

Tool Support for Distributed Management of Simulation Models and Evaluation Data

Marc Störzel and Ursula Wellen
Department of Computer Science

University of Dortmund
Baroper Str. 301, 44227 Dortmund

Germany
E-mail: {mstoerzel,wellen}@ls10.cs.uni-dortmund.de

KEYWORDS
distributed data management, evaluation data, simulation,
Process Landscaping.

ABSTRACT

This article presents a software system supporting the
evaluation of simulation data generated for the analysis of
communication between locally distributed processes. The
corresponding process modeling language is based on
Reference Nets, a special type of high level Petri Nets, which
allows the modeling of communication between different net
instances with synchronous communication channels. For the
simulation of this type of Petri Net we make use of and
extend the software system Renew, a Java-based Petri net
tool.
As simulation often generates mass data, our approach is to
store simulation results separately from data describing
structural features of process models. We use Renew’s
graphical editor and simulation component as a basis,
implement the feature of storing simulation data by using a
database server and extend the tool further with an evaluation
component. We discuss the advantages of separation of the
different data types and present a framework developed for
the reintegration of these data streams. With an example, we
show how algorithms for the evaluation of simulation data
can benefit from this approach.

INTRODUCTION

In order to analyze the simulation data of process models for
optimization purposes it is not sufficient to store the
simulation results in a database and to compare different
cycles. It is necessary to extend this data with knowledge
about structural features of the considered processes, such as
the amount of process models and their parameterization.
This second type of data is often already stored separately
from simulation data, e.g. as part of the modeling data. It can
be extended with further information about the underlying
process models to analyze better simulation results.
Therefore, a set of process models, called process landscape
(Gruhn and Wellen 2001), represented by Petri Nets, is
simulated with varying parameterizations mapping concrete
locational distributions of the processes, where the Petri Nets
structure stays mostly unchanged (Störzel 2001). In this
paper we discuss a software architecture supporting this
approach by separating structural data from simulation data
and reintegrating both data streams for evaluation purposes.

The underlying process modeling method we use for the
development of distributed process models, called Process
Landscaping (Gruhn and Wellen 2000), makes use of Petri
Nets allowing the modeling of communication interfaces
between nets in a sufficient and comfortable way. Reference
Nets (Kummer 19999), a special type of timed colored Petri
Nets (Jensen 1992), support the modeling of communication
between different net instances with synchronous channels,
where communication systems can be modeled as separated
nets. Renew (Kummer and Wienberg 2000) is a software tool
consisting of a graphical editor for the modeling of
Reference Nets and a simulation component, who’s graphical
output may be switched off for performance reasons. We
took Renew as a basis and extended it with

• an XML-based approach for the parameterization of
experiments as a set of simulation cycles,

• project-oriented management of the hierarchical
structure of both, process model and simulation
data, where a project consists of one or more
experiments,

• database-driven recording of mass simulation data,
and

• preparation and stochastically evaluation of
simulation cycles.

We have chosen the method of discrete event-driven
simulation (Law and Kelton 1991) for our analyses because
we focus on the communication between process models
where each receiving or sending of a message is modeled as
an event. Even when hybrid simulation techniques are
engaged (e. g. (Donzelli and Lazeolla 2001)) the
communication itself is modeled in a discrete manner. In
Petri Nets, each firing of a transition is handled as an event
which may enable other transitions, and this may result in
further events. Analyzing the nets statically is not applicable
because of the models’ complexity and restrictions for timed
transitions (Beckmann 1997). With respect to stochastic
characteristics of simulation cycles we clustered several
cycles with unchanged parameters to an experiment and
experiments with varying parameterization to projects.
There are several studies comparable with our approach e.g.
in the area of climate research (Lautenschlager 1995). In this
area we can also find separation of data storing. But in
difference to our approach Lautenschlager stores data
concerning the model’s structure within a relational database
management system (RDBMS), and the measured climate
data (about 60 TByte each year) is stored as binary large
objects (BLOBs), i.e. unstructured bytestreams.

This comparison also shows that the approach of separating
model data and measured (simulation) data is not restricted
to Petri nets. Petri nets are often used to analyse dynamic
behaviour based on static structures, like it is the case for our
process landscape. But they are not the only suitable notation
resp. specification language for modeling and simulation
purposes.
For example Tolujew et al. (Merkuryeva et al. 1998),
Merkuryeva, Merkuryev and Tolujew 2000) start with
modeling flow charts which are translated into a computer
simulation program using SIMAN language block-diagrams.
The authors analyse logistic processes at a container
terminal. Similar to our approach, they also use special
evaluation components after the simulation run.
The software architecture for our simulation and evaluation
purposes is described in more detail in the following section.
It presents a global view of the different components
supporting the process of parameterization, simulation and
evaluation of a process landscape. Section 3 describes our
concept of distributed data management in more detail and
explains the motivation for this approach. Both types of data
storage are handled in a separate subsection. The process of
reintegration is shown by an example algorithm in a third
subsection. Finally, in section 4 the advantages of this
approach are summarized and an overview to our future
research is presented.

STRUCTURE OF TOOL SUPPORT

The basis for our work is the software tool Renew. For
science and research purposes its Java-based source code is
available for free. It consists of a comfortable modeling tool
and a performant simulation component. In version 1.4,
which is the version we started with, a coupling to a database
system was part of the architecture’s specification but not yet
implemented. We implemented this interface and added a
further component for a project-oriented management of data
and an evaluation component. The resulting software
architecture is depicted in figure 1, where the additional parts
are marked gray, namely the evaluation component, the data
base and the report component.
The process of analyzing the complete model of all
communicating processes, called process landscape, can be
divided into 5 steps:

1. modeling process models as a set of Petri Nets
2. modeling further Petri Nets representing

communication interfaces between the different
process models

3. parameterization of all Petri Nets with respect to
dynamic communication aspects

4. running several simulation cycles
5. evaluation of simulation data and analysis of results

This process is supported by our software tool. It supports
the modeling, parameterization simulation and evaluation of
a process landscape and creates a so-called project file. This
file holds references to further files representing net
descriptions. The editing of this file is not yet implemented
within our software tool, but due to the fact that it is an XML

file with a defined DTD it can easily be modified with any
editor.

Figure 1: Integration of tools

With the graphical editor each net can be modified in a
comfortable way. The proper simulation of the complete set
of Petri Nets can be controlled by graphical output of each
simulation run before a simulation for evaluation purposes is
started. For the latter, the tool initiates a database connection
and starts an adjustable count of simulation cycles. After the
simulation data has been computed an evaluation can be
initiated. To stochastically evaluate the simulation results, the
evaluation component makes use of both the mass simulation
data and the additional information stored in the project file.

DATA MANAGEMENT

In our approach two different types of data are stored
separately. A project file stores information about the set of
process models, their relation to each other and additional
data concerning the properties to be evaluated. We chose
XML to file this kind of information, because XML

• supports the building of a hierarchy of process
models,

• allows adding structured information to net
instances,

• can easily be supported by other software and
• is (more or less) human readable.

Simulation of a process landscape generates mass data as a
second type of data. We use a database management as best
technical solution of storing these data fast and efficiently.
For this purpose, we set up a database structure which is
mostly independent of any intended evaluation purpose.
Both the project file’s and the database’s structure are
discussed in the following two subsections. The third
subsection explains how the information stored in the

+ <XML>

Renew

Editor Simu-
lator

DB evalu-

ation
com-
ponent Report

database is transformed into an object model corresponding
to the project file. By example an algorithm is presented
operating on this object model for evaluation purposes.

XML-based Project File

Figure 2 depicts a typical project file. The root tag holds the
project name and a hint where mass data is stored for
simulation and evaluation, respectively. This information
may be overridden by command line parameters or program
settings (in this order) to support the exchange of project
files between sites with different technical settings.

O
e
i
f
I
m
R

T
e
t
t
e
r
f
f
d
t
p
t

These models are Reference Nets, too. They are described by
communicationSystem tags on the same level as
cluster tags. These tags contain some additional data and
may hold one or more channel tags. Each channel tag
describes a linkage between any two cluster tags,
referenced by their names. The linkage direction and the
definition of the communication initiating and responding
clusters also has to be specified.
In this subsection, we have shown how information about the
mass data storage, the set of Petri Nets forming the process
landscape to be simulated, structural information about net
linkages and additional data are tied together in a project file.
The next subsection describes the structure of the database
and how additional data are stored therein.

Data Storage of Mass Simulation Data

We now discuss the database structure for logging simulation
data by following the sequence of firing transitions in the
example net shown by figure 3.

Figure 3: examplary net for illustrating database structure

The transition labeled in represents a part of a synchronous
channel (here also named in). Synchronous channels are an
extension of Reference Nets, where the firing of a starting
transition also initiates the firing of a so-called downlink
transition (Kummer 1998). The consumed token data can
thereby be used by this downlink transition.

:in(x)

x x

x

x @ 5

x @ 10 x.getReceiver():out(x)
x

in P1 do

P2

P3

out

del
<project name=“DA“
dbURL=“jdbc:mysql://localhost/test“
driver=“org.gjt.mm.mysql.Driver“>

<experiment name=“currentStatus“>
<cluster name=“ProjectManagement“

net=“PM.rnw“>
</cluster>

<cluster name=“ApplicationEngineering“
net=“AE.rnw“>
Some comment

</cluster>

<communicationSystem
net=“../cbd/technical/PM_AE.rnw“
costPerMinute=“42.0“
capacity=“42000“>

<channel
initiator=“initiator_PM“
from=“ProjectManagement“
responder=“responder_AE“
to=“ApplicationEngineering“>

</channel>
</communicationSystem>

</experiment>
<experiment name=“plannedSolution“>

....
</experiment>

</project>

Figure 2: Sample project file

ne project may consist of several experiments. Each
xperiment references to a set of Petri Nets, holds
nformation about their linkage and may store additional data
or some nets.
n general, Petri Nets are referenced by cluster tags. The
andatory attribute net gives reference to a file readable by
enew which holds the description of a Reference Net.

he name attribute may hold an unique id within an
xperiment. If there is no such id, the name is derived from
he file name. A comment may be included in a cluster
ag which makes the generated
valuation report much more
eadable. A second type of tag
or referencing Petri Nets, also
ound in a project file, is more
omain specific. With focus on
he communication between
rocesses the models handling
he process of communication itself are of special interest.

Table 1 shows the main database table, where the entries
depict the process dynamic of the Petri Net in figure 3. The
firing of transition in results in the action of putting a token
on place P1. All putting or removing actions resulting from
one transition’s firing have the same value of
transactionCount. The firing results of transition in enable
transition do, resulting in three further actions (see rows 2 –
4 in table 1). First the token placed on P1 is consumed. Each
token has a unique tokenId, valid only for a concrete
marking situation of the net. The firing of transition do alters
the net’s marking and produces two new tokens with ids “1”
and “2”.

Table 1: Exemplary data for illustrating database structure

action transactionID transactionCount netID placeName tokenID tokenData clock duration
Putting 47110815 0 0 P1 1 Sender.. 0 0
Removing 47110815 1 0 P1 1 Sender.. 0 0
Putting 47110815 1 0 P3 1 Sender.. 0 5
Putting 47110815 1 0 P2 2 Sender.. 0 10
Removing 47110815 2 0 P3 1 Sender.. 5 0
Removing 47110815 3 0 P2 2 Sender.. 10 0

According to the arcs’ inscription, the tokenData is copied
from consumed to produced tokens. Using Reference Nets
token data can be of any type of Java object. But the token
placed on P2 gets available after ten units of time (see last
line of table 1), where the one on P3 is available after five
units of time respectively (see penultimate row in table 1).
This is reflected by the data in the column entitled clock,
which holds the value of a global clock when each action
takes place (for simplicity we start with zero). All tokens
necessary to enable this transition have to have arrived
before the transition fires. Therefore, the time the transition
fires, depends on the arrival time of the last token. To
distinguish the time recorded in the column clock from each
token’s delay, another column called duration is introduced.
It stores the token’s delay assigned by the inscription of an
outgoing arc of the producing transition.
After five units of time the token on P3 is consumed and no
other token is produced (see figure 3). So the removing
action is the only one taking place while firing transition del.
Five units of time later transition out fires. out is the uplink
transition of the represented synchronous channel. The
channel’s corresponding downlink transition is dynamically
set according to a token data’s attribute, which evaluates
from a call of the method getReceiver on the object
represented by the token itself.
Two more columns of table 1 have to be explained: netID
gives a unique id to each net instance. This is matched to the
net’s name and corresponding filename using a further table
which is not discussed here. Another column is labeled
transactionID. The value of this column remains unchanged
throughout a complete simulation cycle and is matched to an
experiment. This is needed to distinguish different simulation
cycles of the same experiment.
The following subsection presents how information stored in
the database and in the project file is combined for
evaluation purposes.

Evaluation Component

The first step for evaluating simulation data is to bring
together and synchronize both data streams. This is done by
the evaluation component. It builds up a hierarchy of objects
by processing the project file and then fills up this hierarchy
by scanning the database. Afterwards, the resulting data
model can be used as input for specific analysis algorithms.
We now discuss the structure of the model and its
construction. Additionally, we explain how an example
algorithm for the computing of communication costs deals
with this basis.
As shown in figure 4, classes for a project, an experiment
and a net form the upper three levels of the data structure.
Building them up according to the project file is mainly
straight forward, only the differentiation of nets representing
clusters and nets representing communication systems is
stored additionally in class Net by a boolean marker. Class
Run represents a single simulation cycle. It is introduced on
a separated level, because in some cases not all places of a
net may be marked in a specific simulation cycle. Therefore,
the set of places may vary between cycles, but stochastically
analysis over all cycles has to consider all places.

Places and tokens are handled on the following two levels,
parallel to the structure of action sequences and actions.
Class Action references the same token data, whereas class
ActionSequence stores the sequence of tokens’ production
or consumption in the order they arise during a simulation
cycle. Compared with dealing only with place data, this
allows an improved evaluation.

Figure 4: Data model for the analysis of simulation data

The described structure becomes filled with simulation data
while scanning the database table introduced in the last
section. There is only one instance from class Project,
directly corresponding to the database. Experiments are
mapped to values of transactionID. A value of zero for
transactionCount indicates a new simulation cycle. Each
putting or removing action is directly mapped to an Action
object and added to the ActionSequence object. For each
place a change in stock is recorded over time. Objects of
class Token hold application specific token data serialized as
a string. They reference to the places and nets they occur in.
Additionally, the duration value assigned to the token objects
is recorded.
Data discussed until now enables the analysis of
communication aspects like the average path length taken of
a specific token within a net, or the ratio of instantly enabled
transitions. This is done in the sense that no token necessary
for enabling a transition was available before firing took
place with respect to the tokens' duration values. Algorithms
for evaluating these communication issues are explained in
(Störzel 2001) in more detail.
Figure 5 presents an UML-based sequence diagram for
computing communication costs within a process landscape.
This attribute is managed in the project file (see figure2).
Initially, method distributeCosts of class
ExperimentDataModel is called. For each net representing
a communication system the set of all places for which a
marking has been recorded in any run is computed. In an
iteration over the elements of this set all communication
costs are summed up separately for each run. This is done by
extracting data volume and sender from the recorded token
data. This information is combined with the parameterization
of capacity and costs per minute of the considered net, stored
in the project file. The net identified as sender is charged for

Project

dataModel

Experiment

1 n

Net

n 1

Place

 1
 n

ActionSequence

 1
 1

Token

 n

Run

1 n

n 1

Action1 n

 1

 n

1

the costs. Storing this data for each simulation run enables
evaluation of stochastic data such as the minimum,
maximum, average, standard deviation and the distribution

Figures 5: Algorithm for computation of communication costs

RESULTS AND FUTURE RESEARCH

In this paper we presented our approach of storing mass
simulation data separate from data concerning model
structure and other model’s properties to be evaluated. We
have shown how the two data streams can be reintegrated
into an appropriate data structure and how this may serve as
a basis for evaluation algorithms. This approach has been
validated to be successful and handy in different domains,
such as interprocess communication analysis (Störzel 2001)
and fuzzy timed specifications of multimedia presentations,
where the latter is still in progress. We are confident of
applying this approach successfully in broader areas of
application.
Besides software support, we also want to extend our
simulation and evaluation approach to additional process
landscape features like the autonomy of different process
locations (Gruhn and Wellen 2002).
Another point is that Renew also supports the feature of
importing and exporting Reference Net descriptions in an
XML format. This enables intregration of Renew and the
extensions described here into a seamless chain of tools for
integrated process planning and optimization support. A
diploma thesis at the University of Dortmund (Brockmann
2002) has already implemented an integration of a document-
based process planning tool (Palermo 2001) and the
extended software system of this approach.

itself. This information is output from the evaluation
component and may be stored in XML format to support the
idea of data exchange between different tools.

REFERENCES

Beckmann, M. 1997. “Simulationsverfahren für spezielle farbige
stochastische Petri-Netze”. Diplomarbeit at the Department of
Computer Science, Technical University of Berlin, 1997, in
German

Brockmann, C. 2002. “Werkzeuggestützte Modellierung von
Prozesslandschaften”, Diplomarbeit at the University of
Dortmund, Department of Computer Science, Software
Technology, April 2001, in German.

Donzelli, P. and G. Iazeolla. 2001. “A hybrid software process
simulation model”. Software Process – Improvement and
Practice, Vol. 6, No. 2 (June), 97-110.

Gruhn, V. and U. Wellen. 2000. “Structuring Complex Software
Processes by "Process Landscaping"”. In Proceedings of the 7th
European Workshop on Software Process Technology, EWSPT
2000 (Kaprun, Austria, Feb). Reidar Conradi (ed.), 138-149,
Springer Verlag, appeared as Lecture Notes in Computer
Science No. 1780.

Gruhn, V. and U. Wellen. 2001. “Analyzing a Process Landscape
by Simulation” The Journal of Systems and Software 59, 333-
342.

Gruhn, V. and U. Wellen. 2002 “Autonomies in a Software Process
Landscape”, Internal Research Report No. 120, University of
Dortmund, Department of Computer Science, Software
Technology.

Jensen, K. 1997. Coloured Petri Nets – Basic Concepts, Analysis
Methods and Practical Use, Volume 1, second edition,
Springer Verlag.

isCommunicationSystem =
isCommunicationSystem()

[isCommunicationSystem]
getPlaceNamesAsSet()

*[all nets] isCommunication
 System()

 *[all placeNames] get(placeName)

[any data recorded for place] getData()
getData()

decodeVolume(data)

decodeSender(data)

computeCosts(v olume,
 sender)

chargeCosts(costs, run)

exp :
ExperimentDataModel

net :
NetDataModel

place :
PlaceDataModel

run :
RunDataModel

Token :
TokenDataModel

sender :
NetDataModel

communicationCosts
 .add(costs, run)

placeNames

place

data

costs

*[all runs] places.key()

placeNames

communicationSystem−
tags are distinguished from
 cluster−tags here

database entries for
placeName, netID
and tokenData
concerned here

a message’s v olume isextracted
 from tokenData heret

a message’s sender is extracted
from tokenData here

attributes capacity and costPerMinute
stored in X ML f ile get into concern here

 the net referenced as
sender is charged for the costs

distributeCosts

Kummer, O. 1998. “Simulating synchronous channels and net
instances”. In 5th Workshop Algorithmen und Werkzeuge für
Petri-Netze J. Desel; P. Kemper and E. Oberweis (eds.).
Research Report No. 664, University of Dortmund, Department
of Computer Science, Oct. 1998.

Kummer, O. and F. Wienberg. 2000. “Renew - The Reference Net
Workshop”. Petri Net Newsletter No. 56, 12-16.

Law, A.M. and W.D. Kelton. 1991 Simulation, Modeling &
Analysis, second edition, McGraw-Hill.

Lautenschlager, M. 1995. “Data Handling in the Climate Model
Archive at DKRZ”. In Proceedings of the 9th International
Symposium on Computer Science for Environmental
Protection, Space and Time in Environmental Information
Systems, H. Kremers and W. Pillmann (eds.), 287-294,
Metropolis Verlag, Marburg, Germany.

Merkuryeva, Y., J. Tolujew Y., E. Blümel, L. Novitsky, E. Ginters,
E. Viktorova, G. Merkuryev and J. Pronis. 1998. “A Modelling
and Simulation Methodology for Managing the Riga Harbour
Container Terminal”. Simulation 71, No. 2 (Aug), 84-95

Merkuryeva, G., Y. Merkuryev and J. Tolujew. 2000 “Computer
Simulation and Metamodelling of Logistics Processes at a
Container Terminal”. Published at
http://www.ici.ro/ici/revista/sic2000_1/art06.html (2002)

Project Group Palermo. 2001. "Endbericht der Projektgruppe
Palermo" Research Report No. 109, University of Dortmund,
Department of Computer Science, Software Technology,
March 2001, in German.

Störzel, M. 2001. “Simulation verteilter Prozesslandschaften”,
Diplomarbeit at the University of Dortmund, Department of
Computer Science, Software Technology, October 2001, in
German.

http://www.ici.ro/ici/revista/sic2000_1/art06.html

	XML-based Project File
	Data Storage of Mass Simulation Data
	Evaluation Component

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

