

40 YEARS OF OBJECT-ORIENTED AGENTS

Eugene.Kindler
Department of Informatics and Computers

Ostrava University, Faculty of Science
CZ-170 00 Prague 7, Czech Republic

E-mail: ekindler@centrum.cz

KEYWORDS

Object-oriented programming, Simulating agents,
Simula, Intelligent agents

ABSTRACT

In 1967, SIMULA 67 was presented at the IFIP
Working Conference on Simulation Programming
Languages. Although the exact definition of SIMULA
67 was a bit modified during the next year, the essential
properties of the first proposal were conserved and
respected. Among them, the properties declared later as
those characterizing the object-oriented programming
(classes, subclasses and virtuality of methods) were
introduced, but also other properties like (a) “life rules”
of running in quasi-parallel systems at a mono-processor
computers, and (b) classes local in blocks and in objects.
Although property (a) rooted in an old practice
introduced for discrete event simulation, it was ignored
in many object-oriented tools, but – combined with the
object orientation - it leads to agents. Property (b) leads
to combining simulating agents reflected in a simulation
models that could be programmed by different agents.
Applications will be presented, too.

FROM PROCESSES TO AGENTS

Programming simulation models is a difficult task.
Simulation programming languages tried to help it in the
following way. Instead of describing what should
happen in the computer, the author of the model
describes the simulated system and the description is
automatically converted into the form acceptable by the
applied computer. One of the famous languages for
discrete event simulation was GPSS, applied since the
early sixties until nowadays (Gordon 1961, Schriber
1974, Schriber 1991). It reflected the fact that the
systems are often composed of elements (called
transactions) that behave according to certain rules
(algorithms, may be called life rules) and in that
behavior interact one with others. The life rules make
the transactions to be initiative like the later true agents.
The transactions can enter the system and leave it.
Similar transactions are instances of their common class
and the life rules are connected with the classes.

The essential help consists in automatic switching
among performing algorithms (life rules) carried out by

different transactions, which causes an illusion of their
contemporary behavior and dynamics. The tools serving
to it referred to the modeled time and were covered by
term scheduling statements. Although the GPSS tools
for algorithmizing the life rules and for interaction be-
tween the transaction were rather poor, the decomposit-
ion of the whole system dynamics into the transactions
caused so vehement feeling of their autonomy that even
the specialists in agent paradigm (Urban 2000) did not
hesitate to view GPSS applications as those of agents
(Florea and Kalisz 2000).

The development of similar languages continued, name-
ly by improving the tools for interactions between the
transactions and the algorithmic tools for describing the
life rules. Instead of transactions, one spoke on parallel
processes (Dahl 1966). The most perfect fruit of this
development was SIMULA (Dahl and Nygaard 1965
and 1966). This language assumed the full algorithmic
apparatus of Algol 60 (Backus et al. 1960), including
the true block structure, and allowed the use of schedul-
ing statements in the blocks marked by the users as
simulation models. For the interaction between the pro-
cesses, Simula offered a connection statement (called
often inspection): in its life rules, any process P could
meet a statement of a form inspect Q do S, where Q is
another process and S is interpreted according to the
same manner as the life rules of Q.

FROM PROCESSES TO OBJECT-ORIENTED
PROGRAMMING

In 1966, one of the authors of SIMULA, O.-J. Dahl, was
invited to be a lecturer at NATO summer school on pro-
gramming languages in Villard-de-Lans (France), where
he met another lecturer C. A. R. Hoare and his lecture
published later as (Hoare 1968). Hoare introduced an
idea of hierarchical classes of data and a manner of their
referencing called remote identifying and later dot notat-
ion. The hierarchy of data classes existed so that a class
(1) introduced data structures with certain components,
and (2) could be “specialized” to its subclass that assu-
med other components. The dot notation told, that if R
was a reference to a data structure having an item called
W among its components, then R.W referred to “W of
R”. If W itself was a reference to a data structure that
had an item called X among its components then R.W.X
referred to “X of S where S was W of R”.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

O.-J. Dahl often thought back on the Hoare’s ideas –
e.g. (Dahl 2002) – as on the essential impulse for his
way to object orientation. In fact, already the “old”
SIMULA had tools for producing an a priori unknown
number of instances of classes, so that the instances
were richer than those considered by Hoare: they had
life rules. Note that such instances were much better
facilitated by another aspect later related to agents –
cooperation.

Of course, accepting Hoare’s idea of class hierarchy into
the old SIMULA implied three consequences: (a) the
processes could be considered as instances of a special-
ization of a general class that was independent of simu-
lation and much near to autonome agents, (b) not only
the data but also the life rules could be enriched in the
subclasses, and (c) omitting the universality of class of
processes demands (and offers) a more general way of
switching among the life rules: it was introduced under
the title quasi-parallel sequencing; also that phenome-
non put the instances near to the general practice of
agent paradigm – the cooperation of the instances was
set free from the dependence on modeled time. (a) and
(c) turned the language to a general purpose program-
ming language with suitable tools for applying agents
and for computer simulation.

Very important (and independent of the Hoare’s ideas)
was the decision to include procedures into the struct-
ures defined by means of the classes, and applying the
dot notation to their calling. In general, the statement
X.F(Y), meaning “let X perform procedure F with para-
meter Y” may reflect a natural language phrase with sub-
ject X, verb F and complement Y. In relation to the agent
paradigm, the same statement, called by agent Z can re-
present a reaction F of agent X on the state caused by Z.

Nevertheless, O.-J. Dahl and his collaborator K. Nyga-
ard had to come to discovering another tool, generally
called virtuality: the content of a procedure introduced
in a class C can be declared in a different way in its
subclass. Virtuality was generalized also to the targets of
the transfers in the life rule algorithms.

Under the term object-oriented programming (further
OOP), the world professional community considered the
paradigm comprising classes and subclasses as encap-
sulations of data and procedures, and the virtuality. The
life rules were not accepted as necessary component of
OOP, nor the switching by means of scheduling state-
ments or quasi-parallel sequencing. Their absence (in
C++, SmallTalk, late Pascal etc,) embarrassed software
preparation for agent application.

TO SUPER-OBJECT-ORIENTED
PROGRAMMING

Similarly as the starting simulation language SIMULA,
also the new language included full block structuring

introduced in ALGOL 60. The authors Dahl and
Nygaard realized that class declaration can in general be
subject of the same context rules as other declarations
(those of variables, attributes, procedures,…) and thus
they introduced local classes, namely classes local in
blocks and in objects. Summed up, the notion of class
came to a declaration of data, procedures, life rules and
(so called internal) classes. In the subclasses, the virtual-
ity could give new contents to the procedures and to the
targets of life rules.

While the class with life rules and procedures became a
base for reactive agent, the class containing internal
classes became a base for intelligent agents that could
use the internal classes as abstract concepts; in other
words, an instance of a class handling internal classes
can represent an agent that is a model of an intelligent
entity that thinks, using general concepts reflected by the
internal classes. Or – using yet other words – an instance
of a class that has internal classes is an image of an
agent using the language introduced by means of the
internal classes.

Such an agent can use the internal classes as any other
classes, i.e. it can form instances of them and let them
operate. It implies that such an agent can operate as a
modeling one or even as a simulation one. Also the
instances of its internal classes can carry properties of
agents, i.e. the agent can be a carrier and organizer of its
“private” agents, which does not contradict to the fact
that the same agent can cooperate with other agents.
Also the blocks with local classes represent communities
of cooperating agents, although such blocks themselves
are distant from being agents.

The new language was called SIMULA 67 and the origi-
nal simulation one was renamed as SIMULA I.
Nevertheless the users of SIMULA I turned to SIMULA
67 and SIMULA I fell into oblivion. This was the
stimulus, that when SIMULA 67 became an
international standard referred by ISO in 1986, the
complement 67 was omitted, so that nowadays one calls
it simply SIMULA. Its OOP tools and properties
overpassing OOP, namely life rules, quasi-parallel
sequencing and local classes are sometimes
characterized by the words super-object-oriented
programming (Kindler 2004, SOOP Corner 1993).

MODSIM (Herring 1990) is an object-oriented language
with life rules and scheduling statements but without
local classes, virtual targets of the transfers in the life
rule algorithms, and quasi-parallel systems. Similar
properties could be observed at NEDIS (Glushkov et al.,
1975). Nowadays, only BETA (Madsen et al. 1993)
could be classified as a tool for the super-object-
oriented programming and – when we assume with a
great broadmindedness Java as an OOP language – we
could think on it as on a super-object-oriented tool, too.

NEW RESULTS

SIMULA was widely used in a form satisfying the agent
paradigm. But this paradigm itself develops and its tools
are being slowly improved. In parallel with that, new
tools are implemented in SIMULA in order to make it
more suitable for agent practice. The following products
should be mentioned.

SIMULA 67 offered a standard tool for discrete event
simulation. It was a class called SIMULATION, contain-
ing an important internal class process and enabled the
users to prepare the models in a readable and efficient
way. Nevertheless, such an application does not allow
giving names to the simulation models. The reason
consists in security against “transplantation” errors, i.e.
against programming errors that transfer an element of a
model into another model: in general, both the models
can be in different states and such a transferred element
can carry inconsistency into the target model. When the
models cannot be named the erroneous transfer cannot
be expressed.

An analogy to SIMULATION was constructed so that it
allows giving names to simulation models but is as safe
against the transplantation as SIMULATION. The new
class enables applying a lot of steps typical for agents on
models.

Any class containing internal classes enables assembling
of their instances into a certain community and can serve
for preparing general tools for the mutual communicat-
ion among them. In many cases it is suitable, but some-
times one prefers to view any instance as an autonomous
– in principle separated – agent. SIMULA allows it and
nowadays our work consists in preparing classes of such
separate agents that could be a posteriori included into
any “universe”.

SOME APPLICATIONS OF INTELLIGENT
AGENTS

The first application of SIMULA where the intelligent
agents occurred concern dynamic optimization – it can
be characterized as a model of a session of several
experts who want to determine the optimum of a discrete
event dynamic systems depending on a certain number
(in fact one to 30) of parameters; each of them has a
computer simulating his variant, during simulation the
experts share their experiences on the behavior of their
models and according it they modify their variants and –
therefore – their simulation models (Weinberger 1987,
1988). The method was applied in metallurgy, machine
production, services, project managing and neurology
and always appeared surprisingly efficient.

While the mentioned study could be characterized as a
non-simulation model of a system of simulating agents,
the next example is in a certain sense inverse: it could be

 characterized as a simulation model containing a model
composed of non-simulating agents. It concerned simu-
lation of a rectification column, i.e. of a cascade system
behaving according to a complex system of non-linear
partial differential equations. For its numerical solution
at a digital computer the following special method was
applied. It was designed as a certain system of agents
that could be seen as models of experts, each of which
was using splines to follow the way to the result from his
special direction (from the front, from behind, from
above, from below and from the past); the agents
mutually communicated and modified their data in order
to come to a result that would satisfy each of them
(Kindler 2002). When the agents have computed a
vector of the results in a certain place (temperature,
enthalpy, percentages of chemical substances, percent-
ages of liquid and gasiform components) they move
together to concentrate to the next place and so they
change the whole state of the column. It was repeated
during the whole simulation of the rectification column.

 Several applications concerned simulation of operation
transport in production halls. In the first of them, a hall
served by automatically driven induction carriages was
simulated so that the carriages were modeled as initiate-
vely computing their shortest paths with respect to the
instantaneous trafficability of the transport network seg-
ments – in fact some of them could be blocked for a car-
riage by a barrier caused by another carriage performing
there its task (Kindler and Brejcha 1990). In the simulat-
ion model of the whole system, the carriages were repre-
sented by agents, applying their life rules for moving
and working, while their routine for computing the shor-
test path was implemented as a simulation model of a
fictitious system invented by Dijkstra and Lee and de-
scribed at the end of (Dahl, 1966): it consisted in agents
proliferating, spreading and contemporarily moving
from the start node along the whole transport network –
Dahl in the loc. cit. uses term pulses. For them.

A much more modern application concerned a circular
conveyor with rollers connecting working areas and col-
laborating with a computer that decides on the destinat-
ion of every transported object, on accepting or releas-
ing an object to the conveyor in case it is rather occup-
ied, and on the continuing with reconfiguring, or immed-
iate repairing in case of a fault (Berruet et al. 2004, Kin-
dler et al. 2004). Simulation of flexible manufacturing
systems with automatically guided vehicles belongs to
the same sort of application (Tanguy et al. 2004).

A rather similar studies concerned container yards where
the operation transport tools (like forklifts) were
managed by a central computer that dynamically com-
puted shortest path for each of them, anticipating the
possible changes of the network composed of places
without containers, at which the transport tools could
move (Kindler 1997, 1999).

The intelligent transport with anticipation of possible
future states and consequences of the instantaneous
decisions is a very efficient stimulus for nesting decom-
positions into agents – at the upper level the agents cor-
respond to the transporting tools and in the lower level
(nested in the agents operating in the upper level) the
agents correspond to fictitious cooperating elements that
often reflect the images of the agents of the upper level
as they exist in the “brain” of the other agents fun-
ctioning the upper level (see Figure 1 where the models
are represented by rectangles with rounded corners and
the cooperating agent by the symbol of the moon).

Such an application concerns simulation approach to a
public personal transport in a certain Moravian region
where passengers use buses and determine their paths
(combinations of consecutive sectors of different bus
lines), using imagining various variants of the paths to
their targets (Bulava, 2002).

The study just mentioned was accepted into official do-
cuments on the region development and was a stimulus
for a study that could be characterized as similar for its
reflecting human anticipation into the model although it
does not concern transport more. It simulates possible
demographic development of the same region in future
years, including some intelligence of the interested citi-
zens who imagine and anticipate the future changes; the
system is intended to be completed by consulting centers
for the inhabitants, equipped by simulating computers
(Bulava, 2003).

A quite different application can be observed at (Kubec-
zka 2002), where the “external” agents represent the
quantums of transported gas in a gas transport network
while the “internal” agents compute how the external
agents should operate. The internal agents influence the
others in the opposite direction that the external agents
do – the external ones reflect the physical move from the
inputs to the outputs, while the internal agents reflect the
“flow”of the demands (from the outputs to the inputs).

Quite new are initial studies on simulation models of
automatically controlled in-patient departments of hospi-
tals (Křivý and Kindler 2005) and on refiguring
information systems (kindler, Klimeš and Křivý, 2007).

CONCLUSIONS

What was presented in 1967 as properties of SIMULA
67, in a large measure overpassed what was later called
Object-oriented programming. The swicthing life rules,
local classes and model nesting present rather distant ho-
rizons for the development of intelligent systems model-
ing and – especially – simulation in the future.

ACKNOWLEDGEMENTS

This work has been supported by the Grant Agency of
Czech Republic, grant reference no. 201/060612, name
"Computer Simulation of Anticipatory Systems" and by
internal grant “Intelligent Information and Knowledge
Systems and Their Implementation in Portals”.

The autor thanks to his collaborator Profesor Ivan Křivý
of Ostrava University for valuable stimuli got during the
discussions on the taxonomy of nesting simulation
models.

REFERENCES

Backus, J. W. et al. 1960. “Report on the Algorithmic
Language ALGOL 60.” Numerische Mathematik 2, 106-
136.

Berruet, P.; T. Coudert and E. Kindler. 2004. “Conveyors
With Rollers as Anticipatory Systems: Their Simulation
Models.” In: Computing Anticipatory Systems CASYS
2003 – Sixth International Conference, Liege, Belgium,
11-16 August 2003, D. M. Dubois (Ed.). American
Institute of Physics, Melville, New York, 582-592.

Brejcha, M. and E. Kindler. 1990. “An application of main
class nesting – Lee’s algorithm.” SIMULA Newsletter 13,
No.3 (Nov.), 24-26.

Bulava, P. 2002. “Transport system in Havirov.” In Proceed-
ings of 28th ASU Conference, Brno, September 26 – Octo-
ber 1, 2002. Faculty of Information Technologies, Univer-
sity of Technology, Brno, 57-62.

Bulava, P. 2003, “Human-Thinking Simulation”. In Proceed-
ings of the 29th ASU Conference – Object-Oriented Pro-
gramming in Simulation, Bystřice pod Hostýnem, Septem-
ber 10-12, 2003, I. Křivý and R. Krpec (Eds.). University
of Ostrava, Ostrava, 2003, pp. 19-22.

Dahl, O.-J. 1966. Discrete Event Simulation Languages. Nor-
wegian Computing Center, Oslo. Reprinted in (Genuys
1968), 349-395.

Dahl, O.-J. 2002. “The Birth of Object Orientation: the Simula
Languages.” In: M. Broy and E. Denert (Eds.): Software
Pioneers: Contribution to Software Engineering.
Springer, Berlin, 78-90. Reprinted in (Owe et al. 2004),
pp.15-25.

Dahl, O.-J. and K. Nygaard. 1965. Simula – A Language for
Programming and Description of Discrete Event Systems.
Introduction and User’s Manual. Norwegian Computing
Center, Oslo.

Figure 1: Agents Nesting Inside Other Agents

Dahl O.-J. and K. Nygaard. 1966. “Simula – an Algol-based
Simulation Language.” Communications of the ACM 9,
No. 9, 671-678.

Genuys, F. (Ed.). 1968. Programming Languages. Academic
Press, London – New York.

Glushkov, V. M; V. V. Gusev; T. P. Maryanovich and M. A.
Sachnyuk. 1975. Programmnyje sredstva modelirovaniya
nepreryvno-diskretnych sistem (Programming tools for the
modeling of continuous-discrete systems – in Russian).
Naukova Dumka, Kiev

Gordon, G. 1961. “A General Purpose Simulation Program.”
In Proc. 1961 EJCC. MacMillan, New York, 81-98.

Herring, C. 1990. “ ModSim: A new object-oriented simulate-
ion language”. SCS Multiconference on Object-Oriented
Simulation. The Society for Computer Simulation, San
Diego

Hoare, C. A. R. 1968. “Record Handling.” In (Genuys 1968),
291-346.

Kalisz, E. and A. M. Florea. 2000. “A GPSS simulation model
of interactions in a market-based multi-agent system.” In:
(Urban, 2000), 145-150.

Kindler, E. 1997. “Classes for object-oriented Simulation of
Container Terminals.” In Managing and Controlling
Growing Harbour Terminals, E. Blümel (Ed.). The
Society for Computer Simulation International, San
Diego, Erlangen, Ghent, Budapest, 175-278.

Kindler, E. 1999. “Nested Simulation of Container Yards.” In
Simulation und Visualisierung '99, O. Deussen, V. Hinz,
P. Lorenz (Eds.). Society for Computer Simulation Europe
BVBA, Ghent, Belgium, 247-259.

Kindler, E. 2002. “When Everybody Anticipates in a Different
Way ...” In Computing Anticipatory Systems CASYS 2001
– Fifth International Conference, Liege, Belgium, 13-18
August 2001, D. M. Dubois (Ed.). American Institute of
Physics, Melville, New York, 119-127.

Kindler, E. 2004. “SIMULA and Super-Object-Oriented
Programming.” In (Owe et al. 2004), 163-182.

Kindler, E.; T. Coudert and P. Berruet. 2004. “Component-
Based Simulation for a Reconfiguration Study of Transitic
Systems.” SIMULATION 80, No. 3 (March), 153-163.

Kindler, E., C. Klimeš and I. Křivý. 2007. “Simulation Study
With Deep Block Structuring”. In J. Štefan (Ed.).
MOSIS’07, Proceedings of 41th Spring International
Conference Modelling and Simulation of Systems, Rožnov
Pod Radhoštěm, April 2007. MARQ,.Ostrava.

Křivý, I. and E. Kindler. 2005. “Computer Representation of
Formalized View of In-Patient Departments of Hospitals.”
In CompSysTech 2005 – Proceedings of the International
Conference on Computer Systems and Technologies, Var-
na, 2005. Bulgarian Union of Automation and Informa-
tics, Varna, 1-6.

Kubeczka, K. 2002. “Quasi-parallelism in Simulation of
Continuous Transport Systems”. In Proceedings of 28th
ASU Conference, Brno, September 26 – October 1, 2002.
Faculty of Information Technologies, University of Tech-
nology, Brno, 93-103.

Madsen, O. L.; B. Møller-Pedersen and K. Nygaard. 1993.
Object-Oriented Programming in the Beta Programming
Language. Addison Wesley, Harlow – Reading – Menlo
Park.

Owe, O. et al. (Eds.). 2004. From Obhect-Orientation to
Formal Methods. Essays in Memory of Ole-Johan Dahl.
Lecture Notes in Computer Science, 2635, Springer,
Berlin

Schriber, T. S. 1974. Simulation Using GPSS/H. Wiley, New
York – London – Sydney – Toronto.

Schriber, T. S. 1991. An Introduction to Simulation Using
GPSS/H. Wiley, New York – Chichester – Brisbane –
Toronto – Singapore.

SOOP Corner.1993. ASU Newsletter 21, No.1 (Febr.), 41
Tanguy, A.; E. Kindler; I. Krivy and P. Lacomme. 2003. “Si-

mulation of FSM Including Automated Guided Vehicle.”
In: Proceedings of the 2003 European Simulation and
Modelling Conference “Modelling and Simulation'2003”,
Naples, 2003, B. Di Martino, L. T. Yang and C. Bobeanu
(Eds.). EUROSIS-ETI, Ghent, 122-126.

Urban, Ch. (Ed.). 2000. Agent-Based Simulation. Proceeding
of Workshop 2000, Passau, Germany, May 2000. The
Society for Computer Simulation International, San
Diego.

Weinberger, J. 1987. “Extremization of Vector Criteria of
Simulation Models by Means of Quasi-Parallel
Handling.” Computers and Artificial Intelligence, 3, 71-
79.

Weinberger, J. 1988. “Evolutional Approach to Extremization
of Vector Criteria of Simulation Models.“, Acta Universi-
tatis Carolinae Medica, 34, 249-258.

EUGENE KINDLER was born in 1935 in
Prague (Czechoslovak Republic). He studi-
ed mathematics at Charles University in
Prague and there he got grades of Doctor
of philosophy in Logic and Doctor of

sciences in theory of programming. The Czechoslovak
academy of sciences granted him the grade of Candidate
of sciences in physics/mathematics. During his employ-
ment in the Prague Research Institute of Mathematical
Machines (1958-1966), he participated at the design of
the first Czechoslovak electronic computer and designed
and implemented the first Czechoslovak ALGOL com-
piler for it. Then, working at the Ïnstitute of Biophysics
at the Faculty of General Medicine of Charles Universi-
ty (1967-1973), he designed and implemented the first
Czechoslovak simulation language and then introduced
the object-oriented programming into Czechoslovakia.
Nowadays, as professor emeritus of applied mathema-
tics, he teams up with University in Ostrava and with
Charles University in Prague. He was visiting professor
at the University in Italian Pisa, at the University of
South Brittany in French Lorient, at Blaise Pascal Uni-
versity in French Clermont-Ferrand, and at West Virgi-
nia University in American Morgantown. His main inte-
rest consists in object-oriented and modeling of systems
that handle complex models to improve their own antici-
patory abilities and intelligence. He applied it namely in
logistic and production systems, for example in partici-
pating at two grants supported by the European Com-
mission and oriented to modernization of sea harbors by
means of computing technique. Beside computer scien-
ce, he is interested in music. He plays violin, piano and
organ and for 30 years he is a director of a singing group
performing the Latina, Greek, Armenian and Palaeosla-
vic chants of the first millennium.

