
 

Tool Support for Distributed Management of Simulation Models and Evaluation Data 
 

Marc Störzel and Ursula Wellen 
Department of Computer Science 

University of Dortmund 
Baroper Str. 301, 44227 Dortmund 

Germany 
E-mail: {mstoerzel,wellen}@ls10.cs.uni-dortmund.de 

 
 
 

 
KEYWORDS 
distributed data management, evaluation data, simulation, 
Process Landscaping. 
 
ABSTRACT 
 
This article presents a software system supporting the 
evaluation of simulation data generated for the analysis of 
communication between locally distributed processes. The 
corresponding process modeling language is based on 
Reference Nets, a special type of high level Petri Nets, which 
allows the modeling of communication between different net 
instances with synchronous communication channels. For the 
simulation of this type of Petri Net we make use of and 
extend the software system Renew, a Java-based Petri net 
tool. 
As simulation often generates mass data, our approach is to 
store simulation results separately from data describing 
structural features of process models. We use Renew’s 
graphical editor and simulation component as a basis, 
implement the feature of storing simulation data by using a 
database server and extend the tool further with an evaluation 
component. We discuss the advantages of separation of the 
different data types and present a framework developed for 
the reintegration of these data streams. With an example, we 
show how algorithms for the evaluation of simulation data 
can benefit from this approach. 
 
INTRODUCTION 
 
In order to analyze the simulation data of process models for 
optimization purposes it is not sufficient to store the 
simulation results in a database and to compare different 
cycles. It is necessary to extend this data with knowledge 
about structural features of the considered processes, such as 
the amount of process models and their parameterization. 
This second type of data is often already stored separately 
from simulation data, e.g. as part of the modeling data. It can 
be extended with further information about the underlying 
process models to analyze better simulation results. 
Therefore, a set of process models, called process landscape 
(Gruhn and Wellen 2001), represented by Petri Nets, is 
simulated with varying parameterizations mapping concrete 
locational distributions of the processes, where the Petri Nets 
structure stays mostly unchanged (Störzel 2001). In this 
paper we discuss a software architecture supporting this 
approach by separating structural data from simulation data 
and reintegrating both data streams for evaluation purposes. 

The underlying process modeling method we use for the 
development of distributed process models, called Process 
Landscaping (Gruhn and Wellen 2000), makes use of Petri 
Nets allowing the modeling of communication interfaces 
between nets in a sufficient and comfortable way. Reference 
Nets (Kummer 19999), a special type of timed colored Petri 
Nets (Jensen 1992), support the modeling of communication 
between different net instances with synchronous channels, 
where communication systems can be modeled as separated 
nets. Renew (Kummer and Wienberg 2000) is a software tool 
consisting of a graphical editor for the modeling of 
Reference Nets and a simulation component, who’s graphical 
output may be switched off for performance reasons. We 
took Renew as a basis and extended it with 
 

• an XML-based approach for the parameterization of 
experiments as a set of simulation cycles, 

• project-oriented management of the hierarchical 
structure of both, process model and simulation 
data, where a project consists of one or more 
experiments, 

• database-driven recording of mass simulation data, 
and 

• preparation and stochastically evaluation of 
simulation cycles. 

 
We have chosen the method of discrete event-driven 
simulation (Law and Kelton 1991) for our analyses because 
we focus on the communication between process models 
where each receiving or sending of a message is modeled as 
an event. Even when hybrid simulation techniques are 
engaged (e. g. (Donzelli and Lazeolla 2001)) the 
communication itself is modeled in a discrete manner. In 
Petri Nets, each firing of a transition is handled as an event 
which may enable other transitions, and this may result in 
further events. Analyzing the nets statically is not applicable 
because of the models’ complexity and restrictions for timed 
transitions (Beckmann 1997). With respect to stochastic 
characteristics of simulation cycles we clustered several 
cycles with unchanged parameters to an experiment and 
experiments with varying parameterization to projects. 
There are several studies comparable with our approach e.g. 
in the area of climate research (Lautenschlager 1995). In this 
area we can also find separation of data storing. But in 
difference to our approach Lautenschlager stores data 
concerning the model’s structure within a relational database 
management system (RDBMS), and the measured climate 
data (about 60 TByte each year) is stored as binary large 
objects (BLOBs), i.e. unstructured bytestreams. 



 

This comparison also shows that the approach of separating 
model data and measured (simulation) data is not restricted 
to Petri nets. Petri nets are often used to analyse dynamic 
behaviour based on static structures, like it is the case for our 
process landscape. But they are not the only suitable notation 
resp. specification language for modeling and simulation 
purposes. 
For example Tolujew et al. (Merkuryeva et al. 1998), 
Merkuryeva, Merkuryev and Tolujew 2000) start with 
modeling flow charts which are translated into a computer 
simulation program using SIMAN language block-diagrams. 
The authors analyse logistic processes at a container 
terminal. Similar to our approach, they also use special 
evaluation components after the simulation run. 
The software architecture for our simulation and evaluation 
purposes is described in more detail in the following section. 
It presents a global view of the different components 
supporting the process of parameterization, simulation and 
evaluation of a process landscape. Section 3 describes our 
concept of distributed data management in more detail and 
explains the motivation for this approach. Both types of data 
storage are handled in a separate subsection. The process of 
reintegration is shown by an example algorithm in a third 
subsection. Finally, in section 4 the advantages of this 
approach are summarized and an overview to our future 
research is presented. 
 
STRUCTURE OF TOOL SUPPORT 
 
The basis for our work is the software tool Renew. For 
science and research purposes its Java-based source code is 
available for free. It consists of a comfortable modeling tool 
and a performant simulation component. In version 1.4, 
which is the version we started with, a coupling to a database 
system was part of the architecture’s specification but not yet 
implemented. We implemented this interface and added a 
further component for a project-oriented management of data 
and an evaluation component. The resulting software 
architecture is depicted in figure 1, where the additional parts 
are marked gray, namely the evaluation component, the data 
base and the report component. 
The process of analyzing the complete model of all 
communicating processes, called process landscape, can be 
divided into 5 steps: 
 

1. modeling process models as a set of Petri Nets 
2. modeling further Petri Nets representing 

communication interfaces between the different 
process models 

3. parameterization of all Petri Nets with respect to 
dynamic communication aspects 

4. running several simulation cycles 
5. evaluation of simulation data and analysis of results 

 
This process is supported by our software tool. It supports 
the modeling, parameterization simulation and evaluation of 
a process landscape and creates a so-called project file. This 
file holds references to further files representing net 
descriptions. The editing of this file is not yet implemented 
within our software tool, but due to the fact that it is an XML 

file with a defined DTD it can easily be modified with any 
editor. 
 

 
Figure 1: Integration of tools  

 
With the graphical editor each net can be modified in a 
comfortable way. The proper simulation of the complete set 
of Petri Nets can be controlled by graphical output of each 
simulation run before a simulation for evaluation purposes is 
started. For the latter, the tool initiates a database connection 
and starts an adjustable count of simulation cycles. After the 
simulation data has been computed an evaluation can be 
initiated. To stochastically evaluate the simulation results, the 
evaluation component makes use of both the mass simulation 
data and the additional information stored in the project file. 
 
DATA MANAGEMENT 
 
In our approach two different types of data are stored 
separately. A project file stores information about the set of 
process models, their relation to each other and additional 
data concerning the properties to be evaluated. We chose 
XML to file this kind of information, because XML 
 

• supports the building of a hierarchy of process 
models, 

• allows adding structured information to net 
instances, 

• can easily be supported by other software and 
• is (more or less) human readable. 

 
Simulation of a process landscape generates mass data as a 
second type of data. We use a database management as best 
technical solution of storing these data fast and efficiently. 
For this purpose, we set up a database structure which is 
mostly independent of any intended evaluation purpose. 
Both the project file’s and the database’s structure are 
discussed in the following two subsections. The third 
subsection explains how the information stored in the 
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database is transformed into an object model corresponding 
to the project file. By example an algorithm is presented 
operating on this object model for evaluation purposes. 
 
XML-based Project File 
 
Figure 2 depicts a typical project file. The root tag holds the 
project name and a hint where mass data is stored for 
simulation and evaluation, respectively. This information 
may be overridden by command line parameters or program 
settings (in this order) to support the exchange of project 
files between sites with different technical settings. 
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These models are Reference Nets, too. They are described by 
communicationSystem tags on the same level as 
cluster tags. These tags contain some additional data and 
may hold one or more channel tags. Each channel tag 
describes a linkage between any two cluster tags, 
referenced by their names. The linkage direction and the 
definition of the communication initiating and responding 
clusters also has to be specified.  
In this subsection, we have shown how information about the 
mass data storage, the set of Petri Nets forming the process 
landscape to be simulated, structural information about net 
linkages and additional data are tied together in a project file. 
The next subsection describes the structure of the database 
and how additional data are stored therein.  
 
Data Storage of Mass Simulation Data 
 
We now discuss the database structure for logging simulation 
data by following the sequence of firing transitions in the 
example net shown by figure 3. 
 

 
Figure 3: examplary net for illustrating database structure 

 
The transition labeled in represents a part of a synchronous 
channel (here also named in). Synchronous channels are an 
extension of Reference Nets, where the firing of a starting 
transition also initiates the firing of a so-called downlink 
transition (Kummer 1998). The consumed token data can 
thereby be used by this downlink transition. 

:in(x)

x x

x

x @ 5

x @ 10 x.getReceiver():out(x)
x

in P1 do

P2

P3

out

del
<project name=“DA“
dbURL=“jdbc:mysql://localhost/test“
driver=“org.gjt.mm.mysql.Driver“>

<experiment name=“currentStatus“>
<cluster name=“ProjectManagement“

net=“PM.rnw“>
</cluster>

<cluster name=“ApplicationEngineering“
net=“AE.rnw“>
Some comment

</cluster>

<communicationSystem
net=“../cbd/technical/PM_AE.rnw“
costPerMinute=“42.0“
capacity=“42000“>

<channel
initiator=“initiator_PM“
from=“ProjectManagement“
responder=“responder_AE“
to=“ApplicationEngineering“>

</channel>
</communicationSystem>

</experiment>
<experiment name=“plannedSolution“>

....
</experiment>

</project>
 

 
Figure 2: Sample project file 

ne project may consist of several experiments. Each 
xperiment references to a set of Petri Nets, holds 
nformation about their linkage and may store additional data 
or some nets. 
n general, Petri Nets are referenced by cluster tags. The 
andatory attribute net gives reference to a file readable by 
enew which holds the description of a Reference Net.  

he name attribute may hold an unique id within an 
xperiment. If there is no such id, the name is derived from 
he file name. A comment may be included in a cluster 
ag which makes the generated 
valuation report much more 
eadable. A second type of tag 
or referencing Petri Nets, also 
ound in a project file, is more 
omain specific. With focus on 
he communication between 
rocesses the models handling 
he process of communication itself are of special interest. 

Table 1 shows the main database table, where the entries 
depict the process dynamic of the Petri Net in figure 3. The 
firing of transition in results in the action of putting a token 
on place P1. All putting or removing actions resulting from 
one transition’s firing have the same value of 
transactionCount. The firing results of transition in enable 
transition do, resulting in three further actions (see rows 2 – 
4 in table 1). First the token placed on P1 is consumed. Each 
token has a unique tokenId, valid only for a concrete 
marking situation of the net. The firing of transition do alters 
the net’s marking and produces two new tokens with ids “1” 
and “2”.  
 

Table 1: Exemplary data for illustrating database structure 
 

 

action transactionID transactionCount netID placeName tokenID tokenData clock duration 
Putting 47110815 0 0 P1 1 Sender..   0   0 
Removing 47110815 1 0 P1 1 Sender..   0   0 
Putting 47110815 1 0 P3 1 Sender..   0   5 
Putting 47110815 1 0 P2 2 Sender..   0 10 
Removing 47110815 2 0 P3 1 Sender..   5   0 
Removing 47110815 3 0 P2 2 Sender.. 10   0 



 

According to the arcs’ inscription, the tokenData is copied 
from consumed to produced tokens. Using Reference Nets 
token data can be of any type of Java object. But the token 
placed on P2 gets available after ten units of time (see last 
line of table 1), where the one on P3 is available after five 
units of time respectively (see penultimate row in table 1). 
This is reflected by the data in the column entitled clock, 
which holds the value of a global clock when each action 
takes place (for simplicity we start with zero). All tokens 
necessary to enable this transition have to have arrived 
before the transition fires. Therefore, the time the transition 
fires, depends on the arrival time of the last token. To 
distinguish the time recorded in the column clock from each 
token’s delay, another column called duration is introduced. 
It stores the token’s delay assigned by the inscription of an 
outgoing arc of the producing transition. 
After five units of time the token on P3 is consumed and no 
other token is produced (see figure 3). So the removing 
action is the only one taking place while firing transition del. 
Five units of time later transition out fires. out is the uplink 
transition of the represented synchronous channel. The 
channel’s corresponding downlink transition is dynamically 
set according to a token data’s attribute, which evaluates 
from a call of the method getReceiver on the object 
represented by the token itself. 
Two more columns of table 1 have to be explained: netID 
gives a unique id to each net instance. This is matched to the 
net’s name and corresponding filename using a further table 
which is not discussed here. Another column is labeled 
transactionID. The value of this column remains unchanged 
throughout a complete simulation cycle and is matched to an 
experiment. This is needed to distinguish different simulation 
cycles of the same experiment. 
The following subsection presents how information stored in 
the database and in the project file is combined for 
evaluation purposes. 
 
Evaluation Component 
 
The first step for evaluating simulation data is to bring 
together and synchronize both data streams. This is done by 
the evaluation component. It builds up a hierarchy of objects 
by processing the project file and then fills up this hierarchy 
by scanning the database. Afterwards, the resulting data 
model can be used as input for specific analysis algorithms. 
We now discuss the structure of the model and its 
construction. Additionally, we explain how an example 
algorithm for the computing of communication costs deals 
with this basis. 
As shown in figure 4, classes for a project, an experiment 
and a net form the upper three levels of the data structure. 
Building them up according to the project file is mainly 
straight forward, only the differentiation of nets representing 
clusters and nets representing communication systems is 
stored additionally in class Net by a boolean marker. Class 
Run represents a single simulation cycle. It is introduced on 
a separated level, because in some cases not all places of a 
net may be marked in a specific simulation cycle. Therefore, 
the set of places may vary between cycles, but stochastically 
analysis over all cycles has to consider all places. 

Places and tokens are handled on the following two levels, 
parallel to the structure of action sequences and actions. 
Class Action references the same token data, whereas class 
ActionSequence stores the sequence of tokens’ production 
or consumption in the order they arise during a simulation 
cycle. Compared with dealing only with place data, this 
allows an improved evaluation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Data model for the analysis of simulation data 

 
The described structure becomes filled with simulation data 
while scanning the database table introduced in the last 
section. There is only one instance from class Project, 
directly corresponding to the database. Experiments are 
mapped to values of transactionID. A value of zero for 
transactionCount indicates a new simulation cycle. Each 
putting or removing action is directly mapped to an Action 
object and added to the ActionSequence object. For each 
place a change in stock is recorded over time. Objects of 
class Token hold application specific token data serialized as 
a string. They reference to the places and nets they occur in. 
Additionally, the duration value assigned to the token objects 
is recorded. 
Data discussed until now enables the analysis of 
communication aspects like the average path length taken of 
a specific token within a net, or the ratio of instantly enabled 
transitions. This is done in the sense that no token necessary 
for enabling a transition was available before firing took 
place with respect to the tokens' duration values. Algorithms 
for evaluating these communication issues are explained in 
(Störzel 2001) in more detail. 
Figure 5 presents an UML-based sequence diagram for 
computing communication costs within a process landscape. 
This attribute is managed in the project file (see figure2). 
Initially, method distributeCosts of class 
ExperimentDataModel is called. For each net representing 
a communication system the set of all places for which a 
marking has been recorded in any run is computed. In an 
iteration over the elements of this set all communication 
costs are summed up separately for each run. This is done by 
extracting data volume and sender from the recorded token 
data. This information is combined with the parameterization 
of capacity and costs per minute of the considered net, stored 
in the project file. The net identified as sender is charged for 
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the costs. Storing this data for each simulation run enables 
evaluation of stochastic data such as the minimum, 
maximum, average, standard deviation and the distribution 

 

 
Figures 5: Algorithm for computation of communication costs 

 
 
RESULTS AND FUTURE RESEARCH 
 
In this paper we presented our approach of storing mass 
simulation data separate from data concerning model 
structure and other model’s properties to be evaluated. We 
have shown how the two data streams can be reintegrated 
into an appropriate data structure and how this may serve as 
a basis for evaluation algorithms. This approach has been 
validated to be successful and handy in different domains, 
such as interprocess communication analysis (Störzel 2001) 
and fuzzy timed specifications of multimedia presentations, 
where the latter is still in progress. We are confident of 
applying this approach successfully in broader areas of 
application. 
Besides software support, we also want to extend our 
simulation and evaluation approach to additional process 
landscape features like the autonomy of different process 
locations (Gruhn and Wellen 2002). 
Another point is that Renew also supports the feature of 
importing and exporting Reference Net descriptions in an 
XML format. This enables intregration of Renew and the 
extensions described here into a seamless chain of tools for 
integrated process planning and optimization support. A 
diploma thesis at the University of Dortmund (Brockmann 
2002) has already implemented an integration of a document-
based process planning tool (Palermo 2001) and the 
extended software system of this approach. 
 

itself. This information is output from the evaluation 
component and may be stored in XML format to support the 
idea of data exchange between different tools. 
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