
CONNECTING HIGH LEVEL DISTRIBUTED SIMULATION
ARCHITECTURES: AN APPROACH FOR A FAMAS-HLA BRIDGE

Csaba Attila Boer Alexander Verbraeck
Erasmus University Rotterdam Delft University of Technology

Faculty of Economics Faculty of Technology, Policy and Management
Department of Computer Science System Engineering Department

P.O. Box 1738, 3000 DR Rotterdam P.O. Box 5105, 2600 GA Delft
The Netherlands The Netherlands

acboer@few.eur.nl a.verbraeck@tbm.tudelft.nl

KEYWORDS

Distributed Simulation, Architecture, Hierachical, HLA.

ABSTRACT

The distributed simulation architectures support
the execution of simulation process in a distributed way by
connecting different distributed simulation components of
various functional areas. These simulation components
collaborate and communicate in order to realize the func-
tionality of the system as a whole. One of the well-known
architectures is the High Level Architecture (HLA) which
is a standard for modeling and simulation activities in the
Department of Defense in the United States. Due to the
fact that we faced with some inconveniences by using HLA
for logistics area, a new distributed simulation architecture,
called FAMAS Backbone Architecture, was developed.
The FAMAS Backbone Architecture aims to model com-
plex harbor simulation models in a distributed way. Al-
though, the first version of FAMAS Backbone Architecture
does not allow to connect the HLA compliant models, the
next version should allow HLA compliance in order to
exploit maximally the reusability feature. In order to en-
able to couple HLA models to FAMAS Backbone Archi-
tecture we have to combine these two architectures. The
combination of these two architectures leads to a multi-
level hierarchical design and development technology. The
article introduces a new concept, called HLA-FAMAS
bridge, for coupling these two distributed architectures.

1 INTRODUCTION

Distributed simulation refers to technologies that
enable a simulation program to be executed on multiple
geographically distributed computing systems (set of com-
puters), interconnected by a communication network (Fu-
jimoto 2000). Executing a simulation program in a distrib-
uted way leads to the following benefits:

1. Reduced execution time. By subdividing a large simu-
lation computation into many sub-computations, and
executing the sub computations concurrently across dif-
ferent computers, it can reduce the computation time up
to a factor of ten (Fujimoto 2000).

2. Integrating simulators that execute on machines from
different manufacturers. In a distributed system several
components can be designed and developed simultane-
ously by different groups (manufacturers) in different
simulation packages. Rather than porting these program
to a single computer, it may be more cost effective to
“hook together” the existing components (simulators),
each executing on a different computer, to create a new
virtual environment (Fujimoto 2000). What needs to be
solved is the interaction between different components.

3. Package independence. In a distributed simulation exe-
cution the components which are part of the whole
simulation study can be developed in any simulation
environment.

4. Reusability of existing models. If a component that
solves a problem already exists, we do not need to
build it again, as it can be connected to the new system
regardless of the environment in which it was devel-
oped.

5. Flexibility in extension and maintenance. As all com-
ponents are responsible for a well-defined task, when
making modifications it is enough to consider the
structure and mechanism of the correspondent compo-
nent. If multi level hierarchy is achieved components
could be easier refined and improved.

6. Fault tolerance. Another benefit of applying distributed
simulation is to increase the tolerance of failures. If one
component goes down, it may be possible to other
components to pick up the work of the failed machine,
allowing of the simulation computation to proceed de-
spite the failure. By contrast, if the simulation is devel-
oped as a single model, failure of that model means the
entire simulation must stop (Fujimoto 2000).

In order to achieve the interoperability between
the distributed simulation components different architec-

tures were proposed. One of the well-known distributed
simulation architecture, called High Level Architecture
(HLA), was developed by the Department of Defense in
the United States. HLA was developed in order to support
the simulation models in the military sector.

Another distributed simulation architecture is the
FAMAS Simulation Backbone Architecture, which was
developed within the FAMAS (First All Modes All Sizes)
research program (FAMAS MV2 Backbone Project 2001).
This Backbone Architecture supports the interoperability
of different simulation models. Next to provide tools for
designing the container terminals of the future for the Port
of Rotterdam, the aim of this project is to be as generic as
possible (especially for logistics problems). The function-
alities that must be provided by the architecture end up in a
generic framework that may be considered for the future
generation of distributed simulation architecture (Boer et
al. 2002b). The required functionalities of the FAMAS
Simulation Backbone Architecture are: distributed execu-
tion, optimal communication, multiple testing possibilities,
package independency, structure transparency and a hier-
archical structure. Although, HLA is not fully suitable to
achieve all these functionalities, it is still an IEEE/DoD
standard for distributed simulation in the military field and
a standard with growing importance in the civil domain
(Schulze et al. 1999). Therefore we expect some simula-
tion languages to become HLA compliant. The aim of this
paper is to compare the HLA and FAMAS Backbone ar-
chitectures and to give a possible method to couple HLA
compliant models to the FAMAS Simulation Backbone
Architecture by offering a so-called FAMAS-HLA bridge.

The rest of this paper is organized as follows.
Section 2 briefly describes the structure of the High Level
Architecture and FAMAS Simulation Backbone Architec-
ture. Section 3 provides a comprehensive comparison of
FAMAS Backbone Architecture and High Level Archi-
tecture. In section 4, an approach is introduced to couple
HLA compliant models to the FAMAS architecture. Con-
cluding remarks and directions for further research are
given in section 5.

2 BRIEF INTRODUCTION OF HLA AND FAMAS
BACKBONE ARCHITECTURES

2.1 High Level Architecture

The earliest researches and works on distributed
simulation can be found in military applications. Geo-
graphically distributed simulators from different types of
forces were connected to form full battle situations. In the
early ’80ies the SIMNET (SIMulator NETworking) project
had started in order to develop distributed simulation for
virtual environments for the military sector. This project
was sponsored by DARPA (Defense Advanced Research

Projects Agency) in the United States. Training exercises
have carried out in order to demonstrate the feasibility of
interconnection of autonomous simulators. Later the
SIMNET was replaced by DIS (Distributed Interactive
Simulation) (DIS Steering Committee 1994) where stan-
dards were defined to support interoperability among
autonomous training simulators in a geographically dis-
tributed simulation environment (Fujimoto 2000). The last
evolution on this direction is the HLA (High Level Archi-
tecture) that became a standard architecture for modeling
and simulation activities in the Department of Defense in
the United States (Defense Modeling and Simulation Of-
fice 1996).

There are two important concepts introduced in
HLA, namely the federate and the federation. Whereas the
federate is an individual simulator, the federation is the
collection of federates (in other words the federation is the
whole distributed simulation in HLA). The federate can be
not only a computer simulation but also an instrumented
physical device or a passive data viewer. (Fujimoto 2000)
(see Figure 1).

Figure 1: The structure of the High Level Architecture
(Defense Modeling and Simulation Office 1996)

The HLA is defined by three components (De-
fense Modeling and Simulation Office 1996):

• Federation Rules ensures proper interaction of simu-
lations in federation and describes the simulation and
federate responsibilities.

• HLA Interface Specification defines Run-Time Infra-
structure (RTI) services and identifies “callback”
functions that each federate must provide.

• Object Model Template (OMT) provides a common
method for recording information and establishes the
format of key models (Federation Object Model,
Simulation Object Model and Management Object
Model)

2.2 The FAMAS Simulation Backbone Architecture

The FAMAS Simulation Backbone Architecture
is represented by technical and functional components.
Whereas the functional components represent the simula-
tion models themselves, the technical components provide
common tasks used by the functional components. The
functional components can be simulation models, control
programs, real equipments (e.g. Automated Guided Vehi-
cle (AGV)), etc. (Boer et al. 2002b).

In Figure 2 we give a clear picture of the sepa-
rately defined functional and technical components. There
are five well defined subsystems, namely the Run Control
Subsystem, the Backbone Time Manager Subsystem, the
Logging Subsystem and the Visualization Subsystem (Boer
et al. 2002a), (Veeke et al. 2002). The overall system con-
sisting of all technical and functional subsystem is some-
times called a federation, where the subsystems that con-
nect to the backbone are the federates.

The functionalities of the technical subsystems are
the followings:

• Run Control for overall control of experiments; it
starts, stops and periodically monitors the simulation
process

• Backbone Time Manager (BBTM) for synchronizing
the simulation time among different simulation sub-
systems

• Logging for collecting logging information from the
distributed functional and technical components into a
central database

• Visualization for providing separated or common
visualization views for the subsystems or the entire
simulation

• Scenario for completely defining a simulation run of a
distributed model

Figure 2: The structure of the FAMAS Simulation Back-
bone Architecture

3 A COMPARISON OF FAMAS AND HLA
ARCHITECTURES

In order to give a comparative study of the
FAMAS Backbone Architecture and HLA (see Table 1)
we take into account two important aspects: the flexibility
and the compatibility of the architectures. The flexibility
refers to the way how easy is to initialize the architecture,
to couple components to the architecture, the communica-
tion of components, to extend and to maintain the simula-
tion components, the reusability of the components, etc.

Table 1: Comparison of HLA and FAMAS Backbone

HLA FAMAS
Backbone

Separate simulation and communication ✔ ✔

Facilitates construction and destruction
of federations ✔ ✔

Provides efficient communications ✔ ✔

Supports an easy initialization ✔ ✔

Support conservative and real time
synchronization ✔ ✔

Support object declaration and man-
agement between federates ✔ ≈≈≈≈

Support optimistic time synchronization ✔ ✘

Uses standardized RTI ✔ ✘

Support built-in logging possibilities ✘ ✔

Support built-in animation possibilities ✘ ✔

Compatibility and Support for Civil
Domain ✔ ✔

The flexibility of the architecture is a required
functionality during the entire simulation experiment.
Therefore we examine the grade of the flexibility of the
architectures in different phases and from different aspects,
such as: in the initialization phase of the architecture, the
interoperability of the architecture during the simulation
run, the time management mechanism implemented in the
architecture and some extended capabilities offered by the
architecture.

Compatibility of an architecture refers to its abil-
ity to communicate and collaborate with other systems or

architectures. In the design and development phase is im-
portant to define the difficulty of developing simulation
model in order to be HLA or FAMAS compliant. The ar-
chitectures are required to support the coupling to different
simulation packages, to various programming languages or
even to other simulation architectures. Coupling may be
possible both before and during the simulation run.

3.1 Separate Simulation and Communication

Both the HLA and the FAMAS Backbone archi-
tecture separate the communication and the simulation.
Whereas for the communication the HLA uses the standard
RTI, the FAMAS uses its backbone architecture.

3.2 Provides Efficient Communications

In the FAMAS backbone system all federates
(technical and functional) that form a federation communi-
cate by means of messages. The messages are sent and
received by the standard socket mechanism with the
TCP/IP protocol. The backbone works as a multiple client-
server model; each subsystem is a client of all the other
subsystems, but each subsystem is also a server, which can
be addressed by all the other subsystems. In this way direct
communication between subsystems is supported which
minimizes communication over the backbone compared to
sending all information through a central component (e.g.
Run Control), which would act in this case as a gigantic
switching board (Boer et al. 2002b).

The HLA Interface Specification is implemented
by the Run-Time Infrastructure (RTI). This identifies how
federates will interact with the federation and with each
other. RTI provides services in a manner that is compara-
ble to the way a distributed operating system provides
services to applications. The communication between a
federate and the RTI is realized using the RTI ambassador
paradigm. The ambassador is nothing else just an object
and the communication is performed by calling methods of
these objects. Therefore the services defined in the inter-
face specification can belong either to RTI ambassador or
federate ambassador. HLA Interface Specification defines
six service categories: Federation Management, Declara-
tion Management, Object Management, Ownership Man-
agement, Time Management and Data Distribution Man-
agement (Defense Modeling and Simulation Office 1996).

3.3 Supports an Easy Initialization

The initialization of the architectures are quite
simple both in FAMAS and in HLA. In FAMAS simula-
tion backbone architecture there is a Run Control subsys-
tem which is one of the core elements of this architecture
(Boer et al. 2002a). It is the component that starts, moni-
tors and stops the simulation run. It is also responsible to
join and resign the simulation components (federates). In

order to start a simulation run we must start the Run Con-
trol subsystem and indicate which scenario we will run
through a Scenario Object. The Scenario Object contains
the values of important parameters of individual simula-
tions, or common parameters that are shared among differ-
ent subsystems. The Run Control checks periodically all
the subsystems in order to run the simulation in the correct
way. The Run Control is globally achievable by all the
subsystems that plan to join the simulation.

In HLA the RTI, which is comprised by RTI Ex-
ecutive Process (RtiExec), the Federation Executive Proc-
ess (FedExec) and the libRTI library, manages the creation
and destruction of federation executions (Defense Model-
ing and Simulation Office 1996). Like the Run Control in
FAMAS backbone, the RtiExec is also a globally known
process. Each application communicates with RtiExec to
initialize RTI components. The RtiExec’s primary purpose
is to manage the creation and destruction of FedExecs.
RtiExec ensures that each FedExec has a unique name. The
FedExec manages a federation. It allows federates to join
and resign, and facilitates data exchange between partici-
pating federates. It is always created by the first federate
that joined the federation. The libRTI library extends RTI
services to federate developers (Defense Modeling and
Simulation Office 1996).

The initialization of the FAMAS Backbone Ar-
chitecture slightly differ from the initialization of HLA.
Due to the FAMAS Backbone Architecture is based on
low-level communication (WinSock) messages the cen-
tralized Run Control subsystem is characterized by an IP
address and a port number. These extra information that
are necessary for the FAMAS Backbone Architecture as a
difference compared to HLA is infinitesimal. This can not
be considered as a constraint. On the other hand the Run
Control offers a well designed user interface where some
capabilities for logging the connections and the frequency
of communication with subsystems that communicates with
Run Control are displayed.

3.4 Support Object Declaration and Management
Between Federates

An important aspect of the interoperability is the
specification of the data that will be shared (transferred)
from one federate to another. Furthermore, it is also refers
to the way communications function between different
federates.

In order to define a simulation run the FAMAS
system uses scenarios. The description of the parts of sce-
nario objects, namely Scenario Data, Initialization Script
and Scenario Script, can be found in (Boer et al. 2002a).
The scenario data defines the values of parameters for the
simulation run, the initialization script defines the set-up of
a simulation run and the scenario script defines how the
simulation process is executed. The Run Control subsys-

tem interprets and executes these scenario objects. The
Scenario Creator is a separate tool that enables to create,
store and retrieve simulation scenarios.

In HLA a kind of object-oriented description
(only attributes, without methods) is used in order to spec-
ify the data that the federate is going to share. A federate
can use its object classes in order to describe its attributes
and can use its interaction classes to describe the relation
between different object classes. All the objects and inter-
actions managed by a federate, and visible outside the fed-
erate, are described according to the standard Object
Model Template (OMT) (Defense Modeling and Simula-
tion Office 1996). The Simulation Object Model (SOM) of
a federate defines the type of data is expected from and
provided to other federates. The Federation Object Model
(FOM) specifies the common objects used by simulators
participating in a federation execution. The HLA offers
different existing tools (e.g. Object Model Development
Tool by AEgis) for the purpose of developing object mod-
els. Using these tools it is possible to generate Federation
Execution Data files required by the RTI.

There are some significant differences between
the OMT offered by HLA and the Scenario Object offered
by the FAMAS Backbone Architecture. In FAMAS Sce-
nario Object we can specify the technical and functional
subsystems and their local and global (that can be used by
many subsystems) variables. Furthermore the variables can
be defined as static or dynamic. A static variable can not
be changed during the simulation run, while a dynamic
variable can be updated during the run, allowing other
models to be informed about the new value. Taking a
closer look to OMT we can state as a well defined descrip-
tion for information sharing. It follows a kind of object
oriented description, where we can specify the shared ob-
jects and the interactions as well. Although compared to
HLA the FAMAS does not specify any interactions be-
tween the subsystems, there is a special space called Sce-
nario Script section, where we can specify some processes
that must be executed during the simulation run. In the
Scenario Script we can specify some events in simulation
time that the Run Control subsystem must execute.

3.5 The Time Management Mechanism of the Archi-
tectures

The Time Management plays an important role in
the simulation study. It aims to synchronize the simulation
time among different simulation subsystems.

At the moment the FAMAS Backbone Architec-
ture supports only discrete event based simulation. There is
a special technical subsystem called Backbone Time Man-
ager that implements the conservative and real-time syn-
chronization. Using the conservative synchronization only
one model is considered as “current” at any moment. This
can be optimized to minimize communication by offering

each model a time horizon and conditions under which it
can act autonomously without consulting the Time Man-
ager. The real-time synchronization is interval based and
supports the experimenting with real equipment.

The time management mechanism of the HLA is
more flexible and advanced because accommodates a vari-
ety of time management policies. The RTI provides an
optimal time management service to coordinate the ex-
change of events between federates. There are possibilities
for conservative, optimistic, time-stepped or real-time syn-
chronization. In a federation, time always moves forward.
However, the perception of the current time may differ
among participating federates. Time management is con-
cerned with the mechanism for controlling the advance-
ment of each federate along the federation time axis (De-
fense Modeling and Simulation Office 1996). Regarding
the time in HLA we can distinguished two important feder-
ates, namely regulating and constrained. Regulating feder-
ates regulate the progress in time of federates that are con-
sidered as constrained.

3.6 Extended Capabilities Offered by the Architec-
tures (built-in logging and animation possibilities)

There are capabilities or functionalities offered by
simulation packages that are not necessarily needed for a
simulation run. The functionalities in the simulation pack-
ages are increasing based on the requirements and feed-
backs of simulation modelers. Recently the most successful
packages contain complex 2D and 3D animations, various
analyzers, a lot of logging possibilities and so on. The ar-
chitectures that support distribution among simulation
models should contain some functionalities regarding the
request of modelers or should enable an easy coupling
technique to existing components that offer all the required
functionalities. In FAMAS there are two technical subsys-
tems that offer extended functionalities, namely the Log-
ging subsystem and the Visualization subsystem.

The Logging subsystem provides a well-defined
possibility to log the collected data in a relational database.
The relational database management system helps us to
select and categorize the stored information by easily
writing SQL commands. In (Boer et al. 2002b) are defined
mechanisms that can be used in Logging System, such as:
log everything, log only relevant data and log at the end.
There is also a separate tool, called Logging Viewer, which
enables the modeler to analyze the logging information in
the database.

The Visualization subsystem of the FAMAS
backbone system makes the simulation state visible and
makes it possible to present the simulation results to third
parties during or after the run. The visualization may in-
clude snapshot screens, animation, statistics of various
performance indicators and status views of equipment and
processes. For the presentation purposes a 3D animation

subsystem has been developed. The subsystem can start
various instances by showing different views of parts of the
connected models and an overview of the whole system.

Although the HLA does not include any visuali-
zation subsystems, it provides possibilities to couple ex-
isting animation systems as animation federates. In
(Straßburger 2001) there are two different animation tools
discussed that produce online animation for the federation.
The first tool is a general animation system, called Skopeo,
which provides platform independent system animation
anywhere in the Word Wide Web. The second tool, called
Proof Animation for Windows, provides online animation
on Windows Platforms.

3.7 Compatibility and Support for Civil Domain

As we mentioned before in the FAMAS Back-
bone Architecture the functional components are the prop-
erly so-called simulation models. The technical compo-
nents provide the common tasks that can be used by the
functional components in order to exchange information
and to synchronize their simulation clock. A functional
simulation model may be implemented either in a pro-
gramming language (Java, C++, Delphi, etc.) or in any
commercially available simulation packages (Arena, eM-
Plant, Enterprise Dynamics, etc.). One of the big efforts
made in the FAMAS research is to enable coupling of the
functional subsystems to the backbone architecture with
minimal effort. This means a good communication between
the packages and the FAMAS architecture. In order to
achieve this several interfaces were created for the subsys-
tems that connect the simulation package or programming
languages to the backbone. These wrappers (generally
written in DLL’s) are important part of the backbone sys-
tem and they must run on the same computer as the corre-
sponding simulation package (Veeke et al. 2002).

Although the architectural design of HLA
achieves reusability and interoperability, HLA is still a
technology which was developed within and for the world
of military simulations (Defense Modeling and Simulation
Office 1996). This can be seen in the way HLA supports
interoperability: HLA defines interfaces in programming
languages like C++, Java, or ADA, since these are the lan-
guages in which many military simulation models have
been developed. In contrast to the military field, in the civil
world simulations are most often developed using more
user-friendly simulation packages which are commercially
available, such as ARENA, Automod, Taylor ED, eM-
Plant, SLX. This is a major difference between the military
and the civil simulation communities (Straßburger 2001).

Although HLA is completely oriented towards
military fields (Davis and Moeller 1999), there are some
approaches that examine the possibility of how the civil
domain could benefit from the HLA approach. In (Schulze
et al. 1999) it is discussed how HLA can possibly become

the standard of interoperability of civil simulation. There
are some applications that develop HLA interfaces for ex-
isting commercial simulation packages. In the approach
offered by (Straßburger 2001) there is a HLA interface
developed for the SLX (Henriksen 1997) simulation lan-
guage.

One of the projects that shows the applicability of
HLA in civil domain is described in (Gan et al. 2000) that
analyzes the performance of a distributed supply chain
simulation model. Here a distributed simulation technique
is presented using the HLA in order to allow corporations
to construct a cross enterprise simulation while hiding the
construction and functional details.

4 FAMAS - HLA BRIDGE

In order to be able to support the different project
groups participating in the FAMAS.MV2 research pro-
gram, the simulation environment must be flexible, easy to
use and must achieve the following objectives:

• Transparent structure helps the modeler to couple the
simulation models effortlessly. In the FAMAS archi-
tecture the common tasks for the support of a distrib-
uted simulation study are implemented in the structure
itself, thereby avoiding that the simulation model de-
veloper needs to do a lot of programming to couple
their models to the backbone structure.

• Reusability stands for reusing already modeled simu-
lation models, resources and controls.

• Hierarchical modeling, which means that the models
for the FAMAS project will be at different level of
detail, and rough models can be implemented in more
detail in later stage. The FAMAS Backbone Archi-
tecture supports the combination of global and de-
tailed models.

• Interoperability means the use if different simulation
and programming environments working together in a
distributed way. Therefore each project is free to
chose the platform it prefers, without loosing the abil-
ity to communicate with or use already defined mod-
els.

By satisfying all these objectives and functionali-
ties mentioned in (Boer et al. 2002b) the FAMAS Back-
bone Architecture achieves their final aim.

The HLA is developed for the military domain,
but recently the number of HLA compliant models in the
civil domain are increasing. Therefore another objective of
the FAMAS Backbone Architecture is to enable to couple

HLA compliant models to FAMAS Backbone Architec-
ture.

In this section we describe the FAMAS-HLA
bridge, which serves to connect these two distributed
simulation architectures. (see Figure 3).

Figure 3: Connecting FAMAS and HLA applying a
FAMAS-HLA bridge

The FAMAS-HLA bridge can participate in mul-
tiple distributed simulation architectures. Therefore, we
can consider FAMAS-HLA bridge from two different point
of view. From FAMAS Backbone Architecture point of
view this bridge is a functional subsystem that is a partici-
pant in the FAMAS Backbone Architecture, while from
HLA point of view it is a federate that is part of the HLA
federation.

Considering the previously mentioned two views,
the interfacing mechanism must be well defined in both
directions. Therefore the FAMAS-HLA bridge defines two
interfaces (see figure 4):

• There is a message oriented interface developed for
FAMAS Backbone Architecture. It corresponds to the
multi client server architecture design that sends and
receives well-specified low level FAMAS WinSock
messages.

• Furthermore, there is a message oriented interface
developed for HLA, which corresponds to the RTI
ambassador paradigm.

In spite of the fact that the FAMAS Backbone Ar-
chitecture is hidden from the HLA and HLA is hidden
from the FAMAS Backbone Architecture, the FAMAS-
HLA bridge allows time synchronization and information
sharing and exchange between the two architectures. The
FAMAS-HLA Bridge Manager is the only one, which is
able to map information (attributes, parameters, interac-
tions, etc.) of two architectures using the HLA-INFO and
FAMAS-INFO information sources. For example, an arbi-

trary FAMAS component changes an attribute X in a cer-
tain time. Due to the fact that attribute X has a correspon-
dent in the HLA architecture, the Virtual FAMAS compo-
nent is interested in any change of this attribute. Therefore,
the Virtual FAMAS component will be informed about the
changing of attribute X. The Virtual FAMAS component
immediately informs the FAMAS-HLA Bridge Manager,
which tries to find the correspondence between the
FAMAS and the HLA attribute, using the FAMAS-INFO
and HLA-INFO. If there exists an attribute Y in HLA that
corresponds to the attribute X in FAMAS, the FAMAS-
HLA Bridge Manager will immediately update the new
value of Y.

Figure 4. Detailed description of FAMAS-HLA bridge

Besides information sharing, the FAMAS-HLA
Bridge Manager must coordinate the time synchronization
between two distributed architectures. Coupling different
architectures in the way that one architecture might be the
part of the another one leads to a multi level hierarchical
distributed structure.

5 CONCLUSIONS

In spite of the fact that we did not find the HLA
suitable to achieve our final purpose (Boer et al. 2002b), it
is a de-facto standard for distributed simulation in the
military field and is growing its importance in the civil
domain. Therefore we expect that a number of future
simulation models will be HLA compliant. Although some
commercial simulation packages can be coupled to HLA
(Straßburger 2001), we can not expect the modelers to
have enough HLA knowledge to make the models HLA
compliant. In some manners the FAMAS Backbone Ar-
chitecture is not so sophisticated as HLA, but it offers a
more simple distributed execution and a more flexible pos-
sibility of coupling commercially available simulation
packages.

The FAMAS Backbone Architecture might
achieve its next objective, namely the coupling of HLA
compliant models to the architecture. This coupling
mechanism can be realized by a so-called FAMAS-HLA
bridge By coupling FAMAS with HLA compliant models
can achieve an important functionality of distributed
simulation, multi hierarchical level design and develop-
ment, that is not present at all in HLA. Coupling two dif-
ferent architectures leads to interoperability problems, es-
pecially information sharing, that can be resolved by the
concept of FAMAS-HLA bridge.

REFERENCES

Boer, C.A., Y.A. Saanen, H.P.M. Veeke, and A. Verbraeck.
2002. “Final Report Simulation Backbone FAMAS MV2.
Project 0.2 Technical Design.” Research report to Connekt,
34 pages, Delft, The Netherlands. (March).

Boer, C. A., A. Verbraeck, and H.P.M. Veeke. 2002. “Distribu-
ted Simulation of Complex Systems: Application in Contai-
ner Handling.” In Proceedings of the 2002 European Simu-
lation Interoperability Workshop (Harrow, Middlesex, UK,
June 24-26). SISO, 134-142.

Davis, W. J. and G. L. Moeller 1999. “The High Level Archi-
tecture: Is There a Better Way?” In Proceedings of the 1999
Winter Simulation Conference (P. A. Farrington, H. B. Nem-
bhard, D. T. Sturrock, and G. W. Evans, eds.). IEEE, Phoe-
nix, USA, 1595-1601.

Defense Modeling and Simulation Office. 1996. HLA Specifica-
tion. Washington DC, USA. Available online via
https://www.dmso.mil/public/transition/hla/, [accessed Sep-
tember 24, 2002].

DIS Steering Committee. 1994. “The DIS Vision, A map to the
Future of Distributed Simulation.” Technical Report IST-SP-
94-01, Institute for Simulation and Training, Orlando Flori-
da, USA.

FAMAS MV2 Backbone Project. 2001. Research Program
FAMAS Maasvlakte II Project 0.2 - Simulation Backbone.
Delft, The Netherlands. Available online via
http://www.famas.tudelft.nl [accessed September 24, 2002].

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Sys-
tems. John Wiley & Sons,Inc., New York.

Gan, B. P., L. Liu, S. Jain, S. J. Turner, W. Cai, and W. Hsu.
2000. “Distributed Supply Chain Simulation across Enterpri-
se Boundaries.” In Proceedings of the 2000 Winter Simulati-
on Conference (J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, eds.). IEEE, Orlando, USA, pp. 1245-1251.

Henriksen, J.O. 1997. “An Introduction to SLX.” In Proceedings
of the 1997 Winter Simulation Conference (S. Andradóttir,
K. J. Healy, D. H. Withers, and B. L. Nelson, eds.). IEEE,
New Jersey, USA, pp. 559-566.

Schulze, T., S. Straßburger, and U. Klein. 1999. “Migration of
HLA into Civil Domains: Solutions and Prototypes for
Transportation Applications.” Simulation, Vol. 73, No. 5,
November 1999. pp. 296-303.

Straßburger, S. 2001. Distributed Simulation Based on the High
Level Architecture in Civilian Application Domains. Ghent :
Society for Computer Simulation International, Magdeburg,
Germany.

Veeke H.P.M., Y.A. Saanen, W. Rengelink, A. Verbraeck. 2002.
“Final Report Simulation Backbone FAMAS MV2. Project
0.2 Functional Design.” Research report to Connekt, 20
pages, Delft, The Netherlands. (April).

AUTHOR BIOGRAPHIES

CSABA ATTILA BOER is a Ph.D. student at the De-
partment of Computer Science of the Faculty of Economics
at Erasmus University Rotterdam, The Netherlands. He
received his M.Sc. degree in Computer Science at the
Babes Bolyai University, Cluj Napoca, Romania. Since
April 2001 he has been involved in the FAMAS MV2
Simulation Backbone project. His research focuses on
multi-level distributed simulation of complex systems. His
email address is <acboer@few.eur.nl>.

ALEXANDER VERBRAECK is an associate professor
in the Systems Engineering Group of the Faculty of Tech-
nology, Policy and Management of Delft University of
Technology, and part-time research professor in supply
chain management at the R.H. Smith School of Business of
the University of Maryland. He is a specialist in discrete
event simulation, both for real-time analysis and control of
complex transportation systems and for modeling business
systems. His current research focus is on the development
of generic libraries of distributed object oriented simula-
tion building blocks. His email address is
<a.verbraeck@tbm.tudelft.nl>.

	INTRODUCTION
	BRIEF INTRODUCTION OF HLA AND FAMAS BACKBONE ARCHITECTURES
	High Level Architecture
	The FAMAS Simulation Backbone Architecture

	A COMPARISON OF FAMAS AND HLA ARCHITECTURES
	Separate Simulation and Communication
	Provides Efficient Communications
	Supports an Easy Initialization
	Support Object Declaration and Management Between Federates
	The Time Management Mechanism of the Architectures
	Extended Capabilities Offered by the Architectures (built-in logging and animation possibilities)
	Compatibility and Support for Civil Domain

	FAMAS - HLA BRIDGE
	CONCLUSIONS

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

