

A FEDERATED AGENT-BASED
CROWD SIMULATION ARCHITECTURE*

Malcolm Yoke Hean LOW

Wentong CAI
Suiping ZHOU

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, Singapore 639798
E-mail: {yhlow,aswtcai,asspzhou}@ntu.edu.sg

* This project is supported by the Defence Science Technology Agency, Singapore, under project agreement POD0613456.

KEYWORDS
Crowd Simulation, Agent-based Simulation, Distributed
Simulation, HLA, Ontology, Behaviour Model.

ABSTRACT

Crowd control has become increasingly important in
urbanized military operations such as peace keeping,
riot control, disaster management, emergency
evacuation, and rescue operations. In this paper, we
describe an architecture for simulating virtual crowd to
aid in the training, planning and decision making
process in the area of military operations. Our system
makes use of the light-weight agent-based simulation
system, RePast, the JESS inference engine coupled with
the Protégé ontology knowledge-base, the commercial-
off-the-shelf game engine Unreal Tournament and the
High Level Architecture to realize a distributed and
extensible architecture for modeling virtual crowd.

INTRODUCTION

Crowd control has become increasingly important in
urbanized military operations such as peace keeping,
riot control, disaster management, emergency
evacuation, and rescue operations. However, the lack of
an enemy in these operations should not be confused
with a lack of adversaries (Heal 2000). Economical,
political and cultural factors can sometime cause crowd
to turn violent if appropriate rules of engagement are
not used. Given the military challenges and risks
imposed by the crowds, there is an urgent need to
develop a system for military personnel to get prepared
for handling various situations, to formulate strategies
and answer “what-if” scenarios, and to evaluate
hundreds of contingency plans so as to prioritize
resources and time during an operation.

One way to do so is to create a synthetic virtual
environment and use Modeling & Simulation (M&S)
techniques to emulate urbanized military operations.
Crowd modeling and simulation is an essential
component of such an environment. For such crowd
simulation to be useful, the system must support the

modeling of realistic individual and crowd behaviours
of large number of people. While there are existing
work on crowd simulation study using commercial-off-
the-shelf simulation packages with built-in agent-based
modeling and BDI (Belief-Desire-Intention) behaviour
architecture (Shendarkar et al. 2006), modeling detailed
complex human behaviours that result from interactions
between tens of thousands of individuals will incur high
computational cost. This approach is thus infeasible for
the generation and evaluation of prompt “what-if”
scenarios to handle rapidly evolving crowd situations.

In this paper, we describe our work in designing and
implementing a federated agent-based distributed crowd
simulation architecture. Our system makes use of the
light-weight agent-based simulation system, RePast, the
JESS inference engine coupled with the Protégé
ontology knowledge-base, the commercial-off-the-shelf
game engine Unreal Tournament and the High Level
Architecture to realize a distributed, scalable and
extensible architecture for modeling virtual crowd. For
the rest of the paper, we will describe how these
components relate to each other and discuss some of the
issues in integrating these components.

RELATED WORK

Crowd simulation is an essential tool used in social
studies to analyze group behaviour and norms.
Increasingly, it is also being used by defense agencies
all around the world to study civil-military scenarios
such as riot control and peace keeping mission, as well
as emergency situations such as terrorists attack and
bomb blast.

Being a highly multi-discipline research areas, existing
work in the field of crowd simulation focus on many
different areas that include behaviour modeling,
visualization, interoperability and scalability. In this
section, we briefly review the work carried out by some
of the research groups in these areas.

In the area of visualization, the Virtual Reality Lab
(VRlab) at the Swiss Federal Institute of Technology

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

(EPFL) is a world leading laboratory in real-time
Virtual Humans, multimodal interaction, immersive
Virtual Environments, and Augmented Reality. The
focus of this research group is on visualization,
rendering and animation of virtual crowd (Ciechomski
et al. 2005), as well as in the area of behaviour
modeling (Thalmann and Monzani 2002).

The Virginia Modeling, Analysis and Simulation Centre
(VMASC) focuses on investigating psychologically-
based crowd model for military simulation in urban
settings. This research group focuses more on the
backend engine of crowd simulation, e.g. cognitive
model and scenario generation (Nguyen et al. 2005), as
well as interoperation between different components of
a crowd simulation (e.g. between the behaviour module
and the physical simulation module) using the High
Level Architecture (HLA) standards (McKenzie et al.
2004). Another focus of the group is on surveying and
documenting crowd scenario based on real historical
events (e.g. from video clip archive and documentary)
so that it can be reproduced and used as a reference
scenario in crowd simulation.

With the growing interest in using intelligent agents in
computer games and virtual environments, research and
development in computer game has increasingly drawn
on technologies and techniques originally developed in
the large scale distributed simulation community, such
as the IEEE High Level Architecture standard (Kuhl et
al. 2002) for simulator interoperability to provide
solution for interoperation as well as scalability.
Distributed simulation allows an existing complex
simulation model (e.g. with detailed cognitive
behaviour model required for crowd simulation) to be
distributed into separate smaller model to improve the
execution speed. (Lees et al. 2002) described an HLA-
compliant agent toolkit for building cognitively rich
agents, and showed that HLA can be used to distribute

an existing application with different agents being
executed by different federates.

OVERALL ARCHITECTURE

In this section, we give an overall view of the crowd
simulation architecture proposed in our project. The
subsequent sections will further elaborate on each of the
key components of the system. As shown in Figure 1,
the system comprises the following five key
components:

• Behaviour Representation and Cognitive Models

• Ontology and Knowledge Repositories

• Agent-based Simulation Architecture

• High Level Architecture

• Animation & Visualization Component

BEHAVIOUR REPRESENTATION AND
COGNITIVE MODELS

Existing work on crowd behaviour modeling can be
generally classified into the microscopic approach and
macroscopic approach. Most computational models for
crowd modeling and simulation adopt the microscopic
approach where each individual agent is equipped with
a set of decision rules to determine what to do in the
next time step (Helbing et al. 2000). The crowd
behaviours are then naturally generated as some
emergent phenomena due to the interactions of the
individual agents. There are two major limitations to
this approach. First, it is not computationally efficient,
thus it is hard for real-time simulation of a large crowd.
Second, there is a gap between the (ad hoc) rules and
the results from the social and psychological studies on
crowd behaviours.

Agent-based Simulation (RePast)

Animation
&Visualization

(UT2004 Game Server)

Update (environment & bots)

RePast HLA Adaptor UT2004 HLA Adaptor

Behaviour
Representation

& Cognitive Model

Ontology & Knowledge-base
(Protégé & JESS)

Environment

Representation

Update (environment & bots)

Figure 1: Federated Crowd Modeling Simulation Architecture

 HLA/RTI

The macroscopic approach is mainly adopted by the
sociology and psychology communities where the
crowd is treated as a whole. Although there are rich
observations on crowd behaviours, it is still not clear
how these observations can be used to construct the
computational models for crowd simulations.

In our system, a two-level cognitive model architecture
is adopted. The lower level is used to model individual
behaviours, and the top level model is used to represent
group dynamics and crowd psychology. This two-level
architecture is a natural reflection of the interaction
amongst individuals, and between an individual and a
crowd in real-life situations. A crowd can emerge by the
interaction amongst individuals and environmental
factors (e.g. a crowd of demonstrators can be formed
impromptu or by an organized mobilization effort).
Individuals involved in this emerging process may
change their behaviours after a crowd is formed. When
an individual joins a crowd, the behaviour of the
individual in the crowd will be determined by both the
group/crowd psychology model and individual
behaviour model.

Our two-level cognitive model architecture is a step
towards bridging the gap between the macroscopic and
the microscopic approaches. It is a natural reflection of
the interaction amongst individuals, and between an
individual and a crowd in real-life situations.

In addition, the computational model of crowd
behaviour will be based on careful study of the
observations from existing cases and
psychological/social theories on crowd behaviour. Thus,
the resulting crowd behaviour will be more realistic.

In many crowd simulation systems, the crowd
behaviours are scripted to allow for minimum or no
human control (Musse and Thalmann 2001). These
crowd behaviour models lack non-determinism and
variety which are essential to human-in-the-loop
simulations. These models are suitable for animations
such as those used in the movie industry. However, they
are not generally suitable for dynamic systems like
emergency/crisis management simulations at which we
are targeting. Our generic cognitive architecture will
allow a user to directly control the crowd behaviour as a
whole by generating some events in the environment or
indirectly changing the behaviour of the crowd by
controlling the behaviour of an individual in the crowd.

ONTOLOGY AND KNOWLEDGE-BASE

“An ontology defines a common vocabulary for
researchers who need to share information in a domain.
It includes machine-interpretable definitions of basic
concepts in the domain and relations among them” (Noy
and McGuinness 2001). A knowledge repository
captures instances of the concepts and relationships of

the ontology and allows for knowledge updating and
sharing.

One of the widely used tools for editing and managing
ontology is Protégé (http://protege.stanford.edu).
Ontologies developed in Protégé can be converted into
Java classes and used by agent systems such as JADE
(Bellifemine et al. 1999) for knowledge sharing.
Instances of the concepts and relationships between
concepts can also be stored in a knowledge repository
through the Protégé JDBC database back-end. This
allows fast and efficient updating and querying of the
ontology outside the Protégé environment by different
components of the crowd simulation. Ontologies
developed in Protégé can also be used together with
inference engine such as the Java Expert System Shell
(JESS) (Friedman-Hill 2003) for rule-based reasoning
(Eriksson 2003) and knowledge acquisition (Lebbink et
al. 2002).

Existing work in the use of ontology in crowd
simulation are mainly restricted to describing concepts
in the environment (Paiva et al. 2005) as well as for
path planning purpose (Yersin et al. 2005). There are
also existing work in using ontology for 3D modeling
and visualization of simulation (Park and Fiskwick
2004). However, each of these works only uses
ontology to address a specific part of the modeling,
simulation and visualization process. There is a lack of
research work in integrating and using the same set of
ontology for the entire process of environment
representation, cognitive reasoning, simulation, and
visualization.

In our system, the Protégé ontology knowledge
repository is used with the JESS inference engine to
keep track of the environment and the behaviours of
individuals in the system. The agent-base simulation
will provide updates on changes in both the
environment as well as the status of agents and human
players. These changes will be updated into the
knowledge-base and the JESS engine will modify the
behaviours of individuals accordingly based on the
cognitive model.

AGENT-BASED SIMULATION ARCHITECTURE

Agent-based simulation system is an ideal choice for
crowd modeling and simulation (Nguyen et al. 2005,
Musse and Thalmann 2001, Pan et al. 2005). However,
one important issue that is often neglected by most of
the existing crowd modeling and simulation systems is
scalability. For an agent-based simulation, the
following operations may need to be carried out in
every simulation step: perform reasoning for each agent,
execute actions generated, and change agents’ states and
environment accordingly. A large-scale, interactive
crowd simulation may consist of hundreds of virtual
participants, represented by agents, and human players.
Thus, it may not be possible for a sequential, agent-

based crowd simulation system to meet the real-time
requirements of such simulation. The scalable, federated
simulation architecture proposed in this project
addresses this issue. Although a federated architecture
is also proposed in other research work (Nguyen et al.
2005), it only addresses the interoperability and
extensibility of the crowd federate. Scalability related
problems in federated crowd modeling and simulation
such as partitioning of virtual environment, agent state
sharing, and agent migration are not investigated.

JADE (Bellifemine et al. 1999) is a Java-based, general-
purpose middleware for the development of distributed
multi-agent applications based on peer-to-peer
architecture. It complies with the FIPA (The Federation
for Intelligent Physical Agents) specifications so that
JADE agents can interoperate with other FIPA
compliant agents. JADE also provides a semantics
framework to allow agents to interpret meanings of the
exchanged messages according to the formal semantics
specified. In addition, it also supports agent life cycle
management, agent code and execution state migration,
and complex interaction protocols. Although JADE has
certain features required by our crowd modeling and
simulation (e.g. support for agent communication,
migration and semantics), it is not developed
specifically for simulation (Tobias and Hofmann 2004).
JADE agents are also heavy weight and not suitable for
our case where hundreds of agents might be created in
each simulation federate.

Swarm (Minar et al. 1996) and RePast (Collier 2003)
are multi-agent software platforms for the simulation of
complex adaptive systems. Both systems are developed
specifically for agent-based simulation and are able to
support large number of agents. However, they are not
designed to support distributed multi-agent systems, and
thus have minimal support for inter-agent
communication and no support for agent migration. In
addition, both systems also provide very minimal
support for simulation model development (Tobias and
Hofmann 2004).

In our system, the RePast agent simulation system is
chosen to model the environment and the actions of the
humans in a user-defined scenario. We adapted the
RePast agent simulation system to bridge the gap
between general-purpose multi-agent system and agent-
based simulation system. RePast already provides a
light-weight agent structure so that a large number of
agents can be executed within a simulation federate. By
implementing an HLA adaptor for RePast, we further
added the necessary mechanisms for RePast to support
event scheduling and distributed execution. Also, in
order to provide support for complex behaviour
modeling, the RePast agent simulation system is also
linked to the JESS inference engine with behaviour
models and behaviour repositories, and a semantics

framework based on ontology and knowledge
repositories.

HIGH LEVEL ARCHITECTURE

The High Level Architecture (HLA), developed by the
US Department of Defense provides the infrastructure
needed for large-scale distributed simulation. The HLA
defines the rules and specifications to support
reusability and interoperability of different simulators
(Kuhl et al. 2002). In HLA terminology, a simulation
component is referred to as a federate. A federation is
then a set of federates working together to achieve a
given goal. Each federate interacts with one another
over the Runtime Infrastructure (RTI) (DMSO 2002). A
set of simulation models developed independently can
be put together to form a larger simulation (or
federation). Using the HLA, each participating federate
in the federation can define the objects and interactions
that are shared with others in its simulation object
model (SOM), but its internal behavior (and data) is
completely invisible to the outside world.

In our current crowd simulation system, the HLA is
used to interoperate the RePast federate with the
UT2004 visualization federate. For the next phase of
our work, we will also be studying the partitioning of
the RePast simulation model into multiple federates and
synchronizing them using HLA.

We developed an HLA adaptor for the RePast agent
simulation, as well as an HLA adaptor for the UT2004
game engine. The RePast HLA adaptor converts events
in the RePast simulation (e.g. creation of an individual,
changes in the environment, change of movement
direction of individual) into HLA object updates. The
UT2004 adaptor receives HLA interactions, object
creations and updates, and sends commands to the
UT2004 game engine to realize the desired
visualization.

ANIMATION AND VISUALIZATION

Many research work have been carried out on the
generation of human avatars and human-like motions.
Creating crowds for complex environment is extremely
time-consuming and error-prone. While the ultimate
aim of this project is to create fast and efficient
visualization techniques that can render a scene based
on the RePast simulation in real-time using commercial
packages such as Maya, for the initial implementation
phase, we choose to leverage on the visualization
capabilities of the commercial game engine Unreal
Tournament 2004 as the animation and visualization
component of our crowd simulation architecture.

The UT2004 HLA adaptor developed in this project is
based on the GameBots system, a multi-agent testbed
that provides socket-based API to allow software agents

to participate as (software controlled) players in Unreal
Tournament games. One of the restrictions of original
GameBots system is that each socket connection allows
the control of only one player in UT. For visualizing a
crowd scenario using UT, it is necessary for hundreds
of players to co-exist in the same game. Having a socket
connection for each of the player will introduce
unnecessary overhead and slow down the game engine.

We adapted the GameBots system so that each socket
connection can be used to control multiple players in
UT. Figure 2 shows the connection between the
UT2004 HLA adaptor with the UT2004 server and the
HLA. The RePast simulation will send updates for both
the environment and the individual agents as HLA
interactions and object updates. The HLA object
interactions and updates received will be converted by
the UT2004 HLA adaptor into pre-defined GameBots
commands and sent to the modified GameBots module.
These GameBots commands can be used to initialize or
control different players in UT2004. For example,
whenever a new player is created/discovered from
HLA, a “Create Player A” command will be sent to the
modified GameBots module to spawn a new player in
the game. When player A’s position coordinate is
updated to “X” in the simulation, a “Player A runto X”
command will be sent. The GameBots command can
also be used to effect changes to the environment. For
example, when an explosion occurs at location X in the
RePast simulation, an HLA interaction will be sent to
the UT2004 HLA adaptor. This will cause a command
“Create Explosion at X” to be sent to the UT2004
server, which will invoke a pre-defined UT script to
render an explosion effect at location X.

PERFORMANCE ANALYSIS - TILEWORLD

The Tileworld is a well established testbed for multi-
agent research (Pollack and Ringuette 1990). It
comprises an environment consisting of tiles, holes and
obstacles, and agents whose goal is to score as many
points as possible by pushing tiles to fill the holes. The
environment is dynamic: tile holes and obstacles appear
and disappear at rates controlled by the user. Tileworld
has been used to study commitment strategies (i.e. when
an agent should abandon its current goal and replan)

and in comparisons of reactive and deliberative agent
architectures.

In a crowd scenario, the action of one individual often
affects the action or behaviour of many other
individuals in the vicinity. For the crowd simulation to
run efficiently, the inference engine used must be able
to cope with inference rules that may be triggered for
many agents. To test the scalability of integrating the
RePast simulation with the Protégé/JESS repository, we
implemented the Tileworld simulation using RePast and
JESS.

The Tileworld environment is laid out in a grid structure
with some of the grid cells containing either a tile or a
hole. The RePast simulation is responsible for
simulating the movement of agents, and a Protégé/JESS
repository is used to keep track of changes to the
environment as well as the individual behaviour of the
agents. The RePast simulation will update the
Protégé/JESS repository with the new location or action
of an agent, as well as retrieve the new behaviour of the
agent. Note that when an agent A updates its location or
action, the behaviour of agent A or other agents in the
surrounding might be changed. The JESS inference
engine will automatically update the behaviours of the
agents affected based on pre-defined inference rules.

Figure 3 shows a simplified finite state machine (FSM)
for the behaviour of a Tileworld agent. The FSM is
implemented in JESS. Each agent starts with a “Look
for Tile” behaviour and carries out random walk
looking for a tile in the environment. Suppose each
agent has a sensor and is able to detect a tile R cells
away from it, its behaviour will change to “Move to
tile” once it comes within R cells of any tile. It will then
proceed straight for the tile it detected.

HLA

UT2004 HLA Adaptor

UT2004 Server

Modified GameBots Module

Interaction and
Object Updates

Commands

Figure 2: UT2004 HLA Adaptor

 Look for
tile

 Move to
tile

 Look for
hole

 Move to
hole

see a tile

tile taken by
another agent

taken a
tile

hole covered by
another agent

see a hole

covered
a hole

start

Figure 3: Finite State Machine for the Behaviour
of Tileworld Agent

However, before the agent can reach the tile, the tile
might have already been picked up by another agent.
The JESS inference engine has to update the behaviour
of those agents in the surrounding that are heading
towards this tile back to “Look for tile”. The similar
case is true after an agent successfully covered a hole.
The inference engine must update the behaviour of
those agents moving towards the hole to “Look for
hole”.

We note that as the sensor range R increases, the action
of an agent (in picking up a tile or covering a hole)
potentially affects many other agents. We carried out an
experiment to measure the effect of increasing R to the
execution time of JESS rules. Figure 4 shows the
execution times of calling JESS rules for the agent
action TakeTile() and CoverHole() for different sensor
ranges R. Our experimental results show that as R
increases, the time to execute the JESS inference rules
increases as well. This is due to the fact that the JESS
inference rules have to be fired for more agent instances
with larger R. For a simulation model with large crowd
and complex cognitive model, having one simulation
federate may result in long turn around time for each
JESS rule evaluation. The simulation model has to be
partitioned into multiple federates to ensure responsive
operation.

Execution times for JESS rules

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 2 4 6 8 10

Sensor Range R

Ex
ec

ut
io

n
tim

e
(s

)

TakeTile() CoverHole()

Figure 4: Execution Times of JESS Rules for Different
Sensor Ranges

CONCLUSION

In this paper, we have described a federated architecture
for crowd simulation. Our approach incorporates
cognitive reasoning based on the JESS engine and uses
the HLA distributed simulation architecture to achieve
interoperability between the simulation and
visualization components of the simulation.

In the next phase of our project, we will focus on the
issues of partitioning the simulation into multiple
federates and study how to synchronize and maintain
consistency across these federates. We will also define
a realistic civil-military operation scenario that will
allow us to study crowd behaviours under different
circumstances.

Existing work on crowd simulation typically uses a
static environmental model and focuses on the
interaction between individual entities and groups in the
model. While these systems can be applied to short to
medium term planning as well as training of personnel,
they cannot be used in day-to-day operating conditions
whereby the environment and state of the individual
entities and groups are constantly evolving.

We will refine our proposed crowd simulation system to
bridge this gap by augmenting the simulation system
with interfaces for symbiotic simulation support. This
will allow the simulation model to be updated based on
real-time data from the knowledge repositories. It will
also allow prompt what-if analyses to be carried out and
any corrective actions to be quickly propagated to the
physical system.

ACKNOWLEDGEMENTS

The authors would like to thank Hu Nan, Nguyen Ngoc
Nam, Sean Ng Boon Kiat and Seet Yew Siang for
carrying out the preliminary implementation of the
crowd simulation architecture described in this paper.

REFERENCES

Bellifemine, A. P. F., A. Poggi and G. Rimassa. 1999. JADE -
A FIPA-Compliant Agent Framework. In Proceedings of
Practical Applications of Intelligent Agents and Multi-
agent Systems (PAAM'99). 97-108.

Ciechomski P., S. Schertenleib, J. Maïm, D. Maupu, and D.
Thalmann. 2005. Real-time Shader Rendering for Crowds
in Virtual Heritage. In Proceedings of the 6th
International Symposium on Virtual Reality, Archaeology
and Intelligent Cultural Heritage. 91-98.

Collier, N. 2003. RePast: An Extensible Framework for Agent
Simulation. Working Paper, Social Science Research
Computing, University of Chicago, USA.

DMSO. 2002. RTI 1.3-Next Generation Programmer's Guide
Version 5, DoD, DMSO.

Eriksson, H. 2003. Using JessTab to Integrate Protégé and
Jess. IEEE Intelligent Systems. 18(2):43-50.

Friedman-Hill, E. 2003. Jess in Action, Manning Publications
Co. 480.

Heal, Sid. 2000. Crowds, Mobs and Nonlethal Weapons.
Military Review. 80:45-50.

Helbing, D., I. Fakas, and T. Viesek. 2000. Simulating
Dynamics Feature of Escape Panic. Nature. 407:487-490.

Kaminka G. A., M. M. Veloso, S. Schaffer, C. Solitto, R.
Adobbati, A. N. Marshell, A. Scholer, S. Tejada. 2002.
GameBots: A Flexible Test Bed for Multiagent Team
Research. Communications of the ACM. 45(1):43-45.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
Computer Simulation Systems: An Introduction to the
High Level Architecture, Prentice Hall PTR.

Lebbink, H. J., C. L. M. Witteman and J.-J. C. Meyer. 2002.
Ontology-Based Knowledge Acquisition for Knowledge
Systems. In Proceedings of the 14th Dutch-Belgian
Artificial Intelligence Conference (BNAIC'02). 195-202.

Lees, M., B. Logan, G.K. Theodoropoulos. 2006. Agents,
games and HLA. Simulation Modelling Practice and
Theory. 14:752–767.

McKenzie, F.D., Q. Xu. Q. H. Nguyen and M. D. Petty. 2004.
Crowd Federate Architecture and API Design. In
Proceedings of the Fall 2004 Simulation Interoperability
Workshop (SIW). No. 04F-SIW-084.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi. 1996.
The Swarm Simulation System: A Toolkit for Building
Multi-agent Simulations, Working Paper 96-06-042, Santa
Fe Institute, Santa Fe, USA.

Musse, S. R. and D. Thalmann. 2001. Hierarchical Model for
Real Time Simulation of Virtual Human Crowds, IEEE
Transactions on Visualization and Computer Graphics,
7(2):152-164.

Nguyen, Q.H., F.D. McKenzie, and M.D. Petty. 2005. Crowd
Behavior Cognitive Model Architecture Design. In
Proceedings of the 2005 Conference on Behavior
Representation in Modeling and Simulation (BRIMS). 55-
64.

Noy, N.F. and D. L. McGuinness. 2001. Ontology
Development 101: A Guide to Creating Your First
Ontology, In Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880..

Paiva, D. C., R. Vieira, and S. R. Musse. 2005. Ontology-
based crowd simulation for normal life situations. In
Proceedings of Computer Graphics International 2005
(CGI'05). 221-226.

Pan, X., C. S. Han, and K. H. Law. 2005. A Multi-agent
Based Simulation Framework for the Study of Human and
Social Behaviour in Egress Analysis, In Proceedings of
International Conference in Civil Engineering.

Park, M. and P. A. Fishwick. 2004. An Integrated
Environment Blending Dynamic and Geometry Models.
In Proceedings of 2004 AI, Simulation and Planning In
High Autonomy Systems. 574-584.

Petty, M. D., F. D. McKenzie, R. C. Gaskins, and E. W.
Weisel. 2004. Developing a Crowd Federate for Military
Simulation. In Proceedings of the Spring 2004 Simulation
Interoperability Workshop (SIW). Arlington VA, USA.

Pollack, M.E. and M. Ringuette. 1990. Introducing the
Tileworld: Experimentally evaluating agent architectures.
In National Conference on Artificial Intelligence. 183-
189.

Shendarkar, A., K. Vasudevan, S. Lee and Y.-J. Son. 2006.
Crowd Simulation for Emergency Response using BDI
Agent based on Virtual Reality In Proceedings of the
2006 Winter Simulation Conference. 545-553.

Thalmann, D. and J.-S. Monzani. 2002. Behavioural
Animation of Virtual Humans: What Kind of Law and
Rules? In Proceedings of Computer Animation 2002.
IEEE CS Press. 154-163.

Tobias, R. and C. Hofmann. 2004. Evaluation of Free Java-
libraries for Social-scientific Agent-based Simulation.
Journal of Artificial Societies and Social Simulation. 7(1).

Yersin, B., J. Maïm, P. D. H. Ciechomski, S. Schertenleib,
and D. Thalmann. 2005. Steering a Virtual Crowd Based
on a Semantically Augmented Navigation Graph. In
Proceedings of First International Workshop on Crowd
Simulation (V-CROWDS’05).

AUTHOR BIOGRAPHIES

MALCOLM YOKE HEAN LOW is an Assistant
Professor with the School of Computer Engineering at
the Nanyang Technological University (NTU),
Singapore. Prior to this, he was with the Singapore
Institute of Manufacturing Technology, Singapore
(SIMTech). He received his bachelor and master
degrees in applied science in computer engineering
from NTU in 1997 and 1999, respectively. In 2002, he
received his DPhil degree in computer science from
Oxford University. His current research interests are in
the application of parallel/distributed simulation, grid
computing, and agent technology for the modeling,
simulation, analysis, and optimization of complex
systems.

WENTONG CAI is an Associate Professor with the
School of Computer Engineering at Nanyang
Technological University (NTU), Singapore, and the
head of the Computer Science Division. He received his
BSc in computer science from Nankai University
(China) and PhD, also in computer science, from the
University of Exeter (UK). He was a postdoctoral
research fellow at Queen’s University (Canada) before
joining NTU in February 1993. He has been actively
involved in the research in parallel and distributed
computing for more than 10 years and has published
more than 100 research papers in this area. His current
research interests include parallel and distributed
simulation and cluster and grid computing.

SUIPING ZHOU is currently an Assistant Professor in
the School of Computer Engineering at Nanyang
Technological University (NTU), Singapore.
Previously, he was a postdoctoral fellow at Weizmann
Institute of Science (Israel). He received his B.Eng.
(1989), M.Eng. (1992) and Ph.D (1996) in Electrical
Engineering from Beijing University of Aeronautics
and Astronautics (P.R. China). His current research
interests include: distributed interactive applications,
parallel/distributed systems, and human behavior
representations for virtual training systems. He has
published more than 40 technical papers in international
journals and conferences in these areas.

