach (Zeigler 1984; Zeigler 1990),
which provides a formal basis for specifying discrete event
models in a hierarchical, modular manner. Because of its
theoretical foundation, the DEVS formalism and its
associated techniques have proven to be a powerful means
for model management and simulation of general systems.
Currently, there are many different realizations of
DEVS-based simulation environments in the world (Kim
and Park 1992; Tan 1996; Zeigler 1986; Zeigler et al. 1996;
Zeigler 1997). A common problem would be the model
reusability and code sharing. For example, a model built in
the DEVS-Scheme under DOS or Windows cannot run on
the C++ or Java versions of DEVS under Unix or Windows.

Project designers in the heterogeneous platforms may all
use the same language to develop their simulation models.
However, the problem then is that they need to develop
every API of their own platform or possess the same
simulation environment as others. In other words, users
may have to give up their proficient and original simulation
environments if required. This is infeasible due to a lot of
expenditure to a project with limited budget.

The goal of this paper is to develop a user-friendly tool that
allows users to construct DEVS simulation models via a
graphical user interface as well as to facilitate model reuse
and code sharing of DEVS simulation models. We use the
XML technology to present the DEVS model for solving
the interoperability problem. On the other hand, users can
generate simulation codes easily using a specific model
language translator. Abundant XML developing tools and
parsers can help users rapidly build a new model language
translator such as that of C++ or Java for various
DEVS-based simulation environments.

In the rest of this paper, we will give a brief review of the
DEVS modeling and simulation methodology, System
Entity Structure concept and XML technologies, which are
the foundation of our system. We then present the
architecture and implementation of our XML-Based DEVS
simulation modeling tool and describe the method that
translates XML document to the model code. Finally a
conclusion of this study is made.

DEVS SIMULATION AND XML TECHNOLOGIES

Overview of the DEVS formalism and SES

The structure of the model that generates the model
behavior can be expressed in a mathematical language or
formalism. The discrete-event system specification
formalism provides a means of specifying a mathematical
object called a system. Basically, systems contain many
common attributes including a time base, inputs, states, and
outputs, and functions for determining next states and
outputs given current states and inputs. When using DEVS
approach in simulation, one must specify (1) the atomic
models, from which larger coupled models are built, and (2)
how these models are connected in hierarchical fashion.

Formally, an atomic model M is defined as
M = < X, S, Y, δint, δext, λ, ta >

where
X : the set of external input event types
S : the sequential state set
Y : the set of external event types generated as

output
δint : S → S, is the internal transition function
δext : Q × X → S, is the external transition function

where Q = { (s, e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the
total state set

λ : S → Y, is the output function
ta : S → R+

0,∞ (non-negative real), is the time
advance function

The second form of DEVS model, the coupled model,
specifies how to connect several models to form a new
model. The structure of a coupled model DN (stands for
DEVS Network) is defined as

DN = < D, {Mi}, {Ii}, {Zi,j}, select >
where

D is a set of component names,
for each i in D,

Mi is a component basic model
Ii is a set, the influences of i,

and for each j in Ii
Zi,j is a function, the i-to-j output translation, and
select is a function, the tie-breaking selector

Detail descriptions for the definitions of the atomic model,
coupled model and DEVS formalism can be found in
(Zeigler 1984; Zeigler 1990). The primary advantage of
DEVS is that it provides a formal way that it characterized
how discrete event languages specify their discrete event
system parameters. With this abstraction, it is possible to
design new simulation languages with sound semantics that
are easier to understand. Indeed, the modeling and
simulation environments that implement DEVS formalism
inherit the abilities such as support of building models in a
hierarchical, modular manner and object-oriented concepts.
In addition, DEVS formalism appears to be the more
powerful formalism, trading mathematical tractability for
expressive power.

As a hierarchical discrete-event model base is developed
and expanded for a particular domain or family, the
“manual” management of relative models becomes difficult.
A structured knowledge representation scheme called
System Entity Structure (SES) is applied to direct the
synthesis of models from the model base. It incorporates
decomposition, taxonomy, and coupling knowledge
concerning a domain of real systems. A modeler may prune
the SES according to the objectives of his/her study
obtaining a reduced structure (i.e., pruned SES, or PES) that
specifies a hierarchical discrete event model.

The SES is defined as a labeled tree with various types of
attachment that satisfies several well-defined axioms
(Zeigler 1984; Zeigler 1990). There are three types of nodes
in the SES—entity, aspect, and specialization—which stand
for three types of knowledge about the structure of the
system. An entity represents a real world object, which can
either be independently identified or postulated as a
component of some decomposition of other real world
object. In simulation perspective an entity is a model. An
aspect represents a decomposition out of many possibilities
of an entity. The descending entities of an aspect can be
considered as components of the aspect’s parent. A
specialization is a mode of classifying entities and is used
to represent the taxonomy of the system being modeled.

Consider the simple server architecture as an example. A
simple server consists of a processing element and a queue
with two types of queuing discipline, FIFO and LIFO.
Figure 1 shows its SES representation. The root entity
SERV_ARCH has an aspect node (the decomposition
relation is represented as a vertical bar ‘|’) that implies the
descendants (PROCESSOR and QUEUE) can be coupled to
form SERV_ARCH. A specialization node (represented as
double bars ‘||’) is attached to the entity QUEUE meaning
that the two descending nodes, FIFO_Q and LIFO_Q are
types of QUEUE. If a SES has no specialization and at
most one aspect under each entity, it is said to be pure. Such
a SES can be transformed into a hierarchical model and
simulated. Pruning is required to create a pure SES. Figure
2 shows a Pruned Entity Structure (PES) of SERV_ARCH.

Figure 2: The Pruned Entity Structure of SERV_ARCH

Figure 1: The SES of the Simple Server Architecture

QUEUE PROCESSOR

q_type

FIFO_Q LIFO_Q

SERV_ARCH

PROCESSOR

serv_dec

FIFO_Q

SERV_ARCH

serv_dec

Extensible Markup Language

Extensible Markup Language (XML), defined by the World
Wide Web Consortium (W3C), is a subset of SGML
specifically designed for the Web (Deitel et al. 2001). It is a
universal language and is emerging as a new way to store,
describe and exchange data on the web. Even though its
primary application is as the future of the World Wide Web,
it can be used in a variety of situations to structure digital
data (Kim 2001).

XML, like HTML, is based on tags and represents
documents as trees of element. It also has two sorts of
element: empty and non-empty elements. Moreover, the
XML specification defines precise rules that make
document parsing simple. XML specification defines two
types of XML document: valid documents and well-formed
documents. To define and validate an XML document’s
structure one can use Document Type Definitions (DTDs)
or Schemas. Note that we use the Microsoft XML Schemas
in this study to describe the structure and element content
of our XML documents for the DEVS models.

SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Figure 3 presents our system architecture, which contains
two main parts, the Model Builder and the Specific DEVS
Model Language Translation Module. Different DEVS
simulation environments need individual translation module.
In order to unify the specific presentations of DEVS
simulation environment into one standard, we use the XML
format to present the DEVS model. In other words, the
XML document is an intermediate meta-form of the DEVS
model. It allows DEVS models to be shared by other Model
Builders of different DEVS simulation environments.

The system works as follows. Users first construct the SES
and input model specifications from the User Interface
Module, then the XML Translation Module translates the
SES into an intermediate meta-form in XML format. Once
an XML formatted model is shared out, other users could
get and convert it to specific DEVS simulation code by
their Model Language Translation Module and execute
under the users’ own DEVS simulation environment.

The Model Builder

The Model Builder we designed provides an easy and
friendly interface for users to build a platform neutral
DEVS model in XML. The Model Builder contains two
modules: the User Interface Module and the XML
Translation Module, which will be illustrated in what
follows. Figure 4 shows a screen capture of the user
interface of the Model Builder.

User Interface Module XML Translation
Module

XML DocumentInternet

DEVS-Scheme Model
Language Translation

Module

DEVS-
Scheme
Compiler

Simulation
Program for
Execution

Model Builder

Existing DEVS-Scheme
Simulation Environment

DEVS-C++ Model
Language Translation

Module

DEVS-C++
Compiler

Simulation
Program for
Execution

Existing DEVS-C++
Simulation Environment

DEVS-
Scheme

Code

DEVS-
C++

Code

Figure 3: The Software Architecture of Our System

Figure 4: User Interface of the Model Builder

The primary function of the User Interface Module is to
offer a GUI for building SES. For the sake of concise
appearance, we represent the SES a tree structure consisting
of entity nodes without the aspect (i.e., decomposition) and
specialization (i.e., taxonomy) nodes. In the SES structure,
each entity node is on behalf of an atomic model or a
coupled model in DEVS formalism. The attributes of a
node contain the information of each model. If a node is
expressed as a coupled model, then there is some additional
information in this node. The information must include the
coupling relationships between parent entity and its child
entities, or those among child entities. Those relationships
also contain decomposition or specialization information
between the parent entity and child entities.

As can be seen in Figure 4, the model builder can insert a
node and specify model attributes of a node by clicking the
appropriate button from the main form. When clicking on
the “insert” button, a dialog form will pop up where users
can assign model attributes such as the model name, model
type, relationships, input and output ports. After model
attributes have been filled, if the appointed model still has
further child nodes decomposed itself, users can set priority
and build coupling relationship among these child nodes. If
the sub-nodes need to set the priority, selecting their parent
node and clicking on the “edit” button will pop up a dialog
form for this purpose. This form is the same as the form
that users used to assign model attributes. To set coupling
relationships among models, users simply double-click the
input or output port’s name, then all connectible ports will
show up for users to select and add new connections. In this
way, models in the SES can be built easily and quickly.

When the SES has been constructed, it is ready to translate
the whole structure into an intermediate meta-form in XML
format. The XML Translation Module is responsible for this
task. By clicking on the “Transform” button, the SES will
be translated into an XML formatted document, which
users can preview in the box shown in Figure 4. Users can
then just click on the “Save to File” button to save this
XML file. The system model represented in XML should be
able to be executed among different systems. Users can
freely exchange the XML files and the XML files obtained
from other model builders can be easily modified to suit
users’ simulation needs. With the help of this interface,
users can also load an XML file, and its corresponding SES
tree will be presented. In a nutshell, the function of XML
Translation Module is to do the transformation process
between the SES tree and its XML equivalent.

The Intermediate Meta-form in XML Format

The Intermediate Meta-form is a well-formed XML
document which includes the essential information of the
DEVS model from the System Entity Structure. Since every
DEVS model is based on the DEVS formalism, all

DEVS-based simulation environments can be satisfied with
the information that this intermediate meta-form present.

We establish a concise format to form a profile of the whole
SES. The XML document is a hierarchical structure as is
the SES structure. Therefore, we can directly map the
whole SES tree to the XML tree. The attributes of each
coupled model and atomic model are written between the
"<model>" and "</model>" tags and the value of the
attributes are written between the tags of each attribute. An
example of a DEVS model intermediate meta-form in XML
format is shown in Figure 5.

S

I
s
m
p

<?xml version="1.0" encoding="UTF-8"?>
< ="x-schema:DEVSxml.xml">
 < >
 < >SERV_ARCH</ >
 < >dec</ >
 < >Coupled</ >
 < >in</ >
 < >out</ >
 < >PROCESSOR.in QUEUE.out</ >
 < >PROCESSOR.out QUEUE.in</ >
 < >
 < >PROCESSOR</ >
 < >ent</ >
 < >Atomic</ >
 < />
 < >in</ >
 < >out</ >
 </ >
 < >
 < >QUEUE</ >
 < >spec</ >
 < >Atomic</ >
 < >in</ >
 < >out</ >
 < >
 < >FIFO_Q</ >
 < >ent</ >
 < >Atomic</ >
 < />
 < >in</ >
 < >out</ >
 </ >
 < >
 < >LIFO_Q</ >
 < >ent</ >
 < >Atomic</ >
 < />
 < >in</ >
 < >out</ >
 </ >
 </ >
 </ >
</ >

devs
model

name name
relationship relationship
type type
Inport Inport
Outport Outport
Coupling Coupling
Coupling Coupling
model

name name
relationship relationship
type type
priority
Inport Inport
Outport Outport

model
model

name name
relationship relationship
type type
Inport Inport
Outport Outport
model

name name
relationship relationship
type type
priority
Inport Inport
Outport Outport

model
model

name name
relationship relationship
type type
priority
Inport Inport
Outport Outport

model
model

model
devs

 xmlns

Figure 5: Intermediate Meta-form in XML

pecific DEVS Model Language Translation Module

n order to solve interoperability problems in different
imulation environments, we designed an intermediate
eta-form in XML format for system modeling as has been

resented. Any model builder can easily get the modeling

information from the XML document, and create a specific
DEVS model language for its corresponding simulation
environment. Our first attempt of the implementation of the
language translation module is for DEVS-Scheme. Note
that each DEVS simulation environment must have its own
translation module just like each operation system has its
own Java virtual machine. Nevertheless, users can easily
build one by using abundant XML developing tools and
XML parsers available. Afterward, all modelers can use
their own simulation environment to execute other DEVS
models or make models open and share to other model
builders without any modification. A form of such language
translation module is shown in Figure 6.

Figure 6: The Model Language Translation Module

The Implementation

In this study, we use the Borland Delphi 6 to implement the
system. First, the User Interface Module of the Model
Builder provides users to create a SES. In this module, we
use the “TTreeView” component to achieve our purpose.
We can create and view the SES by using the “TTreeView”
component in a hierarchical structure. Object “TTreeView”
displays a tree diagram of the visual components and their
logical relationships, such as sibling, parent-child and
property relationships, in a hierarchical fashion. Since a
SES has tree-like structure, store it into a “TreeView”
object is quite a natural fit. The attribute of each model is
stored in the “TTreeView” component’s “pointer” attribute.
And then we recursively trace the whole “TTreeView” and
sequentially write down the XML document.

Second, the XML Translation Module and DEVS-Scheme
Language Translation Module use the DOM (Document
Object Model) technologies to maintain the XML document.
Borland Delphi 6 embeds the DOM implementations into a
wrapper component, called “XMLDocument,” that makes

the XML document become an object with methods and
properties. We can easily access the information in the
XML object in an object-oriented way. All the key
information is in the DOM of the XML document. So we
recursively trace the whole XML object and sequentially
write down the source code in specific modeling language.
In this way, we translate the DEVS models written in XML
to any simulation code easily.

CONCLUSION

Simulation technology has been widely used in various
areas for saving the time and money of practically
establishing the real system. However, system models being
built often cannot be executed on other simulation
environments. Modelers cannot exchange their simulation
models when they do not use the same simulation tool.
Most times model designers have to build a new model
from the beginning. In this paper, we presented a method to
portray DEVS models using the XML technology. We also
provide a GUI tool to help users build the System Entity
Structure of the model being simulated and save it into an
XML document, which can run on any DEVS-based
simulation environment after a simple translation. We hope
this new realization will provide a solution to the simulation
interoperability issue in DEVS community.

REFERENCES

Deitel, H.M.; P.J. Deitel; T.R. Nieto; T.M. Lin; and P. Sadhu.

2001. XML How to Program. Prentice-Hall, Englewood Cliffs,
NJ.

Kim, H-D. 2001. “An XML-based modeling language for the
open interchange of decision models,” Decision Support
Systems 31, Issue: 4 (Oct), 429-441.

Kim, T.G. and S.B. Park. 1992. “The DEVS Formalism:
Hierarchical Modular Systems Specification in C++.” In
Proceedings of European Simulation Multiconference
(York, UK, Jun 1-3). SCS Europe, 152-156.

Tan, C-T. 1996. “Design and Implementation of a DEVS
Simulation Workbench.” Master Thesis. Dept. of Computer
Science and Engineering, Tatung University, Taipei, Taiwan.

Zeigler, B.P. 1984. Multifacetted Modelling and Discrete Event
Simulation. Academic Press, London, UK and Orlando, FL.

Zeigler, B.P. 1986. “DEVS-Scheme: a Lisp-Based Environment
for Hierarchical, Modular Discrete Event Models.” Technical
Report. AIS-2, CERL Lab., Department of Electrical and
Computer Engineering, University of Arizona, Tucson, AZ.

Zeigler, B.P. 1990. Object-Oriented Simulation with Hierarchical
Modular Models: Intelligent Agents and Endomorphic
Systems. Academic Press, Boston, MA.

Zeigler, B.P.; Y.K. Moon; D.W. Kim; and J.G. Kim. 1996.
“DEVS-C++: A High Performance Modelling and Simulation
Environment.” In Proceedings of 29th Hawaii International
Conference on System Science (Maui, Hawaii, Jan 3-6). IEEE,
Piscataway, NJ, 350-359.

Zeigler, B.P. 1997. “DEVS-JAVA User’s Guide.” Technical
Report. AI & Simulation Lab., Department of Electrical and
Computer Engineering, University of Arizona, Tucson, AZ.

	Overview of the DEVS formalism and SES
	Extensible Markup Language
	The Model Builder
	The Intermediate Meta-form in XML Format
	Specific DEVS Model Language Translation Module
	The Implementation

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

