
A COMPONENT-BASED ARCHITECTURE FOR MODELLING AND

SIMULATION OF ADAPTIVE COMPLEX SYSTEMS

Franco Cicirelli, Angelo Furfaro, Libero Nigro, Francesco Pupo

Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria, 87036 Rende (CS) – Italy

E-mail: {f.cicirelli,a.furfaro}@deis.unical.it, {l.nigro,f.pupo}@unical.it

KEYWORDS

Software architecture, variable structure, components,

composition, agents, modelling and simulation, server

relocation, Java.

ABSTRACT

This paper proposes a component-based software

architecture (Theatre) hosted by Java, which enables

modelling and discrete-event simulation of complex and

dynamically reconfigurable systems, possibly on top of

a distributed computing context. At the “programming

in-the-small” level, Theatre rests on light-weight

reactive components (actors or agents) which interact to

one another by asynchronous message-passing. Actor

behaviour is modelled by a finite state machine. Actors

can be easily composed to create new reusable

components. At the “programming in-the-large” level a

subsystem of actors can be assigned to an execution

locus (theatre). A theatre provides to local agents the

basic message scheduling, dispatching, communication

and mobility services. The paper describes component-

based M&S support of Theatre and demonstrates its

practical use through examples.

INTRODUCTION

The work described in this paper aims at the

development of language structures and software tools

for modelling and simulation of complex systems which

are component-based, timed, mobile and whose

structure can change during runtime (Hu et al.,

2005)(Jang et al., 2003)(Jang & Agha, 2006)(Posse &

Vangheluwe, 2007)(Cicirelli et al., 2007b). Such

systems are not adequately supported by conventional

M&S tools where structure is often assumed to be static

and dynamism only relates to state changes caused by

the occurrence of events. However, many systems exist

(e.g. predator/prey models in biology, adaptive

networks in telecommunication systems accommodating

for the presence of mobile users, and so forth) which

require structure dynamism for them to be effectively

modelled and analyzed.

In the context of DEVS (Zeigler et al., 2000) –Discrete

Event System Specification- and particularly in the

DEVSJAVA environment (DEVSJAVA) some

extensions were defined (Hu et al., 2005) which allow

variable structure models to be dealt with. All of this

relies on adding/removing component models,

adding/removing couplings among models and

adding/removing input/output ports to models.

Changing the interface of a component is a critical

aspect because it may require modifications to the

component behaviour.

A modelling language directly founded on the

specification of adaptive, dynamic structure discrete

systems is Kiltera (Posse & Vangheluwe, 2007). Kiltera is

formally based on a process algebra with two-way

communications and timing constructs, which is useful

to specify systems whose structure can change

dynamically through the concept of link mobility, i.e.

the possibility of altering the channel interconnection

infrastructure among system components (processes).

At current time, though, Kiltera is not assisted by

concrete tools for making simulation of complex

modelled systems, e.g. on a distributed context.

This work argues that mobile agent systems offer a

natural yet challenging computing infrastructure where

to build and simulate dynamic structure systems.

Jang et al. in (Jang et al., 2003)(Jang & Agha, 2006)

propose a distributed agent architecture based on the

Actors Model (Agha, 1986) especially designed and

implemented for modelling and simulation of large

adaptive systems. The approach is characterized by the

techniques it uses for ensuring efficient communications

despite agent mobility, and the provisions e.g. for co-

locating highly interacting agents thus conserving

bandwitdth during distributed simulation. The agent

architecture was applied to modelling and distributed

simulation of unmanned aerial vehicles which cooperate

to one another in order to fire moving targets. In the

application, agent discovery as well as patterns of

interaction and coordination are intrinsically dynamic

and challenge for the availability of suitable runtime

infrastructures.

Theatre (Cicirelli et al., 2007b) is a software

architecture (Shaw & Garlan, 1996) which belongs to

the family of actor (agent) computational models and

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

rests on asynchronous message-passing. Key features of

Theatre are: (i) the adoption of a lightweight notion of

actors, which does not introduce internal threads and

thus favours time predictability in real-time applications

and the achievement of good performance in distributed

simulations; (ii) the use of a runtime executive which

can reason upon “real” or virtual time, and which can

be customized through programming in order to fulfil

specific application needs; (iii) a direct embedding in

Java through a minimal API, which can exploit

common transport layers like Java Socket, Java RMI

and recently HLA/RTI infrastructure (iv) the use of an

efficient mobility mechanism which is a key for model

adaptivity.

This paper focuses on the component-based modelling

and simulation capabilities of Theatre. The

compositional mechanism is illustrated which facilitates

the construction of component off-the-shelf reusability

units which are not distinguishable from elementary

components. The paper demonstrates the practical use

of Theatre and shows a variable structure system

concerning a distributed adaptive relocation server

model.

AN OVERVIEW OF THEATRE

A system consists of a collection of interacting theatres.

Each theatre offers the runtime executive to a collection

of application actors. In particular, a theatre furnishes

to local actors the basic services of message

scheduling/dispatching and timing, as well as mobility

and communication mechanisms. Communication is

based on one-way asynchronous message passing: the

send operation is non-blocking.

An actor (see Fig. 1) is characterized by its message

interface, hidden data variables and behaviour which is

modeled as a finite state machine.

Fig. 1. Structure of an actor

Messages are first-class citizens: they can be sent and

transparently buffered and managed according to

different control disciplines. It is up to a theatre control

machine to superimpose to messages the most apt

control structure, tuned to the application needs.

The controller component of the control machine is in

charge of repeating a basic loop. At each iteration, first

the (or a) most imminent message is selected among

pending messages, then the message is dispatched to its

relevant destination actor. Message processing

constitutes an atomic action and extends the control

thread of the controller. At message processing

termination, the controller loop is re-entered and

continues with the next iteration.

An actor responds to an incoming message by executing

basic actions as in the following:

(new) creating new actors

(send) sending messages to known actors

(acquaintances) including itself (proactive

behaviour)

(defer) deferring a message to future when the

message cannot be accepted in current state.

Deferred messages are automatically re-sent as

soon as the actor changes its state

(become) making a state transition in the actor

automaton. The next state depends on the arrived

message and current status.

A lean Java framework (API) provides basic actor

mechanisms. Actor classes derive directly or indirectly

from the Actor abstract base class. Message classes are

heirs of Message abstract base class which associates

with a message its actor receiver. Main operation

signatures in Actor are as follows:

public void send(Message m, long… at)
protected int currentStatus()
protected void become(int next_status)
protected void defer(Message m)
protected long now()
protected void handler(Message m)

Method send() can carry also zero, one or multiple time

information. An instantaneous message does not have

the at parameter. A typical timed message is

accompanied by its occurrence time. Message temporal

information is meaningful to a control machine which

reasons upon time (e.g. a simulation machine). Current

time is available to actors through the now() method

whose exact implementation is responsibility of a

control machine. Actor design purposely hides to actors

the identity of a particular control machine.

The handler() method is activated by the controller with

the incoming message as an argument. handler() codifies

the actor finite state machine.

actor

m1

m2

m3

message
interface

state variables

behaviour (message
handler)

Message classes can directly be embedded in a user-

defined actor class. In alternative, messages can be part

of an interface which extends the MessageIF interface

which defines the send() method according to the same

signature as in Actor. An actor class then implements a

message interface which acts as a contract with its

peers. Actors normally have no need to override the

send() method of MessageIF: they can rely on the

version inherited from Actor. The send() method can be

redefined in order to favour compositionality (see later

in this paper).

An actor is always created as a local object of a theatre.

After that, the actor can migrate to a different theatre.

A theatre maintains information about local executing

actors. After migration, on the original theatre a

forwarder (proxy) version of the actor is kept. Would

an actor come back to a theatre where a proxy version

of itself exists, the actor status is copied upon the proxy

which then switches to normal actor status. The

approach ensures that Java actor references persist

despite migration. Migration rests on a customization of

Java serialization mechanism and minimal recourse to

reflection for copying actor data statuses (Cicirelli et

al., 2007b). For communication efficiency, in the case

a message experiments multiple hops before reaching

its destination, the addressing information on the sender

theatre will be automatically updated with current

destination of the receiver theatre.

The control machines of a distributed simulation system

based on Theatre cooperate to one another for time

synchronization. Both conservative (Cicirelli et al.,

2006a)(Cicirelli et al., 2007b) and optimistic (Cicirelli

et al., 2007a) synchronizations are possible.

ACTORS AS COMPONENTS

A component (Brown & Wallnau, 1998) is a “non

trivial, nearly independent, and replaceable part of a

system that fulfills a clear function in the context of a

well-defined architecture. A component conforms to

and provides the physical realization of a set of

interfaces”.

Fig. 2. Actors, ports and connectors

Actors naturally adher to the software component

vision. The architecture of a subsystem of actors can be

specified by an UML2 component diagram (Fig. 2)

which shows ports, connectors and interfaces.

In Fig. 2 one Generator generates jobs towards a Buffer,

and one Concumer gets jobs from the Buffer and

consumes them. Generator has an output port input

which is bound to the required interface InputIF (socket

notation). Similarly, Consumer has an output port get

which requires the GetIF interface. The Buffer has an

input port which provides both InputIF and GetIF

interfaces (ball or lollipop notation). InputIF and GetIF

are respectively a contract for the Generator and the

Consumer which can actually work with any actor which

provides (implements) the required contract.

The interpretation of ports and connectors is

straightforward. An output port corresponds to an

acquaintance, i.e. an actor to which messages are sent

asking for some services. An input port corresponds to

the this actor, i.e. the actor who effectively provides the

services (messages) specified in the exported interface.

As a consequence, connectors between actors are

simply Java references.

A port can be associated with a multiplicity factor to

indicate the number of times the port is repeated in the

component. For an output port, that is the number of

required acquantainces (interacting partners). The

realization of a given actor topology as in Fig. 2 is a

matter of configuration and can occur, in a case, at

system start up time when the main program creates the

actor instances and links them by establishing the

acquaintance network.

For client-server interactions like those between

Consumer and Buffer in Fig. 2, it is assumed that the

GetIF interface (see also Fig. 4) specifies the Get

message and within it a reply JobArr message which the

buffer fills in with the returned job and then sends back

to the requestor. All of this has an obvious analogy with

postal letters which anticipate the message to be used

for giving an answer to the sender.

Java Programming Style

Actors can directly be programmed in Java. In the

following, the supported type-safe programming style is

clarified using the example of Fig. 2. Figg. from 3 to 6

show respectively the Java code of InputIF, GetIF,

Generator and Consumer.

public interface InputIF extends MessageIF{
 public final class Input extends Message{
 private Job job;
 public Input(Job job){ this.job = job; }
 public Job getJob(){ return job; }
 }
}//InputIF

Fig. 3. The InputIF message interface

 Buffer

Generator

Consumer GetIF

InputIF

get

input

The Generator implements a timed reactivation through

the local (hidden) message Next. Interarrival time

between consecutive generated jobs is uniformly

distributed within G0..G1. Each generated job has also a

temporal size which expresses its service time. The size

is uniformly distributed within S0..S1.

public interface GetIF extends MessageIF{
 public static class Get extends Message{
 public static class JobArr extends Message{
 private Job job;
 public Job getJob(){ return job; }
 public void setJob(Job job){ this.job = job; }
 }
 private MessageIF sender;
 private JobArr reply;
 public Get(MessageIF sender){
 this.sender = sender;
 reply = new JobArr();
 }
 public MessageIF getSender(){ return sender; }
 public JobArr getReply(){ return reply; }
 }//Get
}//GetIF

Fig. 4. The GetIF message interface

public class Generator extends Actor{
 private static class Next extends Message{}
 public static final byte ACTIVE=0;
 private InputIF input; //output port
 private int G0, G1, S0, S1;
 private int jobCount=0;
 private Random random=new Random();
 public Generator(InputIF input , int G0, int G1, int S0, intS1){
 this.input=input; this.G0=G0; this.G1=G1;

this.S0=S0; this.S1=S1;
 int d=G0+random.nextInt(G1-G0);
 send(new Next(), now()+d);
 become(ACTIVE);
 }
 protected void handler(Message m){
 switch(currentStatus()){
 case ACTIVE:
 if(m instanceof Next){
 int d = G0+random.nextInt(G1-G0);
 int s = S0+random.nextInt(S1-S0);
 Job job = new Job(jobCount++, now(), s);
 input.send(new InputIF.Input(job));
 send(m, now()+d);
 }
 }
 }//handler
}//Generator

Fig. 5. The Generator

Actor Consumer (Fig. 6) is a simple server. It cyclically

requests a job to the buffer; when a job arrives it

consumes the job by a timed End message sent to itself.

For demonstration purposes, the behaviour is organized

in two states: IDLE (awaiting a job from buffer) and

BUSY (consuming the arrived job). At the end of the

consuming activity, a new job is requested and so forth.

public class Consumer extends Actor implements MessageIF{
 private static class End extends Message{}
 public static final byte IDLE=0, BUSY=1;
 private GetIF get; //output port
 private Job job;
 private int consumed=0;
 public Consumer(GetIF get){
 this.get=get;
 get.send(new GetIF.Get(this));
 }
 protected void handler(Message m) {
 switch(currentStatus()){
 case IDLE:
 if(m instanceof GetIF.Get.JobArr){
 GetIF.Get.JobArr dispMsg =(GetIF.Get.JobArr)m;
 job = dispMsg.getJob();
 send(new End(), now()+job.getSize());
 become(BUSY);
 }
 break;
 case BUSY:
 if(m instanceof End){
 get.send(new GetIF.Get(this));
 job = null; consumed++;
 become(IDLE);
 }
 }
 }//handler
 public String toString(){
 return "No of consumed job="+consumed;
 }//toString
}//Consumer

Fig. 6. The Consumer

The Buffer component is implemented as an unbounded

buffer of jobs. The actor can find itself into one of three

states: EMPTY (no buffered job), REQ_PEND (a request

for job is pending) and NOT_EMPTY (one or more jobs

buffered). Since only one consumer is admitted, at most

one pending request can exist at each time. This is

mirrored in the REQ_PEND state where only an Input

message is expected. The arrival of a job causes it to be

replied to the requester and the buffer to come back to

EMPTY state.

Fig. 7 depicts a skeleton main which configures the

subsystem in Fig. 2 and launches simulation on a

standalone machine. The simulation time limit is

furnished as an argument to the constructor of the

Simulation control machine.

public class Driver{
 public static void main(String... args){
 ControlMachine cm=new Simulation(1000 /*tEnd*/);
 Buffer b=new Buffer();
 … input values for G0, G1, S0, S1
 Generator g=new Generator(b, G0, G1, S0, S1);
 Consumer c=new Consumer(b);
 cm.controller(); //simulation start
 System.out.println(c); //statistics output
 }
}//Driver

Fig. 7. Configuration and launch of a simulation

Composition and Coupled Models

Components off-the-shelf can be built by composing

existing actors in order to form a new component

(coupled model or composite) which can immediately

be reused as a unit. The new component behaves as a

folder for the internal components which in turn can be

elementary actors or composed actors (hierarchical

composition). A composite is not distinguishable from a

normal actor. It exhibits to its external environment a

collection of input/output ports together with required

and provided interfaces. Such interfaces are then

delegated to internal components.

An example of a composite is portrayed in Fig. 8 which

relates to a computing Node which hides a Buffer, a

Dispatcher and a collection of Servers. Node has an input

port exporting the InputIF message interface, and two

output ports respectively associated with required StatIF

and OutputIF interfaces. Node receives external

generated jobs through the input port, and stores them

in the Buffer.

Generator

Buffer

Dispatcher

Server

Node

Stats

Sink
ServerIF

[3]

GetIF

InputIF

StatIF

OutputIF

Fig. 8. A Node composite

The Dispatcher requests one job at a time to the Buffer

and assigns it to an idle Server (here, a fixed number of

servers is assumed). Server behaviour is similar to that

of Consumer in Fig. 6, except it now follows a push

instead of a pull model. In other words, instead of

asking the buffer for a job, it now waits for a job

submission from the Dispatcher. When a server

terminates with its job, the Dispatcher gets informed of

this fact and sends the processed job to an external Sink.

In addition, information about each served job (its id,

generation time, service finish time etc.) are captured in

a message according to the StatIF interface and sent out

for proper statistical processing.

Node composition is specified by its internal structure

diagram. Fig. 8 indicates that input messages coming

from the external Generator are actually routed to the

internal Buffer. All of this is witnessed by the dashed

(<<delegate>>) dependency relationship which states that

the InputIF message interface is really implemented by

Buffer. In a similar way, requests toward Stats and Sink

are effectively originated (delegated) by the internal

Dispatcher.

From the programming point of view, a coupled model

is easy to build. At its construction time, the composite

receives, among the other, the acquaintances

corresponding to its required interfaces. The composite

then creates and links together the instances of its

internal components. Sub-components which generate

output external messages, are supposed to be directly

connected to composite acquaintances.

Internal routing of external incoming messages is

achieved by overriding the send() method of MessageIF,

so as to forward these messages to delegated sub-

components. Forwarding is accomplished by invoking

the send() method of the delegate.

Fig. 9 summarizes the configuration of Node by

showing operations in its constructor. Fig. 10 depicts

the overridden send() method.

public Node(StatIF stat, OutputIF out){
 create Buffer instance b
 create Server instances s1, s2 and s3
 create Dispatcher instance d as

new Dispatcher(b, stat, out, s1, s2, s3)
}//Node

Fig. 9. Node configuration

public void send(Message m, long… at){
 if(m instanceof InputIF.Input) b.send(m,at);
 …
}//send

Fig. 10. Node’s send() method

It should be noted that although a coupled model can

implement multiple interfaces, it only needs one

redefinition of the send() method, which queries the

incoming message type through the instanceof operator

for detecting the target delegate.

A RELOCATION SERVER MODEL

The computing model of Theatre makes it possible to

design and execute variable structure systems. As in

Kiltera (Posse & Vangheluwe, 2007) adaptivity depends

on link mobility, i.e. the possibility of reconfiguring

during runtime the interconnection infrastructure of

components by adjusting the acquaintance network of

the system. The approach preserves the contract of

component interfaces and is very flexible when paired

with the mobile agent capabilities of actors which can

migrate among the theatres allocated to different

physical nodes of a distributed system.

The following describes the design, implementation and

distributed execution of a relocation server system

which models a collection (pipeline) of interconnected

computing nodes. Each node receives from its

environment a stream of jobs, stores them in a buffer

and ultimately processes them using a variable number

of server components. An example of an open system

with three nodes is portrayed in Fig. 11. A system can

also be configured as a ring.

n2:Node

InputIF

StatIF OutputIF

AskIF

AskIF

AskIF

AskIF

n1:Node

InputIF

StatIF OutputIF

AskIF

AskIF

n3:Node

InputIF

StatIF OutputIF

AskIF

AskIF

Fig. 11. A pipeline of nodes

The Node component in Fig. 11 only differs from the

one in Fig. 8 because it has an AskIF interface for

interacting with peer nodes. From the Node internal

structure diagram depicted in Fig. 12, one can see that

AskIF is delegated to the Dispatcher sub component.

A system is assumed to work with a fixed number of

servers. Servers cannot be dynamically generated

because they model physical computing resources.

However, a high loaded node, that is a node with a

pending job but without idle servers, can ask for a

server to its neighbours. A node which receives a

request, can reply to it with a server if one is available,

otherwise ignores the request. Buffer and Server in Fig.

12 are identical to those of Fig. 8. The Dispatcher,

though, is now in charge of handling the server

relocation issues.

Fig. 12. Node internal structure diagram

Fig. 13. Behaviour of Dispatcher

Fig. 13 shows an abstract description of Dispatcher

behaviour. The actor maintains a set of available

servers. Let N be the number of free servers at any

moment. At start time, the dispatcher receives the intial

number of assigned servers and sends a Get message to

the buffer in order to achieve the first job.

Fig 14. shows in pseudo-code the dispatcher

events/actions in its three possible states.

when ACTIVE{
on a JobArr{

 assign job to a server and send a next Get to buffer
 if(no idle server) become(FULL_BUSY)

}
on a Move{
 send a SendBack to sender with the received server
}
on a SendBack or ServerEnd{
 add received server to the list of idle servers
 if(ServerEnd) send job info for stats calculation
}
on a Ask{
 send a Move to the requestor with a server
 if(no idle server) becomes(FULL_BUSY)
}

}

when FULL_BUSY{
on a JobArr{

 send a Timeout to itself waiting for a server
 become(JOB_PEND)
 }

on a Move{
 send a SendBack to sender with the received server
 }

on a SendBack or ServerEnd{
 add received server to the list of idle servers
 if(ServerEnd) send job info for stats calculation
 become(ACTIVE)
}

}

when JOB_PEND{
on a Timeout{

 if(valid Timeout){
send an Ask to neighbour nodes for a server
send Timeout to itself waiting for a server

}
 }

on a SendBack or ServerEnd{
 invalidate Timeout
 assign pending job to available server

send a Get to buffer for next job
if(ServerEnd) send job info for stats calculation

 become(FULL_BUSY)
}
on a Move{

 invalidate Timeout
 assign job pending to available server

send a Get to buffer for next job
become(FULL_BUSY)

}
}

Fig. 14. States/Events/Actions of Dispatcher

Buffer

Dispatcher

Server

Node

ServerIF

GetIF

InputIF

StatIF

OutputIF

[*]

AskIF

AskIF

[2]

[2]

ACTIVE

FULL_BUSY

Move

JobArr [N==1]
Ask [N==1]

SendBackServerEnd

[N>0]

[N==0]

Ask [N>1]JobArr [N>1]

ServerEnd

SendBack

Move

Timeout/
Ask, Timeout

JobArr/Timeout

ServerEnd

SendBack

JOB_PEND

Move

The dispatcher can find itself in one of three states:

ACTIVE (at least one server is idle), FULL_BUSY (no

server is available) and JOB_PEND (waiting for a

server). The dispatcher can receive a JobArr message

carrying a job from the buffer, a ServerEnd message

from a server which has terminated its service, an Ask

message from a neighbour node which requests a

server, a Move message from a neighbour node thus

responding to a causal Ask request by sending a server,

a SendBack message from a neighbour node which

kindly returns a moved but not really useful server. The

dispatcher has an own Timeout message which is sent to

itself as a timeout mechanism.

When a job is pending and the dispatcher has no idle

server (see state JOB_PEND in Fig. 14) the dispatcher

asks neighbours and waits (using a Timeout message) a

given amount of time for a server to become available.

In the case a server notifies its existence before the

timeout expires, the timeout is invalidated. The timeout

message is re-sent at its expiration would the server

missing condition persist. An invalidated timeout is

simply ignored when subsequently received. This

mechanism which avoids direct cancellation of a

message in the message queue of the control machine,

was adopted because it is more compliant with general

requirements of distributed simulation.

For the purposes of simulation experiments, a second

protocol for server relocation was also designed and

implemented. The variation consists in the introduction

of a debit concept for server movement. A node which

receives a server from a neighbour, annotates the

identification of the furnishing node. As soon as the

dispatcher of a debitor node has no pending job but has

at least one idle server, it exhausts one debit by

anticipating restitution of the server to its creditor node.

In the following the former protocol which freely

distributes servers on-demand will be referred to as

OnDemProt, whereas the second protocol based on

debits will be denoted as DebtProt.

Simulation Experiments

A closed system with a variable number of nodes was

configured and equally partitioned between two theatres

allocated for execution on two Win platforms Pentium

IV 3.4Ghz, 1GB RAM, interconnected by a 1GB

Ethernet switch, using HLA/RTI (Cicirelli et al.,

2007b). Server relocation exploits the agent migration

capability of Theatre actors.

The number of nodes was varied from one (single

isolated node) to ten and the average size of buffers and

the mean waiting time of jobs were measured. For the

experiments, each node was fed by a similar uniform

traffic of jobs (see Generator in Fig. 5). Table 1 depicts

the adopted simulation parameters which refer to a

single node (tu=time unit).

Figg. 15 and 16 portray respectively the average buffer

size and the job mean waiting time vs. the number of

nodes separately in the two cases of OnDemProt and

DebtProt protocols. Each point in the figures is the mean

of five runs, each lasting 107 time units.

Table 1. Simulation parameters per node

Job interarrival time 2-4 tu

Job size 8-15 tu

Timeout time 1 tu

Number of servers 4

As one can see, the positive effect of server relocation

immediately appears as soon as the number of nodes is

increased above 1. The reduction in buffer size almost

stabilizes when the number of nodes goes beyond five.

In reality, with OnDemProt the buffer size slightly

increases when the number of nodes grows toward ten,

mirroring the fact that the freely diffusion of servers in

the system caused by the protocol tends to favour

“selfish” nodes and to slightly penalyze “suffering”

nodes. Reduction in the average buffer size obviously

improves job processing, by diminishing the job mean

waiting time (Fig. 16) which has definitely the same

evolution of the buffer size.

Fig. 15. Average buffer size vs. number of nodes

Fig. 16. Job mean waiting time vs. number of nodes

From Figg. 15 and 16 it emerges that DebtProt

outperforms OnDemProt. Both buffer size and job

waiting time regularly decrease and stabilize as the

number of nodes is augmented. Results confirm the

intuition that DebtProt tries to keep equilibrated the

number of servers in each node.

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 4 6 8 10

Number of Nodes

A
v
e
ra

g
e
 B

u
ff

e
r

S
iz

e

OnDemProt

DebtProt

1

1,5

2

2,5

3

3,5

1 2 4 6 8 10

Number of Nodes

M
e
a
n

 J
o

b
 W

a
it

in
g

-t
im

e OnDemProt

DebtProt

CONCLUSIONS

Variable structure systems challenge for the availability

of suitable modelling and simulation frameworks. This

paper suggests Theatre as a concrete software

architecture enabling M&S of adaptive systems. Theatre

is founded on the concept of actors (agents) as the basic

components. Theatre also supports composition of

existing components (basic of composed) in order to

facilitate construction of reusable coupled models.

A lean and efficient implementation of Theatre in Java

was realized which supports both centralized and

distributed simulation of complex dynamic structure

systems. Theatre can work with common transport

layers like Java Socket, Java RMI and recently

HLA/RTI which also provides, among others, time

management services. As an example, the paper reports

modelling and distributed simulation of a relocation

server model, under two different protocols of server

movements. Prosecution of the research aims at

experimenting with complex variable structure

systems using e.g. biological or social paradigms

using Theatre as a starting point for supporting

other formalisms, e.g. PDEVS (Zeigler et al.,

2000). A preliminary prototype which maps

PDEVS models on to actors is described in a recent

paper (Cicirelli et al., 2006b)

developing graphical tools which allow visual

modelling and automatic code generation of basic

and coupled components.

REFERENCES

Agha G. Actors: A model for concurrent computation in

distributed systems. The MIT Press, 1986.

Brown A.W. and K.C. Wallnau. The current state of

CBSE. IEEE Software, 15(5):37-46, 1998.

Cicirelli F., A. Furfaro, L. Nigro. A distributed agent-

based simulation model for large wireless sensor

networks. In Proc. of Agent Directed Simulation

Symposium (ADS’06), SCS SpringSim, pp. 115-122,

2006a.

Cicirelli F., A. Furfaro, L. Nigro. A DEVS M&S

framework based on Java and actors. In Proc. of 2nd

European Modelling and Simulation Symposium

(EMSS’06), pp. 337-342, 2006b.

Cicirelli F., A. Furfaro, L. Nigro. Distributed

simulation of modular time Petri nets: an approach

and a case study exploiting temporal uncertainty.

Real-Time Systems, Vol. 35/2, Springer, pp. 153-

179, 2007a.

Cicirelli F., A. Furfaro, A. Giordano, L. Nigro. An

agent infrastructure for distributed simulations over

HLA and a case study using unmanned aerial

vehicles. In Proc. of 40th Annual Simulation

Symposium, Norfolk (VA), USA, 26-28 March, pp.

231-238, 2007b.

DEVSJAVA Reference Guide, www.acims.arizona.

edu.

Hu X., B.P. Zeigler and S. Mittal. Variable structure

in DEVS component-based modelling and

simulation. Simulation, 81(2):91-102, Feburary

2005.

Jang M.-W., S. Reddy, P. Tosic, L. Chen, and G.

Agha. An actor-based simulation for studying uav

coordination. In Proc. of the 15th European

Simulation Symposium (ESS 2003), pages 593–601,

Delft, The Netherlands, October 2003.

Jang M.-W. and G. Agha. Agent framework services to

reduce agent communication overhead in large-scale

agent-based simulations. Simulation Modelling

Practice and Theory, 14(6):679–694, 2006.

Posse E. and H. Vangheluwe. Kiltera: a simulation

language for timed, dynamic structure systems. In

Proc. of 40th Annual Simulation Symposium,

Norfolk (VA), USA, 26-28 March, 2007.

Shaw M. and D. Garlan. Software architecture:

perspective on an emerging discipline. Prentice-

Hall, 1996.

Zeigler B.P., T.G. Kim and H. Praehofer. Theory of

modeling and simulation. 2nd Edition, New York:

Academic Press, 2000.

AUTHORS BIOGRAPHIES

FRANCO CICIRELLI holds a PHD in computer science

from the University of Calabria (Unical), DEIS. As a

postdoc, he is making research on agent and service

paradigms for the development of distributed systems, parallel

simulation, Petri nets, distributed measurement systems. He

holds a membership with ACM.

ANGELO FURFARO, PHD, is a computer science assistant

professor at Unical, DEIS, teaching object-oriented

programming. His research interests are centred on: multi-

agent systems, modeling and analysis of time-dependent

systems, Petri nets, parallel simulation, verification of real-

time systems, distributed measurement systems. He is a

member of ACM.

LIBERO NIGRO is a full professor of computer science at

Unical, DEIS, where he teaches object-oriented

programming, software engineering and real-time systems

courses. He directs the Software Engineering Laboratory

(www.lis.deis.unical.it). His current research interests

include: software engineering of time-dependent and

distributed systems, real-time systems, Petri nets, modeling

and parallel simulation of complex systems, distributed

measurement systems. Prof. Nigro is a member of ACM and

IEEE.

FRANCESCO PUPO, PHD, is a computer science assistant

professor at Unical, DEIS, teaching Java introductory

programming and computer architecture courses. His research

interests include: Petri nets, discrete-event simulation and

real-time systems. Dr. Pupo is a member of ACM.

