
Development of an advanced JAVA based Simulation Tool

Wolfgang Kühn
Susanne Ose

University of Wuppertal
Rainer-Gruenter-Str. 21

D-42119 Wuppertal, Germany
E-mail: wkuehn@sipoc.de

KEYWORDS
Simulation library, discrete event simulation, object oriented
simulation

ABSTRACT

On top of the object oriented discrete event simulation
library JAVA-Sim, developed at the University of
Wuppertal, a modern comfortable graphical user interface
GUI has been designed. For the ease of use the modeling
interface has a flexible and easy to use control concept. The
user interface is strictly separated from the core simulation
classes. In order to feed the demand of a general simulator as
well as the demands of an easy to use print-media-production
simulator a consequent design and class structure has been
required. Therefore the priority for designing the tool has
focused on a very straight class design. The concept has been
designed with an clear structured interface between the core
simulation library and the GUI in order to allow the use of
the core library only respectively the use of the tool by the
GUI without any change of the libray.

JAVA-SIM CONCEPT

The JAVA-Sim concept is a modern simulator concept,
which combines builing block structures, very hight
flexibility and the ease of use through on a new control
concept. There are already some simulation libraries based
on JAVA available, such as e.g. SILK, which is a JAVA-
based, process oriented simulation system. However these
libraries doesn’t fulfill the requirements of the project
completely. In order to realize an advanced concept without
limitations and compromises given by existing software the
decision was taken to develop a completely new library. This
JAVA-Sim library includes multible inheritance and a very
flexilbe approach. Additionally the development of an
comfortable GUI has been started. Further commication and
interface modules will follow in future.

The JAVA-Sim concept offers different user levels. On the
library level JAVA simulation classes and additionally all
features of the JAVA language are available designing a
model. This level allows a very flexible modeling and the
integration of the classes into other applications. However on
this level good JAVA programming knowledge is mandatory.
The second level focuses on users from the production
planning area. On the second level the user shall be able to
develop models by use of a comfortable GUI without
programming knowledge. An advanced control concept
allows to design and to parametrize very flexible controls
without programming. The combination of these levels offer

to design applied building blocks for special production
areas. Further the multible inheritance of object parameters is
an very important feature of the JAVA-Sim concept.

The architecture of the simulation library and the GUI is
object oriented. This guarantees the user a clear structured
hierarchical approach for reusable and hierarchic
components. The GUI allows to built new simulation models
with an easy and flexible approach by use use of basic
simulation classes and highly integrated applied material
flow objects. The graphical user interface offers multilateral
possibilities to create special simulation components, with all
features of inheritance. The user interface transmits the data,
through an interface, to the simulation classes and conceives
the simulation data, to be handled in the visualization. The
animation of the simulation events is represented in the
graphical user interface and can be addionally analyzed by
use of an integrated trace functionality.

IMPLEMENTATION

For the implementation of the simulation tool JAVA as a
modern programming language has been chosen. JAVA
forces to implement a consequent object-oriented
architecture. The platform independent implementation in
JAVA is open for different operating systems and to integrate
modern communication modules. The disadvantage of a
slightly reduced processing speed compared to other
languages will not be a very important factor in future.

COMFORTABLE USER INTERFACE

The user interface is structured into the menue bar, the
building block library bar, the hierarchical model tree and the
desktop area.

Menue bar

The menue bar offers buttons for the most important
functions. These are containing self-explaining icons in order
to enable the acquaintance with the interface is relativly easy.
During use of the program online help is available. While the
mouse is resting upon a button a tool tip texts appears and
the user gets a short information about the particular button.

Desktop Area

JAVA-Sim provides a distinctive desktop area in which all
modules can be shown. JAVA-Sim operates with a single
main window and many simultaneously open sub-windows,
which can be set within the mainwindow as desired. This
technique,

desktop area

Module

Building Block
Palette

Hirarchic
Model Tree

Button
Bar

Menu Area

Figure 1: JAVA-Sim GUI

known under Windows as MDI (Multiple Document
Interface) has been chosen to enable a drag & drop
functionality for the building blocks. Further this system is
relatively easy to administrate.

Building Block Library Bar

The building block library bar is another central element. By
use of a wide building block palette with basic building
blocks, predefined standard simulation elements and applied
building blocks the effort for designing a simulation model
can be greatly reduced. Compared to building block concepts
of the 70’s the flexibility has been increased considerably
and there is the powerfull feature available to design on a
lower level applied building blocks for a particular
application area tailored due to the customers needs.

Hierarchic Model Tree

For a comfortable overview of complete projects,
respectively some parts of a project, a confortable model tree
is provided, which gives an hierarchic view of the model.
The navigation within the model is very easy and a fast
interaction with certain areas is possible and the abilities to
monitor and understand the model are increased
considerably.. Modules are represented as folders as long as
these contain other building blocks. A simple double-click
opens a module and shows the user its content. A double-
click onto the module opens its module frame if it is not open
already. A double-click on any another simulation object
within the hierarchic view opens the corresponding object
modelling window, which allows the user to parametize the
object to the particular needs.

Object Modelling Window

Simulation objects in JAVA-Sim are predefined, highly
developed and specific building blocks. In these building
blocks the basic behaviour and available functions are
represented. Theses can be inherited, duplicated and
combined as often as desired. Through a special object
modelling window each building block can be individually
parametrized in order to establish the requested behaviour,
which might differ from the basic behaviour. This allows to
create realistic models of real system as required. The
parameter setting can be modified during the simulation
modelling by the user. A double click onto a building block
within a module, or it’s equivalent in the hierarchic model
tree opens the simulation object input window with the actual
parameter data view.

The object modelling window is generally structured into the
register cards State, Control and Time. These represent the
standard possibilities of modifications of the material-flow
objects. If certain simulation objects are not able to support
some of these data, those are are locked and shown under
laid with grey. For special data each simulation object has an
additional register card labelled Special in which the building
block specific settings can be defined.

JAVA-SIM SIMULATION LIBRARY CONCEPT

The JAVA-Sim Library is a simulation library, developed for
the simulation of discrete event processes. For the
implementation of the library JAVA has been chosen. JAVA
is a modern programming language and can be used to
implement a consequent object-oriented architecture. An

important precondition is that the programming environment
does not use platform specific features. For the library a
consequent structure is required. Therefore the priority has
been focused on a straight class design and not on powerful
animation features in the first state.

The JAVA-Sim Library is not limited on a certain simulation
level like many available simulation tools. The architecture
of the library uses an object oriented approach and is very
open and modular. The library shall offer features similar to
the flexibility of a simulation language, through the level of
general building blocks, such as workstations and assembly
stations, up to the efficiency of simulators with special
building blocks, such as e.g. power and free system elements.

The JAVA-Sim library follows an object oriented design. It
contains public simulation classes, made available for the
user of the simulation library, and internal simulation classes
and utility classes for internal use in the library only. The
library offers general simulation objects, material flow
objects, information flow objects, decision making objects
and applied material flow objects. The internal class
InfFlowObject is used to implement information flow.
Special information flow elements may be derived from this
class. The class SimEventObject is based on the class
GeneralObject and contains the additional functionality for
creating simulation events. From this class the general
classes EventGenerator and MathFlowObject and
MathFlowObjecExt are derived. Again from these the
detailed material flow classes such as Buffer, BufferFifo,
BufferLifo etc. are derived. For all simulation classes there
are some general class features available, e.g. such as create
object, delete object, constructor control and destructor
control.

GENERAL SIMULATION OBJECTS

The general simulation classes offer common features
required for a simulation run. General simulation classes are
the SimEnvironment, and the GeneralSimModel with the
SimController.

The SimController is the simulation engine of the discrete
event simulation. It includes the function of event tracing and
event debugging. The SimController has to handle all events
taking place during a simulation run. Therefore the
SimController has an EventList, which contains all actual
simulation events. The methods of the SimController have to
deal with incoming events, with the sorting of events and to
calculate the event statistics. The SimController offers
methods for parameter setting, methods for running the
simulation and methods for getting information from the
SimController.

The EventTracer is part of the SimController. If the
EventTracer is activated, it writes a trace of all or selected
events during the simulation. This trace can be saved in a file
and may be used to analyze the simulation run later in detail.
After validation of a model the EventTracer may be
deactivated in order to speed up the simulation run.

The EventDebugger is also an optional part of the
SimController and provides an advanced control of the
execution of simulation events. A breakpoint flag can be set
on certain events or event types. The EventDebugger may be
used to analyze a simulation model step by step during the
modeling and validation phase.

The GeneralSimModel is a basic object for building
simulation models. The GeneralSimModel contains always
one SimController, which handles the events occurring
during a simulation run, and one ModelStructure, which
contains all information about the actual model. For the ease
of use special simulation model classes with additional
features may be derived from the GeneralSimModel class.
The ModelStructure contains the information of the model
hierarchy and the model elements. All elements of a
particular model are listed in the structure list.

The Module is a general object which serves for grouping
objects and building hierarchical structured models. The
Module does not have specific basic properties.

SIMULATION EVENT OBJECTS

Simulation event objects are non material flow objects
creating active events containing no material flow. Examples
for non material flow simulation event objects are e.g. the
EventGenerator the Shift or the Scheduler.

The EventGenerator produces events randomly or at fixed
intervals. Therefore the start of event generation, the interval
between events, the duration of events and the end of event
generation can be defined using random distributions or
constant values. The EventGenerator can be used to trigger
actions during a simulation run.

The object ShiftCalendar is used to define different shifts for
the model. The ShiftCalendar contains a Shift object for each
particular shift. In the ShiftCalendar additional working days
and non working days with a change of shift can be defined.
The Shift object keeps the information about a particular
shift, such as the start and end of shift and the times for
breaks. All resources using this shift are listed in a resource
list.

The Scheduler is an active event object containing a list of
future events sorted in a defined order. The Scheduler offers
to control and administer planned events. If a new event is
added to the scheduler the scheduler will sort the list
automatically.

MATERIAL FLOW OBJECTS

Material flow elements can be classified into stationary and
mobile material flow objects. Stationary objects represent
mainly the available resources in a factory, mobile objects
the material flow through the factory. Further material flow
elements are classified into active and passive material flow
elements. Active material flow elements are able to pass the
ME’s actively to a next element, on the passive material flow
elements the ME’s have to be active elements or have to be
moved by an external control. Active material flow objects

are the Source and the Drain, the SingleProc and the
MultiProc, the Conveyor, the Sorter, and the Buffer. Passive
material flow elements are e.g. the Warehouse and the Track
which do not automatically pass ME’s to a next location.

Mobil material flow elements, such as the Transporter, the
Container or the Part represent the physical or logical
elements moving through a model. Mobil elements require
stationary material flow objects, such as a SingleProc, a
MultiProc, a Buffer or a Tracks to be moved on.

Stationary material flow objects are further classified in place
oriented and length oriented elements. Capacity oriented
material flow elements, such as the SingleProc, the
MultiProc and the Buffer, may contain a certain number of
elements independent from the size of each element. Length
oriented elements, such as the Conveyor and the Track, take
the length of the stationary object and the mobile element
into account.

In general all material flow objects have some common
properties, such as methods for the state, and additional some
object specific properties described in the following.

PLACE ORIENTED ACTIVE MATERIAL FLOW
ELEMENTS

Place oriented active material flow elements are the
SingleProc, the Source, the Drain, the MultiProc, the Buffer
and the BufferZeroTime and the Sorter.

The SingleProc is an active material flow object. It has a
single station for processing one mobile material flow objects
(ME) at a time. The SingleProc sends the ME after passing
the set-up and processing times towards the next material
flow object. While a ME is located on the SingleProc, the
SingleProc can not receive any additional ME. The
SingleProc is a place oriented material flow object, therefore
the ME is passed always completely onto respectively out of
the SingleProc.

The Source is a single place station with a capacity of one
and no processing time. The task of the Source is to create
mobile elements (ME’s). The Source offers methods to
define which mobile elements (ME’s) and how often these
shall be generated. The source is an active material flow
object and tries to move the generated ME to the next
connected material flow object.

The Drain is a single place station with a capacity of one and
no processing time. The task of the Drain is to delete mobile
elements (ME’s). The parts deleted can be noted in a
protocol list.

The MultiProc has several stations for processing mobile
elements (ME’s). The basic properties of the MultiProc are
the same as those of a SingleProc, however with multible
processing stations parallel or in line. A set-up time is always
applied when an ME has a different setup-type than its
predecessor. Due to the place oriented characteristic of the
MultiProc material flow element are always passed
completely.

The Buffer has a definable queue length for mobile elements
(ME’s). The basic properties of the Buffer are the same as
those of a SingleProc with several processing stations in line.
The Buffer is a place oriented material flow object and has
several processing stations in a queue. ME’s are processed
from one station to the next. Further Special buffers are the
BufferZeroTime and the Sorter

Buffer FIFO Buffer Sorted

Buffer LIFO BufferZeroTime
FIFO

Figure 2: Some Buffer Types

LENGTH ORIENTED MATERIAL FLOW OBJECTS

In length oriented material flow objects the length of the
stationary material flow object and the length of the mobile
element are considered for the simulation calculation. The
Conveyor and the Track, are basic length oriented material
flow objects, the PowerAndFreeTrack is an example for an
applied length oriented material flow element.

The Conveyor is a length oriented material flow object. The
Conveyor can be used to model length oriented transport
systems. The Conveyor transports ME’s along its entire
length with a constant speed. On a conveyor ME’s cannot
pass each other. If a ME is located on more than one
Conveyor for the calculation the speed of the Conveyor is
used where the booking point of the ME is located on.

The Track is a length oriented passive material flow element.
The Track is used for modeling transport lines. The Track
requires active mobile elements, such as the Transporter or
the AGV (automatically guided vehicle). The required time
of a Transporter on the Track is calculated by the distance it
has to travel and its speed. ME’s may not pass each other on
the Track. The capacity of the Track may limit the number of
ME’s staying on the track at the same time.

MOBIL MATERIAL FLOW ELEMENTS

The mobile material flow objects are not fixed at a certain
location. Mobile elements are passed along the material flow
from object to object. During a simulation run these elements
move through the model and represent the discrete material
flow. Mobile material flow objects offered by the JAVA-Sim
Library are e.g. the Part, the Container, the Transporter the
AGV and the PowerAndFreeHanger.

The Part is a mobile material flow object without any loading
capacity. The Part represents parts being produced and
transported. Due to passive element characteristics of the
Part it does not have active properties. Therefore it has to be
moved by an active material flow element or by an control.

The Container is a mobile and passive material flow object
with definable loading capacity for the transport of other
ME’s. The capacity is place oriented, referred to a defined
number of ME’s only. Note that the Container does not take
the physical size of the loaded ME’s into consideration. The
Container can be used to represent palettes or boxes.

The Transporter is an active mobile material flow object. It
has a loading capacity for transporting mobile elements, such
as Entities, Containers or other Transporters.

INFORMATION FLOW OBJECTS

The JAVA-Sim Library offers basic information flow objects
described below. These can be classified into passive objects
for keeping data, such as the global DataStore and one and
two dimensional lists, such as the ListX, the ListLIFO, the
ListFIFO, the ListXY. Another classification are active
control objects, such as the ControlMethod. The class
random distributions offers the required random values for
various parameter settings.

JAVA-Sim Library offers the objects ListX, ListFIFO and
ListLIFO as lists with one column for storing data. The
objects ListFIFO is a list sorted by FIFO (First In First Out)
and ListLIFO is sorted by LIFO (Last In First Out). The
ListX is a one-dimensional list with the possibility to access
to each individual entry by addressing the position. The
ListXY is a list with several columns. It is possible to access
the individual entries by addressing its index.

Standard controls are integrated in many material flow
objects. The JAVA-Sim Library offers the ControlMethod
object for applying special controls. This user definable
controls can be inserted into various objects in order to
control the material and information flow in the required
manner.

The JAVA-SIM Library supplies a number of statistical
distributions, such as the uniform distribution, the triangular
distribution, the normal distribution, the lognormal
distribution or empirical distributions. Various object
specific parameters, such as ProcTime, SetUpTime or in the
Disruption object the FailureDuration or FailureIntervall may
use values according to these distributions.

The JAVA-Sim Library offers several decision-making
objects. These decision making objects can be classified into
objects directly connecting material flow objects, such as the
Connector and the ConnectorN2M, and objects which are not
integrated directly into the material flow, such as the
ServicePortal, and objects to be embedded into material flow
objects such as the ServiceProvider and the
ServiceRequester.

For connecting material flow objects and for the routing
control between material flow objects the JAVA-SIM
Library offers the Connector, the ConnectorN2M and the
RoutingCtrl.

The Connector and the ConnectorN2M are object for
connecting material flow objects. The ConnectoN2M

provides features to decide how to route the mobile elements
through the system.

The RoutingCtrl is a control object applying strategies for
converging and diverging material flow. The RoutingCtrl
offers some standard controls for material flow routing as
well as the possibility to implement user-defined strategies.

APPLIED MATERIAL FLOW OBJECTS

The Applied Material Flow Objects are material flow objects
for specific applications. These objects are based on the
basic material flow objects defined above. Some of these
applied material flow objects are kept very general, such as
e.g. the WorkStation, other applied material flow objects are
very specific for certain applications, such as e.g. the objects
for modeling Power & Free systems.

SUMMARY

The JAVA-Sim concept allows to run simulation models on
various hardware platforms and operation systems. The
platform independent implementation in JAVA allows a use
of the library on different operating systems and to integrate
modern communication modules. Disadvantage of using
JAVA is a slightly reduced processing speed compared e.g.
with C++. However with the performance increase of the
hardware this will be not a very important factor in future.
With help of the developed GUI the user shall be able to
design models without knowledge of the JAVA programming
language, even if complex control structures are required.

REFERENCES
Burke, E. and R. Kilgore. 2000. Silk®, JAVA AND OBJECT-

ORIENTED simulation. proceedings of the 2000 Winter
Computer Simulation Conference. SCS International, Ghent,
Belgium.

Kühn, W., JAVA-Sim - An advanced Discrete Event Simulation
Library, SCSC 2002, 2002 Summer Computer Simulation
Conference, San Diego

BIOGRAPHY

SUSANNE OSE studied print and media technologies with a
focus on production planning and control at the University of
Wuppertal, Germany. In her master thesis she developed a
GUI for the JAVA-SIM simulation library.

WOLFGANG KUEHN studied mechanical engineering at
the University of Brunswik, Germany. Afterwards he worked
two years with Blaupunkt. At the University of Bremen he
got 1991 his PHD in production engineering and 1997 his
habilitation in the area of simulation of production systems.
From 1993 to 1995 he joined the Asian Institute of
Technology in Bangkok as an Associated Professor. 1996 he
founded the SIPOC Simulation based Planning, Optimization
and Control GmbH in Bremen and since 1997 he has a
professorship for production planning and control at the
University of Wuppertal.

	KEYWORDS
	ABSTRACT
	JAVA-SIM CONCEPT
	IMPLEMENTATION
	COMFORTABLE USER INTERFACE
	Menue bar
	Desktop Area
	Building Block Library Bar
	Hierarchic Model Tree
	Object Modelling Window

	JAVA-SIM SIMULATION LIBRARY CONCEPT
	GENERAL SIMULATION OBJECTS
	SIMULATION EVENT OBJECTS
	MATERIAL FLOW OBJECTS
	PLACE ORIENTED ACTIVE MATERIAL FLOW ELEMENTS
	LENGTH ORIENTED MATERIAL FLOW OBJECTS
	MOBIL MATERIAL FLOW ELEMENTS
	INFORMATION FLOW OBJECTS
	APPLIED MATERIAL FLOW OBJECTS
	SUMMARY
	REFERENCES
	BIOGRAPHY

	c0: Proceedings 14th European Simulation SymposiumA. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

