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ABSTRACT

This paper proposes a component-based software 

architecture (Theatre) hosted by Java, which enables 

modelling and discrete-event simulation of complex and 

dynamically reconfigurable systems, possibly on top of 

a distributed computing context. At the “programming 

in-the-small” level, Theatre rests on light-weight 

reactive components (actors or agents) which interact to 

one another by asynchronous message-passing. Actor 

behaviour is modelled by a finite state machine. Actors 

can be easily composed to create new reusable 

components. At the “programming in-the-large” level a 

subsystem of actors can be assigned to an execution 

locus (theatre). A theatre provides to local agents the 

basic message scheduling, dispatching, communication 

and mobility services. The paper describes component-

based M&S support of Theatre and demonstrates its 

practical use through examples.

INTRODUCTION

The work described in this paper aims at the 

development of language structures and software tools 

for modelling and simulation of complex systems which 

are component-based, timed, mobile and whose 

structure can change during runtime (Hu et al.,

2005)(Jang et al., 2003)(Jang & Agha, 2006)(Posse & 

Vangheluwe, 2007)(Cicirelli et al., 2007b). Such 

systems are not adequately supported by conventional 

M&S tools where structure is often assumed to be static 

and dynamism only relates to state changes caused by 

the occurrence of events. However, many systems exist 

(e.g. predator/prey models in biology, adaptive 

networks in telecommunication systems accommodating 

for the presence of mobile users, and so forth) which 

require structure dynamism for them to be effectively 

modelled and analyzed.

In the context of DEVS (Zeigler et al., 2000) –Discrete 

Event System Specification- and particularly in the 

DEVSJAVA environment (DEVSJAVA) some 

extensions were defined (Hu et al., 2005) which allow 

variable structure models to be dealt with. All of this 

relies on adding/removing component models, 

adding/removing couplings among models and 

adding/removing input/output ports to models. 

Changing the interface of a component is a critical 

aspect because it may require modifications to the 

component behaviour. 

A modelling language directly founded on the 

specification of adaptive, dynamic structure discrete 

systems is Kiltera (Posse & Vangheluwe, 2007). Kiltera is 

formally based on a process algebra with two-way 

communications and timing constructs, which is useful 

to specify systems whose structure can change 

dynamically through the concept of link mobility, i.e. 

the possibility of altering the channel interconnection 

infrastructure among system components (processes). 

At current time, though, Kiltera is not assisted by 

concrete tools for making simulation of complex 

modelled systems, e.g. on a distributed context. 

This work argues that mobile agent systems offer a 

natural yet challenging computing infrastructure where 

to build and simulate dynamic structure systems.

Jang et al. in (Jang et al., 2003)(Jang & Agha, 2006) 

propose a distributed agent architecture based on the 

Actors Model (Agha, 1986) especially designed and 

implemented for modelling and simulation of large 

adaptive systems. The approach is characterized by the 

techniques it uses for ensuring efficient communications 

despite agent mobility, and the provisions e.g. for co-

locating highly interacting agents thus conserving 

bandwitdth during distributed simulation. The agent 

architecture was applied to modelling and distributed 

simulation of unmanned aerial vehicles which cooperate 

to one another in order to fire moving targets. In the 

application, agent discovery as well as patterns of 

interaction and coordination are intrinsically dynamic 

and challenge for the availability of suitable runtime 

infrastructures.

Theatre (Cicirelli et al., 2007b) is a software 

architecture (Shaw & Garlan, 1996) which belongs to 

the family of actor (agent) computational models and 
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rests on asynchronous message-passing. Key features of 

Theatre are: (i) the adoption of a lightweight notion of 

actors, which does not introduce internal threads and 

thus favours time predictability in real-time applications 

and the achievement of good performance in distributed 

simulations; (ii) the use of a runtime executive which 

can reason upon “real” or virtual time, and which can 

be customized through programming in order to fulfil 

specific application needs; (iii) a direct embedding in 

Java through a minimal API, which can exploit 

common transport layers like Java Socket, Java RMI 

and recently HLA/RTI infrastructure (iv) the use of an 

efficient mobility mechanism which is a key for model 

adaptivity.

This paper focuses on the component-based modelling 

and simulation capabilities of Theatre. The 

compositional mechanism is illustrated which facilitates 

the construction of component off-the-shelf reusability 

units which are not distinguishable from elementary 

components. The paper demonstrates the practical use 

of Theatre and shows a variable structure system 

concerning a distributed adaptive relocation server 

model.

AN OVERVIEW OF THEATRE 

A system consists of a collection of interacting theatres. 

Each theatre offers the runtime executive to a collection 

of application actors. In particular, a theatre furnishes 

to local actors the basic services of message 

scheduling/dispatching and timing, as well as mobility 

and communication mechanisms. Communication is 

based on one-way asynchronous message passing: the 

send operation is non-blocking. 

An actor (see Fig. 1) is characterized by its message

interface, hidden data variables and behaviour which is 

modeled as a finite state machine.

Fig. 1. Structure of an actor 

Messages are first-class citizens: they can be sent and 

transparently buffered and managed according to 

different control disciplines. It is up to a theatre control

machine to superimpose to messages the most apt 

control structure, tuned to the application needs.

The controller component of the control machine is in 

charge of repeating a basic loop. At each iteration, first 

the (or a) most imminent message is selected among 

pending messages, then the message is dispatched to its 

relevant destination actor. Message processing 

constitutes an atomic action and extends the control 

thread of the controller. At message processing 

termination, the controller loop is re-entered and 

continues with the next iteration.

An actor responds to an incoming message by executing 

basic actions as in the following: 

(new) creating new actors 

(send) sending messages to known actors 

(acquaintances) including itself (proactive 

behaviour)

(defer) deferring a message to future when the 

message cannot be accepted in current state. 

Deferred messages are automatically re-sent as 

soon as the actor changes its state 

(become) making a state transition in the actor 

automaton. The next state depends on the arrived 

message and current status. 

A lean Java framework (API) provides basic actor 

mechanisms. Actor classes derive directly or indirectly 

from the Actor abstract base class. Message classes are 

heirs of Message abstract base class which associates 

with a message its actor receiver. Main operation 

signatures in Actor are as follows: 

public void send( Message m, long… at ) 
protected int currentStatus() 
protected void become( int next_status ) 
protected void defer( Message m ) 
protected long now() 
protected void handler( Message m ) 

Method send() can carry also zero, one or multiple time 

information. An instantaneous message does not have 

the at parameter. A typical timed message is 

accompanied by its occurrence time. Message temporal 

information is meaningful to a control machine which 

reasons upon time (e.g. a simulation machine). Current 

time is available to actors through the now() method 

whose exact implementation is responsibility of a 

control machine. Actor design purposely hides to actors 

the identity of a particular control machine. 

The handler() method is activated by the controller with 

the incoming message as an argument. handler() codifies 

the actor finite state machine. 

actor

m1

m2

m3

message
interface

state variables 

behaviour (message
handler) 



Message classes can directly be embedded in a user-

defined actor class. In alternative, messages can be part 

of an interface which extends the MessageIF interface 

which defines the send() method according to the same 

signature as in Actor. An actor class then implements a 

message interface which acts as a contract with its 

peers. Actors normally have no need to override the 

send() method of MessageIF: they can rely on the 

version inherited from Actor. The send() method can be 

redefined in order to favour compositionality (see later 

in this paper). 

An actor is always created as a local object of a theatre. 

After that, the actor can migrate to a different theatre. 

A theatre maintains information about local executing 

actors. After migration, on the original theatre a 

forwarder (proxy) version of the actor is kept. Would 

an actor come back to a theatre where a proxy version 

of itself exists, the actor status is copied upon the proxy 

which then switches to normal actor status. The 

approach ensures that Java actor references persist 

despite migration. Migration rests on a customization of 

Java serialization mechanism and minimal recourse to 

reflection for copying actor data statuses (Cicirelli et

al., 2007b). For communication efficiency, in the case 

a message experiments multiple hops before reaching 

its destination, the addressing information on the sender 

theatre will be automatically updated with current 

destination of the receiver theatre. 

The control machines of a distributed simulation system 

based on Theatre cooperate to one another for time 

synchronization. Both conservative (Cicirelli et al.,

2006a)(Cicirelli et al., 2007b) and optimistic (Cicirelli 

et al., 2007a) synchronizations are possible. 

ACTORS AS COMPONENTS 

A component (Brown & Wallnau, 1998) is a “non 

trivial, nearly independent, and replaceable part of a 

system that fulfills a clear function in the context of a 

well-defined architecture. A component conforms to 

and provides the physical realization of a set of 

interfaces”.

Fig. 2. Actors, ports and connectors 

Actors naturally adher to the software component 

vision. The architecture of a subsystem of actors can be 

specified by an UML2 component diagram (Fig. 2) 

which shows ports, connectors and interfaces. 

In Fig. 2 one Generator generates jobs towards a Buffer,

and one Concumer gets jobs from the Buffer and 

consumes them. Generator has an output port input

which is bound to the required interface InputIF (socket

notation). Similarly, Consumer has an output port get

which requires the GetIF interface. The Buffer has an 

input port which provides both InputIF and GetIF

interfaces (ball or lollipop notation). InputIF and GetIF

are respectively a contract for the Generator and the 

Consumer which can actually work with any actor which 

provides (implements) the required contract. 

The interpretation of ports and connectors is 

straightforward. An output port corresponds to an 

acquaintance, i.e. an actor to which messages are sent 

asking for some services. An input port corresponds to 

the this actor, i.e. the actor who effectively provides the 

services (messages) specified in the exported interface. 

As a consequence, connectors between actors are 

simply Java references. 

A port can be associated with a multiplicity factor to 

indicate the number of times the port is repeated in the 

component. For an output port, that is the number of 

required acquantainces (interacting partners). The 

realization of a given actor topology as in Fig. 2 is a 

matter of configuration and can occur, in a case, at 

system start up time when the main program creates the 

actor instances and links them by establishing the 

acquaintance network. 

For client-server interactions like those between 

Consumer and Buffer in Fig. 2, it is assumed that the 

GetIF interface (see also Fig. 4) specifies the Get

message and within it a reply JobArr message which the 

buffer fills in with the returned job and then sends back 

to the requestor. All of this has an obvious analogy with 

postal letters which anticipate the message to be used 

for giving an answer to the sender. 

Java Programming Style 

Actors can directly be programmed in Java. In the 

following, the supported type-safe programming style is 

clarified using the example of Fig. 2. Figg. from 3 to 6 

show respectively the Java code of InputIF, GetIF,

Generator and Consumer.

public interface InputIF extends MessageIF{ 
 public final class Input extends Message{ 
  private Job job; 
  public Input( Job job ){ this.job = job; } 
  public Job getJob(){ return job; } 
 } 
}//InputIF

Fig. 3. The InputIF message interface 

 Buffer
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The Generator implements a timed reactivation through 

the local (hidden) message Next. Interarrival time 

between consecutive generated jobs is uniformly 

distributed within G0..G1. Each generated job has also a 

temporal size which expresses its service time. The size 

is uniformly distributed within S0..S1.

public interface GetIF extends MessageIF{ 
 public static class Get extends Message{ 
  public static class JobArr extends Message{ 
   private Job job; 
   public Job getJob(){ return job; } 
   public void setJob( Job job ){ this.job = job; } 
  } 
  private MessageIF sender; 
  private JobArr reply; 
  public Get( MessageIF sender ){ 
   this.sender = sender; 
   reply = new JobArr(); 
  } 
  public MessageIF getSender(){ return sender; } 
  public JobArr getReply(){ return reply; } 
 }//Get 
}//GetIF

Fig. 4. The GetIF message interface 

public class Generator extends Actor{ 
 private static class Next extends Message{} 
 public static final byte ACTIVE=0; 
 private InputIF input; //output port 
 private int G0, G1, S0, S1; 
 private int jobCount=0; 
 private Random random=new Random(); 
 public Generator( InputIF input , int G0, int G1, int S0, intS1 ){ 
  this.input=input; this.G0=G0; this.G1=G1; 

this.S0=S0; this.S1=S1; 
  int d=G0+random.nextInt( G1-G0 ); 
  send( new Next(), now()+d ); 
  become( ACTIVE ); 
 } 
 protected void handler( Message m ){ 
  switch( currentStatus() ){ 
   case ACTIVE: 
    if( m instanceof Next ){ 
     int d = G0+random.nextInt( G1-G0 ); 
     int s = S0+random.nextInt( S1-S0 ); 
     Job job = new Job( jobCount++, now(), s ); 
     input.send( new InputIF.Input(job) ); 
     send( m, now()+d ); 
    } 
  } 
 }//handler 
}//Generator

Fig. 5. The Generator

Actor Consumer (Fig. 6) is a simple server. It cyclically 

requests a job to the buffer; when a job arrives it 

consumes the job by a timed End message sent to itself. 

For demonstration purposes, the behaviour is organized 

in two states: IDLE (awaiting a job from buffer) and 

BUSY (consuming the arrived job). At the end of the 

consuming activity, a new job is requested and so forth. 

public class Consumer extends Actor implements MessageIF{ 
 private static class End extends Message{} 
 public static final byte IDLE=0, BUSY=1; 
 private GetIF get; //output port 
 private Job job; 
 private int consumed=0; 
 public Consumer( GetIF get ){ 
  this.get=get; 
  get.send( new GetIF.Get( this ) ); 
 } 
 protected void handler(Message m) { 
  switch( currentStatus() ){ 
   case IDLE: 
    if( m instanceof GetIF.Get.JobArr ){ 
     GetIF.Get.JobArr dispMsg =(GetIF.Get.JobArr)m; 
     job = dispMsg.getJob(); 
     send( new End(), now()+job.getSize() ); 
     become( BUSY ); 
    } 
    break; 
   case BUSY: 
    if( m instanceof End ){ 
     get.send( new GetIF.Get( this ) ); 
     job = null; consumed++; 
     become( IDLE ); 
    } 
  } 
 }//handler 
 public String toString(){ 
  return "No of consumed job="+consumed; 
 }//toString 
}//Consumer 

Fig. 6. The Consumer

The Buffer component is implemented as an unbounded 

buffer of jobs. The actor can find itself into one of three 

states: EMPTY (no buffered job), REQ_PEND (a request 

for job is pending) and NOT_EMPTY (one or more jobs 

buffered). Since only one consumer is admitted, at most 

one pending request can exist at each time. This is 

mirrored in the REQ_PEND state where only an Input

message is expected. The arrival of a job causes it to be 

replied to the requester and the buffer to come back to 

EMPTY state.

Fig. 7 depicts a skeleton main which configures the 

subsystem in Fig. 2 and launches simulation on a 

standalone machine. The simulation time limit is 

furnished as an argument to the constructor of the 

Simulation control machine. 

public class Driver{ 
 public static void main( String... args ){ 
  ControlMachine cm=new Simulation( 1000 /*tEnd*/ ); 
  Buffer b=new Buffer(); 
  … input values for G0, G1, S0, S1 
  Generator g=new Generator( b, G0, G1, S0, S1 ); 
  Consumer c=new Consumer( b ); 
  cm.controller(); //simulation start 
  System.out.println( c ); //statistics output 
 } 
}//Driver

Fig. 7. Configuration and launch of a simulation 



Composition and Coupled Models 

Components off-the-shelf can be built by composing 

existing actors in order to form a new component 

(coupled model or composite) which can immediately 

be reused as a unit. The new component behaves as a 

folder for the internal components which in turn can be 

elementary actors or composed actors (hierarchical 

composition). A composite is not distinguishable from a 

normal actor. It exhibits to its external environment a 

collection of input/output ports together with required 

and provided interfaces. Such interfaces are then 

delegated to internal components. 

An example of a composite is portrayed in Fig. 8 which 

relates to a computing Node which hides a Buffer, a 

Dispatcher and a collection of Servers. Node has an input 

port exporting the InputIF message interface, and two 

output ports respectively associated with required StatIF

and OutputIF interfaces. Node receives external 

generated jobs through the input port, and stores them 

in the Buffer.

Generator

Buffer

Dispatcher

Server

Node

Stats

Sink
ServerIF

[3]

GetIF

InputIF

StatIF

OutputIF

Fig. 8. A Node composite 

The Dispatcher requests one job at a time to the Buffer

and assigns it to an idle Server (here, a fixed number of 

servers is assumed). Server behaviour is similar to that 

of Consumer in Fig. 6, except it now follows a push

instead of a pull model. In other words, instead of 

asking the buffer for a job, it now waits for a job 

submission from the Dispatcher. When a server 

terminates with its job, the Dispatcher gets informed of 

this fact and sends the processed job to an external Sink.

In addition, information about each served job (its id, 

generation time, service finish time etc.) are captured in 

a message according to the StatIF interface and sent out 

for proper statistical processing. 

Node composition is specified by its internal structure 

diagram. Fig. 8 indicates that input messages coming 

from the external Generator are actually routed to the 

internal Buffer. All of this is witnessed by the dashed 

(<<delegate>>) dependency relationship which states that 

the InputIF message interface is really implemented by 

Buffer. In a similar way, requests toward Stats and Sink

are effectively originated (delegated) by the internal 

Dispatcher.

From the programming point of view, a coupled model 

is easy to build. At its construction time, the composite 

receives, among the other, the acquaintances 

corresponding to its required interfaces. The composite 

then creates and links together the instances of its 

internal components. Sub-components which generate 

output external messages, are supposed to be directly 

connected to composite acquaintances.

Internal routing of external incoming messages is 

achieved by overriding the send() method of MessageIF,

so as to forward these messages to delegated sub-

components. Forwarding is accomplished by invoking 

the send() method of the delegate. 

Fig. 9 summarizes the configuration of Node by 

showing operations in its constructor. Fig. 10 depicts 

the overridden send() method. 

public Node( StatIF stat, OutputIF out ){ 
 create Buffer instance b 
 create Server instances s1, s2 and s3 
 create Dispatcher instance d as  

new Dispatcher( b, stat, out, s1, s2, s3) 
}//Node

Fig. 9. Node configuration 

public void send( Message m, long… at ){ 
 if( m instanceof InputIF.Input ) b.send(m,at); 
 … 
}//send 

Fig. 10. Node’s send() method

It should be noted that although a coupled model can 

implement multiple interfaces, it only needs one 

redefinition of the send() method, which queries the 

incoming message type through the instanceof operator

for detecting the target delegate. 

A RELOCATION SERVER MODEL 

The computing model of Theatre makes it possible to 

design and execute variable structure systems. As in 

Kiltera (Posse & Vangheluwe, 2007) adaptivity depends 

on link mobility, i.e. the possibility of reconfiguring 

during runtime the interconnection infrastructure of 

components by adjusting the acquaintance network of 

the system. The approach preserves the contract of 

component interfaces and is very flexible when paired 

with the mobile agent capabilities of actors which can 

migrate among the theatres allocated to different 

physical nodes of a distributed system. 

The following describes the design, implementation and 

distributed execution of a relocation server system 

which models a collection (pipeline) of interconnected 

computing nodes. Each node receives from its 

environment a stream of jobs, stores them in a buffer 

and ultimately processes them using a variable number 

of server components. An example of an open system 

with three nodes is portrayed in Fig. 11. A system can 

also be configured as a ring. 
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Fig. 11. A pipeline of nodes 

The Node component in Fig. 11 only differs from the 

one in Fig. 8 because it has an AskIF interface for 

interacting with peer nodes. From the Node internal 

structure diagram depicted in Fig. 12, one can see that 

AskIF is delegated to the Dispatcher sub component. 

A system is assumed to work with a fixed number of 

servers. Servers cannot be dynamically generated 

because they model physical computing resources. 

However, a high loaded node, that is a node with a 

pending job but without idle servers, can ask for a 

server to its neighbours. A node which receives a 

request, can reply to it with a server if one is available, 

otherwise ignores the request. Buffer and Server in Fig. 

12 are identical to those of Fig. 8. The Dispatcher,

though, is now in charge of handling the server 

relocation issues. 

Fig. 12. Node internal structure diagram 

Fig. 13. Behaviour of Dispatcher

Fig. 13 shows an abstract description of Dispatcher

behaviour. The actor maintains a set of available 

servers. Let N be the number of free servers at any 

moment. At start time, the dispatcher receives the intial 

number of assigned servers and sends a Get message to 

the buffer in order to achieve the first job.

Fig 14. shows in pseudo-code the dispatcher 

events/actions in its three possible states. 

when ACTIVE{ 
on a JobArr{ 

  assign job to a server and send a next Get to buffer 
  if( no idle server ) become( FULL_BUSY) 

}
on a Move{ 
 send a SendBack to sender with the received server 
}
on a SendBack or ServerEnd{ 
 add received server to the list of idle servers 
 if( ServerEnd ) send job info for stats calculation 
}
on a Ask{ 
 send a Move to the requestor with a server 
 if( no idle server ) becomes( FULL_BUSY ) 
}

}

when FULL_BUSY{ 
on a JobArr{ 

  send a Timeout to itself waiting for a server 
  become( JOB_PEND ) 
 } 

on a Move{ 
  send a SendBack to sender with the received server 
 } 

on a SendBack or ServerEnd{ 
 add received server to the list of idle servers 
 if( ServerEnd ) send job info for stats calculation 
 become( ACTIVE ) 
}

}

when JOB_PEND{ 
on a Timeout{ 

  if( valid Timeout ){  
send an Ask to neighbour nodes for a server 
send Timeout to itself waiting for a server 

}
 } 

on a SendBack or ServerEnd{ 
 invalidate Timeout 
 assign pending job to available server 

send a Get to buffer for next job 
if( ServerEnd ) send job info for stats calculation 

 become( FULL_BUSY ) 
}
on a Move{ 

  invalidate Timeout 
 assign job pending to available server 

send a Get to buffer for next job 
become( FULL_BUSY ) 

}
}

Fig. 14. States/Events/Actions of Dispatcher

Buffer

Dispatcher

Server

Node

ServerIF

GetIF

InputIF

StatIF

OutputIF

[*]

AskIF

AskIF

[2]

[2]

ACTIVE

FULL_BUSY

Move

JobArr [N==1]
Ask [N==1]

SendBackServerEnd

[N>0]

[N==0]

Ask [N>1]JobArr [N>1]

ServerEnd

SendBack

Move

Timeout/
Ask, Timeout

JobArr/Timeout

ServerEnd

SendBack

JOB_PEND

Move



The dispatcher can find itself in one of three states: 

ACTIVE (at least one server is idle), FULL_BUSY (no 

server is available) and JOB_PEND (waiting for a 

server). The dispatcher can receive a JobArr message 

carrying a job from the buffer, a ServerEnd message 

from a server which has terminated its service, an Ask

message from a neighbour node which requests a 

server, a Move message from a neighbour node thus 

responding to a causal Ask request by sending a server, 

a SendBack message from a neighbour node which 

kindly returns a moved but not really useful server. The 

dispatcher has an own Timeout message which is sent to 

itself as a timeout mechanism. 

When a job is pending and the dispatcher has no idle 

server (see state JOB_PEND in Fig. 14) the dispatcher 

asks neighbours and waits (using a Timeout message) a 

given amount of time for a server to become available. 

In the case a server notifies its existence before the 

timeout expires, the timeout is invalidated. The timeout 

message is re-sent at its expiration would the server 

missing condition persist. An invalidated timeout is 

simply ignored when subsequently received. This 

mechanism which avoids direct cancellation of a 

message in the message queue of the control machine, 

was adopted because it is more compliant with general 

requirements of distributed simulation. 

For the purposes of simulation experiments, a second 

protocol for server relocation was also designed and 

implemented. The variation consists in the introduction 

of a debit concept for server movement. A node which 

receives a server from a neighbour, annotates the 

identification of the furnishing node. As soon as the 

dispatcher of a debitor node has no pending job but has 

at least one idle server, it exhausts one debit by 

anticipating restitution of the server to its creditor node. 

In the following the former protocol which freely 

distributes servers on-demand will be referred to as 

OnDemProt, whereas the second protocol based on 

debits will be denoted as DebtProt.

Simulation Experiments 

A closed system with a variable number of nodes was 

configured and equally partitioned between two theatres 

allocated for execution on two Win platforms Pentium 

IV 3.4Ghz, 1GB RAM, interconnected by a 1GB 

Ethernet switch, using HLA/RTI (Cicirelli et al.,

2007b). Server relocation exploits the agent migration 

capability of Theatre actors. 

The number of nodes was varied from one (single 

isolated node) to ten and the average size of buffers and 

the mean waiting time of jobs were measured. For the 

experiments, each node was fed by a similar uniform 

traffic of jobs (see Generator in Fig. 5). Table 1 depicts 

the adopted simulation parameters which refer to a 

single node (tu=time unit). 

Figg. 15 and 16 portray respectively the average buffer 

size and the job mean waiting time vs. the number of 

nodes separately in the two cases of OnDemProt and

DebtProt protocols. Each point in the figures is the mean 

of five runs, each lasting 107 time units. 

Table 1. Simulation parameters per node 

Job interarrival time 2-4 tu 

Job size 8-15 tu 

Timeout time 1 tu 

Number of servers 4 

As one can see, the positive effect of server relocation 

immediately appears as soon as the number of nodes is 

increased above 1. The reduction in buffer size almost 

stabilizes when the number of nodes goes beyond five. 

In reality, with OnDemProt the buffer size slightly 

increases when the number of nodes grows toward ten, 

mirroring the fact that the freely diffusion of servers in 

the system caused by the protocol tends to favour 

“selfish” nodes and to slightly penalyze “suffering” 

nodes. Reduction in the average buffer size obviously 

improves job processing, by diminishing the job mean 

waiting time (Fig. 16) which has definitely the same 

evolution of the buffer size. 

Fig. 15. Average buffer size vs. number of nodes 

Fig. 16. Job mean waiting time vs. number of nodes 

From Figg. 15 and 16 it emerges that DebtProt

outperforms OnDemProt. Both buffer size and job 

waiting time regularly decrease and stabilize as the 

number of nodes is augmented. Results confirm the 

intuition that DebtProt tries to keep equilibrated the 

number of servers in each node. 
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CONCLUSIONS

Variable structure systems challenge for the availability 

of suitable modelling and simulation frameworks. This 

paper suggests Theatre as a concrete software 

architecture enabling M&S of adaptive systems. Theatre

is founded on the concept of actors (agents) as the basic 

components. Theatre also supports composition of 

existing components (basic of composed) in order to 

facilitate construction of reusable coupled models.

A lean and efficient implementation of Theatre in Java 

was realized which supports both centralized and 

distributed simulation of complex dynamic structure 

systems. Theatre can work with common transport 

layers like Java Socket, Java RMI and recently 

HLA/RTI which also provides, among others, time 

management services. As an example, the paper reports 

modelling and distributed simulation of a relocation 

server model, under two different protocols of server 

movements. Prosecution of the research aims at 

experimenting with complex variable structure 

systems using e.g. biological or social paradigms 

using Theatre as a starting point for supporting 

other formalisms, e.g. PDEVS (Zeigler et al.,

2000). A preliminary prototype which maps 

PDEVS models on to actors is described in a recent 

paper (Cicirelli et al., 2006b) 

developing graphical tools which allow visual 

modelling and automatic code generation of basic 

and coupled components. 
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