40 YEARS OF OBJECT-ORIENTED AGENTS

Eugene.Kindler
Department of Informatics and Computers
Ostrava University, Faculty of Science
CZ-170 00 Prague 7, Czech Republic
E-mail: ekindler@centrum.cz

KEYWORDS

Object-oriented programming, Simulating agents,
Simula, Intelligent agents

ABSTRACT

In 1967, SIMULA 67 was presented at the IFIP
Working Conference on Simulation Programming
Languages. Although the exact definition of SIMULA
67 was a bit modified during the next year, theepsal
properties of the first proposal were conserved and
respected. Among them, the properties declared date
those characterizing the object-oriented progrargmin
(classes, subclasses and virtuality of methods)e wer
introduced, but also other properties like (afe“liules”

of running in quasi-parallel systems at a mono-pssor
computers, and (b) classes local in blocks andjaats.
Although property (a) rooted in an old practice
introduced for discrete event simulation, it wasaged

in many object-oriented tools, but — combined viith
object orientation - it leads to agents. Propeblyléads

to combining simulating agents reflected in a satioh
models that could be programmed by different agents
Applications will be presented, too.

FROM PROCESSESTO AGENTS

Programming simulation models is a difficult task.
Simulation programming languages tried to help ithie
following way. Instead of describing what should
happen in the computer, the author of the model
describes the simulated system and the descrifpsion
automatically converted into the form acceptablehsy
applied computer. One of the famous languages for
discrete event simulation was GPSS, applied sihee t
early sixties until nowadays (Gordon 1961, Schriber
1974, Schriber 1991). It reflected the fact tha¢ th
systems are often composed of elements (called
transaction¥ that behave according to certain rules
(algorithms, may be calledife ruleg and in that
behavior interact one with others. The life ruleakm

the transactions to haitiative like the later true agents.
The transactions can enter the system and leave it.
Similar transactions are instances of their comeians
and the life rules are connected with the classes.

The essential help consists in automatic switching
among performing algorithms (life rules) carriedut by

Proceedings 21st European Conference on Modelling and Simulation
Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

different transactions, which causes an illusiorthafir
contemporary behavior and dynamics. The tools sgrvi
to it referred to the modeled time and were covdrgd
term scheduling statement#\lthough the GPSS tools
for algorithmizing the life rules and for interamti be-
tween the transaction were rather poor, the decsitipo
ion of the whole system dynamics into the transasti
caused so vehement feeling of their autonomy thea e
the specialists in agent paradigm (Urban 2000) it
hesitate to view GPSS applications as those ofitage
(Florea and Kalisz 2000).

The development of similar languages continued,aam
ly by improving the tools for interactions betwettre
transactions and the algorithmic tools for desoghtihe
life rules. Instead of transactions, one spoke aralfel
processegDahl 1966). The most perfect fruit of this
development was SIMULA (Dahl and Nygaard 1965
and 1966). This language assumed the full algorithm
apparatus of Algol 60 (Backus et al. 1960), inahgdi
the true block structure, and allowed the use bédal-
ing statements in the blocks marked by the users as
simulation models. For the interaction betweenpgre
cesses, Simula offered @nnection statemenr(talled
often inspection: in its life rules, any proces? could
meet a statement of a formspect Q do SwhereQ is
another process anfl is interpreted according to the
same manner as the life rulesf

FROM PROCESSES TO OBJECT-ORIENTED
PROGRAMMING

In 1966, one of the authors of SIMULA, O.-J. Dakés
invited to be a lecturer at NATO summer school omp
gramming languages in Villard-de-Lans (France), he
he met another lecturer C. A. R. Hoare and hiautect
published later as (Hoare 1968). Hoare introduced a
idea of hierarchical classes of data and a marfrtheo
referencing calledemote identifyingand lateidot notat-
ion. The hierarchy of data classes existed so th&sa ¢
(1) introduced data structures with certain compisie
and (2) could be “specialized” to issibclassthat assu-
med other components. The dot notation told, thét i
was a reference to a data structure having andtdtad

W among its components, théhW referred to W of

R'. If W itself was a reference to a data structure that
had an item calleXX among its components th&aW.X
referred to X of SwhereSwasW of R".

0O.-J. Dahl often thought back on the Hoare's ideas
e.g. (Dahl 2002) — as on the essential impulsehfer
way to object orientation. In fact, already the d'ol
SIMULA had tools for producing an a priori unknown
number of instances of classes, so that the inssanc
were richer than those considered by Hoare: thely ha
life rules. Note that such instances were muchebett
facilitated by another aspect later related to tmen
cooperation.

Of course, accepting Hoare’s idea of class hiesairtio

the old SIMULA implied three consequences: (a) the
processes could be considered as instances otcalspe
ization of a general class that was independestnodi-
lation and much near to autonome agents, (b) niyt on
the data but also the life rules could be enricimethe
subclasses, and (c) omitting the universality akslof
processes demands (and offers) a more general fvay o
switching among the life rules: it was introduceter
the title quasi-parallel sequencingalso that phenome-
non put the instances near to the general practice
agent paradigm — the cooperation of the instan@s w
set free from the dependence on modeled time.n@) a
(c) turned the language to a general purpose pmoegra
ming language with suitable tools for applying agen
and for computer simulation.

Very important (and independent of the Hoare’s lea
was the decision to include procedures into thecstr
ures defined by means of the classes, and appthimg
dot notation to their calling. In general, the staént
X.F(Y) meaning “letX perform procedur& with para-
meterY” may reflect a natural language phrase with sub-
ject X, verbF and complemeri. In relation to the agent
paradigm, the same statement, called by agemn re-
present a reactio of agentX on the state caused By

Nevertheless, O.-J. Dahl and his collaborator KgaNy
ard had to come to discovering another tool, gdiyera
called virtuality: the content of a procedure introduced
in a classC can be declared in a different way in its
subclass. Virtuality was generalized also to thgets of
the transfers in the life rule algorithms.

Under the termobject-oriented programmingfurther
OOP), the world professional community consideted t

introduced in ALGOL 60. The authors Dahl and
Nygaard realized that class declaration can in igehe
subject of the same context rules as other demast
(those of variables, attributes, procedures,...) dmc
they introducedocal classes namely classes local in
blocks and in objects. Summed up, the notion of<la
came to a declaration of data, procedures, lifesraind
(so called internal) classes. In the subclassesyittual-
ity could give new contents to the procedures anithe
targets of life rules.

While the class with life rules and procedures beza
base for reactive agent, the class containing riater
classes became a base for intelligent agents thad c
use the internal classes as abstract conceptsthar o
words, an instance of a class handling internadsela
can represent an agent that is a model of anigeel
entity that thinks, using general concepts refigdige the
internal classes. Or — using yet other words -hatance
of a class that has internal classes is an imaganof
agent using the language introduced by means of the
internal classes.

Such an agent can use the internal classes astlagry o
classes, i.e. it can form instances of them andhketn
operate. It implies that such an agent can opersita
modeling one or even as a simulation one. Also the
instances of its internal classes can carry pragsedf
agents, i.e. the agent can be a carrier and oyaoniits
“private” agents, which does not contradict to fhet
that the same agent can cooperate with other agents
Also the blocks with local classes represent conitiesn

of cooperating agents, although such blocks themsel
are distant from being agents.

The new language was called SIMULA 67 and the origi
nal simulation one was renamed as SIMULA |
Nevertheless the users of SIMULA | turned to SIMULA
67 and SIMULA | fell into oblivion. This was the
stimulus, that when SIMULA 67 became an
international standard referred by ISO in 1986, the
complement 67 was omitted, so that nowadays orte cal
it simply SIMULA. Its OOP tools and properties
overpassing OOP, namely life rules, quasi-parallel
sequencing and local classes are sometimes
characterized by the words super-object-oriented

paradigm comprising classes and subclasses as-encapprogramming (Kindler 2004, SOOP Corner 1993).

sulations of data and procedures, and the virjualite

life rules were not accepted as necessary compardent
OOP, nor the switching by means of scheduling state
ments or quasi-parallel sequencing. Their absemte (
C++, SmallTalk, late Pascal etc,) embarrassed aoétw
preparation for agent application.

TO SUPER-OBJECT-ORIENTED
PROGRAMMING

Similarly as the starting simulation language SIMUL
also the new languageincluded full block structuring

MODSIM (Herring 1990) is an object-oriented langeiag
with life rules and scheduling statements but witho
local classes, virtual targets of the transfershim life

rule algorithms, and quasi-parallel systems. Simila
properties could be observed at NEDIS (Glushkaal.et
1975). Nowadays, only BETA (Madsen et al. 1993)
could be classified as a tool for the super-object-
oriented programming and — when we assume with a
great broadmindedness Java as an OOP language — we
could think on it as on a super-object-oriented, ttwm.

NEW RESULTS

SIMULA was widely used in a form satisfying the ate
paradigm. But this paradigm itself develops andaitds
are being slowly improved. In parallel with thagw
tools are implemented in SIMULA in order to make it
more suitable for agent practice. The followingdurots
should be mentioned.

SIMULA 67 offered a standard tool for discrete @ven
simulation. It was a class call&IMULATION contain-

ing an important internal claggocessand enabled the
users to prepare the models in a readable andeeffic
way. Nevertheless, such an application does notvall
giving names to the simulation models. The reason
consists in security against “transplantation” esra.e.
against programming errors that transfer an elemwkat
model into another model: in general, both the nwde
can be in different states and such a transfererdent
can carry inconsistency into the target model. Withen
models cannot be named the erroneous transfer tanno
be expressed.

An analogy toSIMULATIONwas constructed so that it
allows giving names to simulation models but isafe
against the transplantation 8MULATION The new
class enables applying a lot of steps typical famas on
models.

Any class containing internal classes enables dss®m
of their instances into a certain community and semwve
for preparing general tools for the mutual commanic
ion among them. In many cases it is suitable, boies
times one prefers to view any instance as an aotons
— in principle separated — agent. SIMULA allowstiid
nowadays our work consists in preparing classesic
separate agents that could be a posteriori inclunted
any “universe”.

SOME APPLICATIONS OF INTELLIGENT
AGENTS

The first application of SIMULA where the intellige
agents occurred concern dynamic optimization -ait ¢

characterized as a simulation model containingpdeah
composed of non-simulating agents. It concernedi-sim
lation of a rectification column, i.e. of a cascaystem
behaving according to a complex system of non-tinea
partial differential equations. For its numericalution

at a digital computer the following special metheas
applied. It was designed as a certain system afitage
that could be seen as models of experts, each ichwh
was using splines to follow the way to the resudtrf his
special direction (from the front, from behind, fro
above, from below and from the past); the agents
mutually communicated and modified their data ideor

to come to a result that would satisfy each of them
(Kindler 2002). When the agents have computed a
vector of the results in a certain place (tempeeatu
enthalpy, percentages of chemical substances, merce
ages of liquid and gasiform components) they move
together to concentrate to the next place and ey th
change the whole state of the column. It was regpkat
during the whole simulation of the rectificationwmn.

Several applications concerned simulation of dpmra
transport in production halls. In the first of theanhall
served by automatically driven induction carriages
simulated so that the carriages were modeled aat@i
vely computing their shortest paths with respecth®
instantaneous trafficability of the transport netiveeg-
ments — in fact some of them could be blocked foara
riage by a barrier caused by another carriage peinfig
there its task (Kindler and Brejcha 1990). In timaudat-
ion model of the whole system, the carriages wepee-
sented by agents, applying their life rules for mgv
and working, while their routine for computing tbleor-
test path was implemented as a simulation model of
fictitious system invented by Dijkstra and Lee atel
scribed at the end of (Dahl, 1966): it consistedgents
proliferating, spreading and contemporarily moving
from the start node along the whole transport netwo
Dahl in the loc. cit. uses term pulses. For them.

A much more modern application concerned a circular
conveyor with rollers connecting working areas aotl
laborating with a computer that decides on thei&ist

be characterized as a model of a session of severalion of every transported object, on accepting tea®s

experts who want to determine the optimum of ardisc

ing an object to the conveyor in case it is ratherup-

event dynamic systems depending on a certain number ied, and on the continuing with reconfiguring, wmied-

(in fact one to 30) of parameters; each of them das
computer simulating his variant, during simulatithe
experts share their experiences on the behavitinenf
models and according it they modify their variaams! —
therefore — their simulation models (Weinberger 7,98
1988). The method was applied in metallurgy, maghin
production, services, project managing and neuyolog
and always appeared surprisingly efficient.

While the mentioned study could be characterized as
non-simulation model of a system of simulating dgen
the next example is in a certain sense inversadutd be

iate repairing in case of a fault (Berruet et 802, Kin-
dler et al. 2004). Simulation of flexible manufagng
systems with automatically guided vehicles belotas
the same sort of application (Tanguy et al. 2004).

A rather similar studies concerned container yarasre

the operation transport tools (like forklifts) were
managed by a central computer that dynamically com-
puted shortest path for each of them, anticipathng
possible changes of the network composed of places
without containers, at which the transport toolsildo
move (Kindler 1997, 1999).

The intelligent transport with anticipation of pitde

Quite new are initial studies on simulation modefs

future states and consequences of the instantaneousautomatically controlled in-patient departmentfio$pi-

decisions is a very efficient stimulus for nestadecom-
positions into agents — at the upper level the &geor-
respond to the transporting tools and in the loleeel
(nested in the agents operating in the upper lebe)
agents correspond to fictitious cooperating elemért
often reflect the images of the agents of the upgezl
as they exist in the “brain” of the other agenta-fu
ctioning the upper level (see Figure 1 where theleto
are represented by rectangles with rounded coamats
the cooperating agent by the symbol of the moon).

g O
G f|& G \|IC
Dl |2 Dl ||
. /

Figure 1: Agents Nesting Inside Other Agents

Such an application concerns simulation approaca to
public personal transport in a certain Moravianiagrg
where passengers use buses and determine theg path
(combinations of consecutive sectors of differens b
lines), using imagining various variants of thehsato
their targets (Bulava, 2002).

The study just mentioned was accepted into offid@!
cuments on the region development and was a stimulu
for a study that could be characterized as sinfdaits
reflecting human anticipation into the model altglouit
does not concern transport more. It simulates plessi
demographic development of the same region in dutur
years, including some intelligence of the interggtei-
zens who imagine and anticipate the future chartbes;
system is intended to be completed by consultimjecs
for the inhabitants, equipped by simulating compite
(Bulava, 2003).

A quite different application can be observed ailfic-
zka 2002), where the “external’ agents represeat th
quantums of transported gas in a gas transportonietw
while the “internal” agents compute how the extérna
agents should operate. The internal agents infri¢ine
others in the opposite direction that the exteaggnts
do — the external ones reflect the physical moomfthe
inputs to the outputs, while the internal agentiecéthe
“flow”of the demands (from the outputs to the ingut

tals (Kfivy and Kindler 2005) and on refiguring
information systems (kindler, Klime$ andi¥y, 2007).

CONCLUSIONS

What was presented in 1967 as properties of SIMULA
67, in a large measure overpassed what was ldted ca
Object-oriented programming. The swicthing lifeesl
local classes and model nesting present rathemntikb-
rizons for the development of intelligent systensdei-

ing and — especially — simulation in the future.

ACKNOWLEDGEMENTS

This work has been supported by the Grant Agency of
Czech Republic, grant reference no. 201/060612.enam
"Computer Simulation of Anticipatory Systems" and b
internal grant “Intelligent Information and Knowigel
Systems and Their Implementation in Portals”.

The autor thanks to his collaborator Profesor IK&iwy

of Ostrava University for valuable stimuli got dugithe
discussions on the taxonomy of nesting simulation
models.

REFERENCES

Backus, J. W. et al. 1960. “Report on the Algorithmic
Language ALGOL 60.” Numerische Mathematik 2, 106-
136.

Berruet, P.; T. Coudert and E. Kindler. 2004. “Convsyo
With Rollers as Anticipatory Systems: Their Simudati
Models.” In: Computing Anticipatory SystemSASYS
2003 — Sixth International Conference, Liege, Betgiu
11-16 August 2003D. M. Dubois (Ed.). American
Institute of Physics, Melville, New York, 582-592.

Brejcha, M. and E. Kindler. 1990. “An application wfain
class nesting — Lee’s algorithmSIMULA Newsletted 3,
No.3 (Nov.), 24-26.

Bulava, P. 2002. “Transport system in Havirov.”Rroceed-
ings of 28th ASU Conferend®rno, September 26 — Octo-
ber 1, 2002 Faculty of Information Technologies, Univer-
sity of Technology, Brno, 57-62.

Bulava, P. 2003, “Human-Thinking Simulation”. Rroceed-
ings of the 29th ASU Conference — Object-Orienteat Pr
gramming in Simulation, Byste pod Hostynem, Septem-
ber 10-12, 2003l. Kfivy and R. Krpec (Eds.). University
of Ostrava, Ostrava, 2003, pp. 19-22.

Dahl, O.-J. 1966Discrete Event Simulation Languagé¢or-
wegian Computing Center, Oslo. Reprinted in (Genuys
1968), 349-395.

Dahl, O.-J. 2002. “The Birth of Object Orientatidhe Simula
Languages.” In: M. Broy and E. Denert (EdSpftware
Pioneers: Contribution to Software Engineering
Springer, Berlin, 78-90. Reprinted in (Owe et al. 200
pp.15-25.

Dahl, O.-J. and K. Nygaard. 196Simula — A Language for
Programming and Description of Discrete Event Syste
Introduction and User's ManualNorwegian Computing
Center, Oslo.

Dahl O.-J. and K. Nygaard. 1966. “Simula — an Algaked
Simulation Language.Communications of the ACM,
No. 9, 671-678.

Genuys, F. (Ed.). 196&rogramming Language#\cademic
Press, London — New York.

Glushkov, V. M;V. V. Gusev; T. P. Maryanovich and M. A.
Sachnyuk. 1975Programmnyje sredstva modelirovaniya
nepreryvno-diskretnych sistem (Programming toaigHe
modeling of continuous-discrete systems — in Rogsia
Naukova Dumka, Kiev

Gordon, G. 1961. “A General Purpose Simulation Prog’

In Proc. 1961 EJCCMacMillan, New York, 81-98.

Herring, C. 1990 ModSim: A new object-oriented simulate-
ion language”.SCS Multiconference on Object-Oriented
Simulation The Society for Computer Simulation, San
Diego

Hoare, C. A. R. 1968. “Record Handling.” In (Genuy$8p
291-346.

Kalisz, E. and A. M. Florea. 2000. “A GPSS simudatimodel
of interactions in a market-based multi-agent systén:
(Urban, 2000), 145-150.

Kindler, E. 1997. “Classes for object-oriented Siatigin of
Container Terminals.” InManaging and Controlling
Growing Harbour Terminals E. Blimel (Ed.). The
Society for Computer Simulation International, San
Diego, Erlangen, Ghent, Budapest, 175-278.

Kindler, E. 1999. “Nested Simulation of Containenrd&a” In
Simulation und Visualisierung '9D. Deussen, V. Hinz,
P. Lorenz (Eds.). Society for Computer Simulatiomdpe
BVBA, Ghent, Belgium, 247-259.

Kindler, E. 2002. “When Everybody Anticipates iDdferent
Way ...” In Computing Anticipatory Systems CASYS 2001
— Fifth International Conference, Liege, Belgium-18
August 2001 D. M. Dubois (Ed.). American Institute of
Physics, Melville, New York, 119-127.

Kindler, E. 2004. “SIMULA and Super-Object-Oriented
Programming.” In (Owe et al. 2004), 163-182.

Kindler, E.; T. Coudert and P. Berruet. 2004. “Compune
Based Simulation for a Reconfiguration Study of Tiams
Systems.’'SIMULATIONS8O, No. 3 (March), 153-163.

Kindler, E., C. KlimeS and |. Kvy. 2007. “Simulation Study
With Deep Block Structuring”. In J. Stefan (Ed.).
MOSIS’'07, Proceedings of 41th Spring International
Conference Modelling and Simulation of Systems, ®ozn
Pod Radho&m, April 2007 MARQ,.Ostrava.

Kiivy, I. and E. Kindler. 2005. “Computer Representatal
Formalized View of In-Patient Departments of Hoalsit’

In CompSysTech 2005 — Proceedings of the International
Conference on Computer Systems and Technologies, Var-
na, 2005 Bulgarian Union of Automation and Informa-
tics, Varna, 1-6.

Kubeczka, K. 2002. “Quasi-parallelism in Simulatiaf
Continuous Transport Systems”. Rroceedings of 28th
ASU ConferenceBrno, September 26 — October 1, 2002
Faculty of Information Technologies, University Béch-
nology, Brno, 93-103.

Madsen, O. L.; B. Mgller-Pedersen and K. Nygaa@R3l
Object-Oriented Programming in the Beta Programming
Language Addison Wesley, Harlow — Reading — Menlo
Park.

Owe, O. et al. (Eds.). 200&rom Obhect-Orientation to
Formal Methods. Essays in Memory of Ole-Johan Dahl
Lecture Notes in Computer Science, 2635, Springer,
Berlin

Schriber, T. S. 1974Simulation Using GPSS/HWiley, New
York — London — Sydney — Toronto.

Schriber, T. S. 1991An Introduction to Simulation Using
GPSS/H Wiley, New York — Chichester — Brishane —
Toronto — Singapore.

SOOP Corner.1993SU NewsletteP1, No.1 (Febr.), 41

Tanguy, A.; E. Kindler; I. Krivy and P. Lacomme.@) “Si-
mulation of FSM Including Automated Guided Vehitle.
In: Proceedings of the 2003 European Simulationd a
Modelling Conference “Modelling and Simulation'2003”
Naples, 2003B. Di Martino, L. T. Yang and C. Bobeanu
(Eds.). EUROSIS-ETI, Ghent, 122-126.

Urban, Ch. (Ed.). 2000Agent-Based Simulation. Proceeding
of Workshop 2000, Passau, Germany, May 20Dfe

Society for Computer Simulation International, San
Diego.

Weinberger, J. 1987. “Extremization of Vector Ciaenf
Simulation Models by Means of Quasi-Parallel

Handling.” Computers and Atrtificial Intelligen¢e8, 71-
79.

Weinberger, J. 1988. “Evolutional Approach to Entization
of Vector Criteria of Simulation Models.Acta Universi-
tatis Carolinae Medica34, 249-258.

EUGENE KINDLER was born in 1935 in
Prague (Czechoslovak Republic). He studi-
ed mathematics at Charles University in
> i~| Prague and there he got grades of Doctor
gﬂﬂ-\afﬁ?‘; of philosophy in Logic and Doctor of
sciences in theory of programming. The Czechoslovak
academy of sciences granted him the grade of Catdid
of sciences in physics/mathematics. During his espl
ment in the Prague Research Institute of Matheiatic
Machines (1958-1966), he participated at the design
the first Czechoslovak electronic computer andgtesi
and implemented the first Czechoslovak ALGOL com-
piler for it. Then, working at the Institute of Bibysics

at the Faculty of General Medicine of Charles Ursire

ty (1967-1973), he designed and implemented ttst fir
Czechoslovak simulation language and then introdluce
the object-oriented programming into Czechoslovakia
Nowadays, as professor emeritus of applied mathema-
tics, he teams up with University in Ostrava andhwi
Charles University in Prague. He was visiting psste

at the University in Italian Pisa, at the Univeysif
South Brittany in French Lorient, at Blaise Paddal-
versity in French Clermont-Ferrand, and at WesgVir
nia University in American Morgantown. His mainént
rest consists in object-oriented and modeling stesyps
that handle complex models to improve their owricant
patory abilities and intelligence. He applied ity in
logistic and production systems, for example intipar
pating at two grants supported by the European Com-
mission and oriented to modernization of sea harbgr
means of computing technique. Beside computer scien
ce, he is interested in music. He plays violinnpiand
organ and for 30 years he is a director of a smgioup
performing the Latina, Greek, Armenian and Palaeos|
vic chants of the first millennium.

