
A PROPOSAL OF A DISTRIBUTED COMPONENT ENVIRONMENT FOR THE
INTEGRATION OF SIMULATION MODELS

Alfredo Anglani, Antonio Grieco, Massimo Pacella*

Dipartimento Ingegneria dell’Innovazione
Università degli Studi di Lecce

Via per Monteroni, 73100 Lecce, Italy

Lucio Colizzi
Divisione Ingegneria Informatica

Consorzio CETMA – Centro di Progettazione Design & tecnologie
dei Materiali, Cittadella della Ricerca

Strada Statale 7 km 7 + 300 per Mesagne, 72100 Brindisi, Italy

* Corresponding author, e-mail: massimo.pacella@unile.it, fax: +39 0832 320 279

KEYWORDS

Discrete event simulation, distributed component computing,
CORBA, ARENA.

ABSTRACT

The simulation of complex systems, by means of computerised
models, is shifting to a new paradigm: the DCC (Distributed
Component Computing). The applications of this simulation
paradigm are client/server running – programs that use
collaborating distributed components. These components may be
located on different platforms with different operating systems,
and they may be developed in heterogeneous simulation
languages. In this paper, a framework for the integration of two
diverse discrete event simulation languages is discussed. The
integration is achieved by implementing a suite of abstractions and
of simulation services, which are based on the distributed
component platform technology CORBA (Common Object
Request Broker Architecture). Software components can be used
to assemble simulators from a variety of heterogeneous services
and models.

INTRODUCTION

Nowadays, simulation applications are becoming very complex
software models. This is mainly due to the increasing complexity
of the analysed systems that, as those in the manufacturing
production field, are characterised by several groups of co–
ordinated interacting elements (Kellert et al. 1997). The growing
complexity of simulation projects involves the increasing of both
the required simulation devices, and of the heterogeneity levels
among them. To address this complexity, future simulation
applications must be substantially redesigned from a software
implementation perspective. Several works are studying the
application of component – oriented paradigms to develop
simulation models in the manufacturing field (McArthur et al.
2002). In particular, the work done within the Object Management
Group (OMG) has led to the definition of the Computer Integrated
Manufacturing (CIM) framework, which is a distributed
component – oriented architecture for the integration of simulators
in the manufacturing environment.
A promising approach to re – design simulation applications is to
move toward the Distributed Component Computing (DCC)
paradigm in which monolithic software systems are being
replaced by a collection of different components (Sheremetov and
Smirnov 1999). A valuable feature of the DCC paradigm is that it
is heterogeneous. Ideally, heterogeneity permits to use the best
combination of hardware and software elements. In the simulation
field, that implies the option to use the more suitable simulation

tool in order to model each specific part of the analysed system.
The DCC paradigm allows the developer to implement complex
simulation models by simply connecting a set of elements that
provide a variety of simulation services (McArthur et al.).
Large efforts have been made in the last decade in order to
combine simulation models. For example, the High Level
Architecture (HLA – IEEE standard 1516) defines a framework
that makes interaction possible for various simulation components.
The aims of HLA are mainly to get an interoperability of the
simulators and to reuse components over a large number of
applications. The HLA framework is able to establish the technical
foundation for the combination of sub – models on the same
planning level using the same simulation method but probably
different simulation tools (Wilcox et al. 2000). Nevertheless, the
HLA does not solve the problem that arises if different paradigms,
levels of detail and points of view occur when simulation models
are exchanged and coupled. Examples include models which
combine object – oriented components and transaction – oriented
modules, or the coupling of continuous process simulation with
discrete event simulation.
The objective of this work is to present a framework, based on the
standard CORBA, that allows two heterogeneous discrete event
simulation tools (ARENA and DEOS) to interact themselves.
ARENA by System Modeling Corporation (Pegden et al. 1995) is
a graphical transaction – oriented language for discrete event
simulation; it is one of the most commonly used simulation
languages at this moment both in academic and in industrial fields.
DEOS has been implemented at the University of Lecce (Caricato
et al. 2000) in order to supply a C++ class library able to provide a
substantial support for the development of object – oriented
discrete event simulation models. The presented framework
consists of heterogeneous components that are interoperable,
reusable and operate on a common platform.
The remainder of the paper is organised as follows. In section two,
the tools, which have been exploited for the integration of two
simulation languages, are briefly described. In section three, the
integration software framework is reported. In the fourth section,
the implementation of plug – in interfaces for ARENA software is
discussed, while in section five, the plug – in software for the
DEOS environment is presented. In section six, a simple
application example is presented. Finally, conclusions and future
development issues are both briefly discussed.

THE INTEGRATION TOOLS

The need for interaction among software components led to the
specification of middle – ware models. The Object Management
Group’s Common Object Request Broker Architecture (CORBA)
and the Microsoft’s Distributed Component Object Model
(DCOM) are two platforms that enable software objects to work

together. In this section, the tools, which have been used for the
integration of the ARENA and DEOS simulation environments,
are briefly presented.

Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is
an Object Management Group (OMG) specification that defines
the framework required to develop distributed object – oriented
software systems. The idea is to provide the users of an object –
 oriented programming model, for distributed computing, that is as
close as possible to the programming with normal local objects.
In CORBA, the applications are divided into the client part, and
the server part. The client part provides the user interface, and it
has an interface toward the server part fitting to the Interface
Definition Language (IDL) specification. The server part can be a
single object, or a group of objects, which can be positioned in any
location, and are retrieved by means of the ORB. The ORB is the
software layer that sets up the client/server relationship among
objects. The ORB captures the call, it finds an object that can
implement a request and passes it the parameters. Finally, it
invokes the server method and returns the results to the client. The
ORB provides interoperability among applications on different
platforms in heterogeneous distributed environments. CORBA
offers a number of services that provides language – linking
systems for different object – oriented programming languages.

Interface Definition Language (IDL)

Each CORBA object has a defined interface, specified in the
Interface Definition Language (IDL). An interface specifies the
operations that the object supports, and thus, it describes the
requests that can be made to that object. It is kept independent
from the implementation of the object. To use a software module
that has been transformed into a CORBA object, the user is only
required to see its interface. IDL compiler software compiles the
IDL interface. IDL compilers are available for several
programming languages such as C++ and Java. The use of IDL to
define object interfaces allows these interfaces to be used from a
variety of programming languages and computing platforms.

ORBacus

Practically, a software implementation of the CORBA
specification is referred to as an ORB (Object Request Broker). In
the implementation presented in this work, the ORBacus software
has been chosen. Some of the highlights of ORBacus are: 1) full
CORBA IDL supporting, and 2) complete CORBA IDL to C++
mapping. Because CORBA does not require implementation, a
well – designed ORB does not require that components and
technologies already in use must be abandoned. Instead, the
CORBA specification allows ORBs to incorporate and integrate
existing protocols and applications, such as Microsoft DCOM,
rather to replace them.

DCOM and ActiveX Automation

ActiveX is the Microsoft’s marketing name for technologies that
enable interoperability using COM (Component Object Model).
The target of COM is to allow two or more applications or objects
to easily co – operate with one another. The mechanism of
interaction between COM objects and client applications are

generally the same, no matter where they have been deployed.
COM objects can be in process, which means that the interaction
is fast and efficient. Applications can also interact with COM
objects in another process on the same machine (cross process).
Finally, Distributed COM (DCOM) allows a client to interact with
a COM object across the network. DCOM objects are delivered as
compiled objects rather than a source code. This implies that the
end user can use these components without having to understand
how the object is implemented.

Simulator Configuration & Control Tool (SCCT)

The Simulator Configuration & Control Tool (SCCT) is a
software environment, developed at the University of Lecce
(ESPRIT Asia project – EP n. 28661, Baresi and Coen-Porisini
2000). It is based on the CORBA platform, and it is conceived to
develop distributed simulation systems (fig. 1). The SCCT is used
to generate the simulation architecture, setting simulation
parameters, defining simulation probes and expected measures,
monitoring and controlling on – going simulation.

ORB

SCCT

Simulator
A

Simulator
2

Simulator
n

Fig. 1 – The SCCT role on the CORBA framework

The SCCT assigns the simulators to the system architecture
components; moreover, it defines both data flows (local
parameters, filters, batches) and control flows between them.
Practically, the SCCT can be considered as a controller of the
integrated simulation. The simulators operate as black boxes
accessible only by some services defined by means of IDL (fig. 2).

IStopper

OStopper

Stopper

GATE

CtrlIF, data
IF, Stopper

SIMULATOR

SimCall
Back

SCCT

Fig. 2 – The SCCT/simulator module interaction

Each simulator component included in SCCT must support two
kinds of interfaces.
• The Control Interface (CtrlIF, fig. 3): through which SCCT

manages the execution flow (simulator start, stop and pause).
• The Data Exchange Interface: it is composed by The DataIF,

Stopper and StopperFactory interfaces (fig. 2). By means of
such interfaces, the SCCT passes the data produced by one
simulator to another one.

CtrlIF

sIni t(sb : SimuCa llBa ck) : da taIF
sStart() : void
sStop() : void
sResum e() : void
sEnd() : void
sVisualize() : void
getS tate () : S tate
setPara m() : void

<<Interface>>

Fig. 3 – The CtrlIF interface object

The interaction between SCCT and the simulators is obtained by
means of objects that communicate through the IDL interfaces on
the ORB. The SCCT manages both the control functions and the
exchange of data between the simulators. This is made by means
of simulator – gates that model input and output points of the
simulator component. A single interface is presented by SCCT to
the simulator: the SimuCallBack.

ARENA AND DEOS INTEGRATION

The goal of this work is to develop a plug – in system, i.e. an
appropriate interface that allows ARENA and DEOS programs to
interact by means of the CORBA/SCCT framework. The
integration of ARENA and DEOS by means of the
CORBA/SCCT framework requires to solve two problems
(Grieco et al. 2001).
1. The interaction of the SCCT framework and simulation

components. The SCCT can be considered as a controller of
the integrated simulation. The running control functions
required by the SCCT (e.g. start, interrupt, and pause) are
usually available in the commercial simulation environments
(such as ARENA). However, it is necessary to implement a
mechanism that allows the SCCT framework to use them
run – time (i.e. during a simulation run).

2. The synchronisation of simulator components. At the end of a
simulation run, the SCCT, by means of the ORB, may transfer
the resulting output to a specific group of different simulation
objects. In this way, a simulator can be informed that some
data are produced, but it does not known when they have been
produced. The “timing” information is fundamental in a
distributed discrete event simulation..

At the current state of the research, integration can be obtained
only for sequentially – coupled modules. That means that each
single module of the overall simulation model (assuming that it is
coupled with n input and m output modules) cannot have input
produced by one of its own output modules (i.e. no recursion is yet
possible). The timing information, which is used for the
synchronisation of simulators, is passed from a specific module to
the following ones by means of shared files. Such files are
processed by special objects (namely the Gate_IN and
Gate_OUT) both implemented in the ARENA and DEOS
environments. The Gate_OUT object collects the entities, and the
temporal information, that pass from the current simulation
module to a different one. The Gate_IN transforms the input
timing information, into the starting list of events for the actual
simulation module.
The implementation of the ARENA and DEOS plug – ins are
based on the Windows Automation Technology (i.e. the DCOM
model). The DCOM is a standard model that establishes the rules
of interaction between different software. This is made possible by
using a particular set of Application Program Interfaces (API)
collected in specific libraries. Various programming languages

support the Windows Automation Technology providing users by
mechanism in order to create both the Automation Controller
Model and the Automation Object Model.
In the reference case study the Automation Controller Model (the
client) coincides with the procedure recalled by the SCCT, the
Automation Object Model (the server) is one (or more) object that
represents either the ARENA or DEOS simulator.

ARENA

ARENA exploits Windows Automation Technology. Therefore,
the ARENA Automation Object Model, which is a list of
application objects that can be controlled by external applications,
has been used in order to integrate the ARENA environment to the
CORBA/SCCT framework. The Automation Object Model is
registered when the application is installed. By using this model,
the implementation of the ARENA plug – in systems can be
divided in two parts: 1) the Control Management and 2) the Data
Exchange Management.
The Control Management consists in the implementation of the
methods reported in the SCCT CtrlIF interface. Two particular
objects of the ARENA Automation Object Model, has been used
in order to implement these methods:
• ARENA “Application” Object (fig. 4, fig. 5): it presents a set

of methods that allow an object to access the ARENA
simulation environment. In our application, it is invoked by
the method Init of the SCCT CtrlIF interface in order to recall
the set up functions of the ARENA environment (as
GetApplication, Refresh and Activate).

IArenaApp

Application
Object

Init Method

Fig. 4 – ARENA Application Object

IArenaApp

getA pplication()
refresh()
get ActiveModel ()
get Models()
get Modules()

<<Interface>>

Fig. 5 – The ARENA Application object interface

• ARENA “Model” Object (fig. 6, fig 7): it allows an
application object to control the simulation running, as well
as to open, to create and to close an ARENA simulator
model.

All methods have been implement as independent threads. In this
way, SCCT and the simulator modules can operate in a parallel
manner.
In SCCT, data can be exchange through the Stoppers. The
methods that are used in this case are “Send” and “Retrieve”. With
the former, the SCCT sends input data to a simulator, with the
latter it captures the output produced by a simulator. At the current
state of work, the Data Exchange Management is implemented by
means of files. Two kinds of files may be use as input: 1) TXT
files that contain temporal information for a specific simulation
model, and 2) DOE files that specify the simulation model.

IModel
Object

IModel

sEnd method

sStart me thod

sResum e method

sStop method

Fig. 6 – ARENA Model Object

IModel

Go()
End()
Pause()
GetState()
StartOver()

<<Interface>>

Fig. 7 – The ARENA Model object interface

DEOS

The implementation of the DEOS plug – in system has involved a
preliminary phase. In this phase, the appropriate DEOS
Automation Object Model (called DEOS Object, fig. 8, fig. 9) has
been implemented and embedded in the distributed environment.
The DEOS Object has a unique interface, called IDeos, which
methods can be referenced to by the applications that manage the
object. The development of the DEOS plug – in can be subdivided
in two phases: 1) Control Management and 2) Data Exchange
Management.
The DEOS Object is controlled by the SCCT interface method
CtrlIF in order to interact both with the DEOS running
environment (to run or to stop a simulation) and with a DEOS
simulation model (to send the input parameters). The management
of the simulation session is obtained by means of the methods
Start, Resume, Stop and End.
By means of the Send method, the DEOS plug – in is able to
manage two kinds of files: 1) TXT files, which contain the
temporal information for a given simulation model, and 2) DSF
files, which have the DEOS simulation model.

DEOS
Object

IDeos

sInit Method

sStart Method

sEnd Me thod

sResume Method

sStop Method

Fig. 8 – The DEOS Object

IDeos

OpenApplication()
SetIputFile()
SetModelName()
GoSimulation()
StopSimulation()

<<Interface>>

Fig. 9 – The DEOS interface object

AN APPLICATION

In this section, a simple example of the ARENA and DEOS
integration is presented. In the following case study, a machining
centre (MC) and a buffer queue compose the reference
environment. The purpose of the MC is to transform raw parts in
final products.
Let us assume that the simulator has been divided into two
different components. The first one models the arrival succession
of raw pieces, while the second one simulates the buffering and
the machining processes. In particular, it has been decided to
model the first component by means of the DEOS language (fig.
10). It consists of a block that generates the entities at interval
times that follow a specific statistical distribution. On the other
hand, the second module, which simulates the sequence of the
buffering and of the machining operations, has been implemented
in the ARENA environment (fig. 12).
The two simulation modules may be located on different
platforms and they communicate to the CORBA/SCCT
framework by means of the “Gate IN” and “Gate OUT” modules.
From the user viewpoint, the “Gate OUT” is a particular module
of the environment that allows linking an external simulation
component even if it has been implemented in a different language
on a different machine. As well as the “Gate IN” module
represents the entry point for the output produced by a different
simulation component. Both the “Gate IN” and the “Gate OUT”
module has been implemented in the ARENA and in DEOS
language as interface modules between the simulation
environments and the CORBA/SCCT integration framework.

Fig. 10 – The DEOS simulator

Once the simulation components have been fully implemented in
the specific language and located on the specific platforms, the
user models the overall simulation schema by means of the
graphical SCCT interface (fig. 11). In the referenced case study,
this implies to implement a simulation schema composed by two
sequential simulator components (DEOS and ARENA fig 11),
two input points and a single input output. Each input point
(Input1 and Input2 in fig. 11) is used in the integration
environments in order to control the overall simulation run. The
ARENA simulator component produces the output of the
simulation.

Fig. 11 – SCCT overall simulation schema interface

Fig. 12 – The ARENA simulator

CONCLUSIONS AND FUTURE ISSUES

CORBA has the potential to address the problem associated
with the need for interoperability among the huge number of
simulation software products available today. In this paper, an
integrated approach for discrete event simulation, which
integrates two heterogeneous simulation languages (ARENA
and DEOS) by means of CORBA, has been presented. The
integration is achieved by constructing a suite of abstractions
and simulation services built on a common kernel. The
abstractions and services are encapsulated into combinable
software components.
The most important benefit of the proposed framework, at the
current state of the research, is that it allows the user to
integrate different models that are developed by two
heterogeneous language: the transaction – oriented ARENA
environment to the object – oriented DEOS language. From
end user viewpoint, each module, which encapsulates a
specific simulation sub – model, can be integrated with each
other no matter where it is located or how it has been
implemented. Moreover, as indicated by the example, a
distributed simulation model can be implemented in a simple
and intuitive manner.
A future development consists in the extension of the
presented framework in order to execute co – simulation. By
co – simulation, we mean the possibility of having simulators
exchanging data during the actual simulation no matter how
they are coupled. This requires that all simulators share a
notion of a “global clock” so that the temporal information
that is exchanged within them can be considered consistent
with each single simulator clock.

ACKNOWLEDGEMENT

The work described in the paper has been partially funded by the
Ministry of Instruction, University and Research of Italy (MIUR),
project PRIN2001 – prot. MM09164148_004 ‘Models for capacity
planning in advanced manufacturing systems'.

REFERENCES

Grieco A., M. Pacella and A. Anglani “Integration of heterogeneous
discrete event simulation tools by means of CORBA”,
Proceedings of the annual conference of the Italian Society for
Computer Simulation, Naples (Italy) December 6-7, 2001, 61-69.

Baresi L. and A. Coen-Porisini “An Approach for Designing and
Enacting Distributed Simulation Environments” Proceedings of
the 16th IFIP Word Computer Congress – Proceedings of
Conference on Software: Theory and Practice, ICS 2000, Beijing
(China), August 25-28, 2000, 637-645.

Caricato P., A. Grieco, F. Nucci, A. Zacchino and A. Anglani “An
open-source visual environment for discrete event simulation:
DEOS”, Proceedings of the annual conference of the Italian
Society for Computer Simulation, Naples (Italy) December 6-7,
2001, 47-54.

CIM Framework Architecture Guide 1.0, http://www.sematech.org/
public/ docubase/ abstracts/ 3379aeng.htm (September ’02).

High Level Architecture, https://www.dmso.mil/ public/ transition/ hla/,
(September 2002).

Kellert P., N. Tchernev and C. Force, “Object Oriented Methodology
for FMS modelling and Simulation”, International Journal on
Computer Integrated Manufacturing, vol. 2, (1997) no. 6, 405-434.

McArthur K., H. Saiedian and M. Zand, “An evaluation of the impact
of component-based architectures on software reusability”.
Information and Software Technology, vol. 44, (2002), 351-359.

Microsoft COM White Papers Internet Web Page,
http://www.microsoft.com/ com/ wpaper/ default.asp, (September
’02).

Object Management Architecture (OMA) Guide http:// www.omg.org/
technology/ documents/ formal/
object_management_architecture.htm (September ’02).

ORBacus home page, http://www.iona.com/ products/
orbacus_home.htm, IONA Technologies, (September ’02).

Pegden C.D., R.E. Shannon and R. P. Sadowski, Introduction to
Simulation Using SIMAN, (McGraw-Hill, 1995).

Sheremetov L. B., A. V. Smirnov, “Component integration framework
for manufacturing systems re-engineering: agent and object
approach”, Robotics and Autonomous Systems, vol. 27 (1999), 77-
89.

Wilcox P. A., A. G. Burger and P. Hoare, “Advanced distributed
simulation: a review of developments and their implication for data
collection and analysis”. Simulation Practice and Theory, vol. 8,
(2000), 201-231.

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

