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ABSTRACT
The recent diffusion of wide area networks dis-

tributed applications, like distributed virtual environ-
ments (DV Es), for instance massively multiplayer
games, requires the definition of proper consistency mod-
els and protocols. Models like perceptive consistency
take into account the interactivity of these applications
by defining a set of real time constraints. This paper
presents MultiLags, a protocol implementing perceptive
consistency which exploits DV E locality to dynamically
refine the time constraints according to the network con-
ditions. An implementation of the protocol is presented.
A set of experimental results show the effectiveness of the
MultiLags approach.

INTRODUCTION
The diffusion of wide area networks has recently sup-

ported the development of distributed applications like
chats, shared whiteboards, multi-player games and dis-
tributed interactive simulations. The large complexity of
these applications requires the definition of suitable mod-
els and development environments. In this context, the
definition of novel consistency models and protocols is a
primary issue.

Consistency models for distributed systems have been
first proposed within the parallel and distributed program-
ming research area. Classical approaches, like Lamport’s
Sequential or Causal Consistency [6] have been widely
adopted to model the behavior of concurrent shared mem-
ory applications. While some distributed applications can
still exploit these approaches, their revision may be re-
quired when considering interactive applications with soft
real time constraint, like distributed virtual environments.
A distributed Virtual Environment, DV E, simulates a
virtual world where a set of users located at geograph-
ically distributed hosts interact. Massively Multiplayer
Online Games (MMOG), like World of Warcraft, and dis-
tributed military simulations are currently the most typi-
cal examples of DV E.

The definition of proper models for DV Es is espe-
cially challenging, because it should take into account the
notion of time by describing new properties, like simul-
taneity of events generated at geographically distributed
hosts and instantaneousness in the perception of events.

On the other hand, properties like causality and concur-
rency of events must be always preserved.

Simultaneity guarantees that each host hosting the al-
location of interest perceives at the same time any event
generated within the DV E, independently of communi-
cation latencies. This is required to avoid fuzzy situa-
tions, for instance simultaneity of events may prevent a
dead player from shooting [8]. As a matter of fact, sup-
pose two players A, B, controlled by users located at re-
mote hosts, shoot each other at the same instant of time.
Since the shooting is simultaneous, the death of the play-
ers must be simultaneous as well. Instead, if the latency
between A and B is too high, the death of B may be per-
ceived by A before its shooting.

[3] presents a model integrating causality, simultaneity
and instantaneousness and [7]defines a protocol imple-
menting this model based on the notion of local lag. The
basic idea is to delay the rendering of events generated by
an host of an interval of time ∆, i.e. the local lag, in order
to hide the delay due to network latencies in the notifica-
tion of events to other hosts. If ∆ is statically defined it
must be overestimated because of latency jitter. This may
decrease the responsiveness of the application and favor
cheating.

This paper introduces MultiLags, an extension of the
local-lag approach where the value of ∆ may be dynami-
cally determined. Furthermore, our approach exploits the
locality characterizing DV E to associate multiple val-
ues of ∆ to distinct groups of interacting users, for in-
stance groups of players located at different regions of
the DV E. This introduces several problems. First of
all, a mechanism to detect these groups has to be defined.
Then, a protocol to dynamically determine the value of ∆

has to be defined as well. After describing the perceptive
consistency model and the local-lag technique , we intro-
duce the MultiLags. Finally we discusse the implementa-
tion problems of MultiLags and show some experimental
results.

RELATED WORK
Perceptive Consistency [3] is a wall-clock time based

model integrating simultaneity, instantaneousness and
causal ordering. The model requires synchronized physi-
cal clocks for the hosts cooperating in the DV E applica-
tion. Currently, this is feasible by exploiting the Network
Time Protocol (NTP) distributed service [9] which guar-
antees an acceptable approximation, less than 50 ms, in
clocks synchronization.

Let us consider a set S of events generated at different
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hosts at the same wall-clock time. Perceptive consistency
requires that
• simultaneity any host perceives at the same time the
set of events generated at different hosts
• any host perceives any event a limited amount of time
∆ after its generation. The value ∆ corresponds to the
Responsiveness of the application.

The value of ∆ has to be carefully chosen by consid-
ering human sensing capabilities. A proper choice may
guarantee both instantaneousness and simultaneity. Fur-
thermore, casual ordering of events is guaranteed through
physical clocks. Since an absolute clock synchronization
is not feasible, ∆ must include the clocks drift as well.

The main problem in guaranteeing Perceptive Consis-
tency is due to the network latency. [7] defines a protocol
implementing perceptive consistency and based upon the
notion of Local Lag. Consider an event E generated by
a user interaction, for instance a mine explosion, at host
H at wall-clock time T . H delays the visualization of the
event of ∆, the application responsiveness. Furthermore,
it notifies to any other host that E has to be shown to the
user at the instant of time T +∆. The ∆ delay hides net-
work latency and guarantees, in absence of packet loss,
simultaneity of events at different sites. In this way, ∆

defines both the value of the responsiveness and that of
the local delay, i.e. the LocalLag. In the following we
will refer to responsiveness, rs.local-lag, according to the
context.

In absence of packet loss and of network congestion,
this simple protocol guarantees simultaneity and causal
ordering of events. Obviously, ∆ has a negative impact
on instantaneousness, but if the value of response time is
smaller than a given threshold, corresponding to human
sensor capabilities, the delay is not perceived by the in-
teracting users.

The Local Lag approach has two main drawbacks.
First, the absence of packet loss and of network conges-
tion cannot be guaranteed. This implies that a set of re-
covery mechanisms has to be defined, for instance back-
ward recovery mechanisms like time-warp [7] or forward
recovery ones, like rendez-vous [4]. The second problem
concerns the definition of a proper value of the respon-
siveness. In [7] this value is defined before application
starts and cannot be modified during its execution, ac-
cording to the network conditions. Its definition depends
upon the characteristics of both the application and the
network. For instance, a latency of 1 ms may character-
ize a LAN , while one of 150-200 ms a wide area net-
work. The definition of a proper value is critical, because
low values increase the number of inconsistencies, while
large ones cannot guarantee instantaneousness in the per-
ception of the events and may favor cheating. As a matter
of fact, if the events are received largely before their dead-
lines, the user may exploit the received information for its
benefit.

In [5], a technique to dynamically modify the value of
the responsiveness of an application is presented. Ac-
cording to this approach, each host dynamically probes
the network conditions and modifies the value to reflect
these conditions, i.e. responsiveness may be increased if

the network is congestioned or it may be decreased when
the network latencies are low. Since probing the network
conditions can introduce a large overhead in the appli-
cation, [5] proposes to collect the number of late mes-
sages with respect to their timestamps and the number
of lost messages. This information can be collected by
simply analysing the messages exchanged by the applica-
tion. Since heartbeat messages, i.e. messages exchanged
among the players to notify their position, are the events
notified more frequently, they can be exploited to test net-
work conditions. Packet loss can be simply computed
by identifying the message through an unique sequence
number. In the following the local information collected
by a player P about the status of the network will be re-
ferred as local network view, LNV of P . [5] presents a
set of simulations to test the effectiveness of the dynamic
local lag approach, but no implementation in a realistic
networked environment.

THE MULTILAGS APPROACH
This section introduces MultiLags[10], an approach ex-

ploiting the locality which characterizes DV Es to im-
prove consistency. We suppose that no central server co-
ordinates the game state. Hence, the hosts notify each
other game events according to a fully distributed com-
putational pattern.

The approach proposed in [5] has been extended in or-
der to exploit locality. As a matter of fact, each player of
a multiplayer game mainly interacts with a subset of the
other entities of the DV E, in general those located in its
surroundings. This set depends on the player sensing ca-
pabilities, for instance its sight, its equipment and so on.
This locality has been modeled through the notion of area
of interest [1], [2] the region of the virtual world includ-
ing entities each player can interact with. Two kinds of
area of interest have been defined. Static areas of interest
are defined by statically partitioning the shared world into
regions. For instance a region may correspond to a room
or to a city. A dynamic or mobile area of interest is the
area of the virtual world surrounding each player and it
changes when the player moves. Further areas of inter-
est may be defined to model different events. Consider,
for instance, the example in Fig. 1. Avatar B belongs
to the area of interest of A. Now, suppose that the bomb
represented by the black square generates an explosion
which kills B. In this case A perceives the death of B,
but it is not able to perceive the cause of its death. If the
application requires that the causally ordered events are
perceived by the player, the computation of the areas of
interest should take into account not only the sensing ca-
pabilities of the player, but also the area of perception of
any event.

Areas of interest can be exploited to improve the re-
sponsiveness in DV E to define distinct values of re-
sponsiveness for the players. The MultiLags approach
dynamically pairs a distinct responsiveness value with
groups of players located in distinct regions of the vir-
tual world. It is worth noticing that even if the players
located in the same region of the virtual world may be



Fig. 1. Areas of Interest

geographically distributed in the network, the goal of our
approach is to optimize the computation of the respon-
siveness according to the condition of the network con-
nections among the players. For instance, if all the play-
ers in the same region of the virtual world are located in
the same country, the network delay may be smaller than
the one of a group including players located in distinct
countries.

It is worth noticing that, at any instant of time, all
the players in an interaction group should have the same
value of responsiveness in order to guarantee simultane-
ousness and a correct ordering of events. This requires
a distributed consensus among the players, since any one
may experience different network status. This is true even
if just one pair of players is considered, because of differ-
ent network routes and latencies between them, as shown
in the following example.

Example 1: Consider two interacting players A and
B and suppose that the value of responsiveness is 100
ms. Suppose that A receives messages from B on aver-
age 50 ms. in advance with respect to their timestamps,
while B receives messages from A on average 10 ms in
advance with respect to their timestamps. If each host
computes the new responsiveness value apart, A may re-
duce its response time, say to 60 ms, while B may leave
the responsiveness unchanged. This will introduce incon-
sistencies on B, that will receive notification from A with
an average delay of 40 ms.

Computing the Local Network Views is therefore only
the first step to implement the dynamic local lag tech-
nique. A further step is required to reach a distributed
consensus on the new responsiveness value which is ob-
tained by considering the LNV of the all interacting play-
ers. This requires that each player broadcasts its LNV to
each other interacting player. This information can be
transmitted through heartbeat messages, which are pe-
riodically exchanged among the players in the same area
of interest. Furthermore, each host periodically executes
a procedure to combine its LNV with that of the other
players in order to define the new responsiveness value.
All the players execute this procedure roughly at the same
time, and exploit the same operator to compute the re-
sponsiveness values. Finally, any host updates its respon-
siveness value.

Fig. 2. Detecting Groups of Mutually Interacting Players

When considering static areas of interest, each area of
the DV E may be characterized through a distinct respon-
siveness value, because any player only interacts with
other players in the same area of interest. Responsive-
ness may be computed by considering the network con-
nections among the players belonging to that area. Each
player dynamically updates this value when it moves
from a region to another one.

The main problem of this solution is due to the dy-
namic acquisition of the new responsiveness value, when
a player P moves into a new region. As a matter of fact,
the new value may be computed only after some interac-
tions with other players located in that region. In the sim-
plest solution P exploits a predefined conservative value
of responsiveness, but this will introduce inconsistencies
because this value is not equal to that of all other play-
ers already located in that area. On the other hand, if
the responsiveness is updated frequently, the number of
the resulting inconsistencies is low. This solution may
be refined by storing the responsiveness value of a region
when leaving an area and by exploiting this value when
re-entering that region. The predefined value may be ex-
ploited when visiting an area for the first time. This may
be useful when player mobility is low or when a player
re-enters an area after a small amount of time.

Responsiveness Prefetching is a more refined approach
where each player starts accepting events from the players
in a region R when approaching the border of R. This
information can be exploited to prefetch both the updated
responsiveness value and the right position of the players
in R.

The application of the MultiLags approach to mobile
areas of interest is more complex because now it is more
complex to detect groups of mutually interacting players,
with the same responsiveness value. This is shown in the
following example.

Example 2: Consider the set of players S={A,B,C}
in Fig. 2. They may reach a consensus about the value
of responsiveness because any of them interact with any
other one in S. This value may be different, for instance,
from that of players D or E, located in different regions
of the DV E. Let us now suppose that D gets in touch
with B, but not with A and C, as shown in Figure 3. B

may decrease its responsiveness value because of the low



Fig. 3. Detecting Groups of Mutually Interacting Players

latency connection with D. Suppose also that an high
latency connection exists between B and rs. A and C.
This implies that A and C will experience a delay in any
message received from B. This increases the number of
inconsistencies generated by the application.

Hence, the definition of MultiLags is more complex
when mobile areas of interest are exploited. A first so-
lution dynamically detects groups of interacting players.
This corresponds to consider a belongs to relation among
players such that A belongs to B iff A belongs to the area
of interest of B. A group of mutually interacting players
may be defined as a set S of players such that the belongs
to relation defined for S is equal to its transitive and sym-
metric closure. While this condition is verified by all the
players belonging to the same region when static areas of
interest are considered, more complex protocols have to
be adopted when dynamic areas of interest are exploited.
For instance, each player may include in each notifica-
tion a reference to any player interacting with him. Each
player detects if the set of players interacting with it is
equal to that received from other players. In this case,
a distributed consensus among the players about respon-
siveness may be defined. Otherwise, each player may ex-
ploit a predefined value. As shown in the following sec-
tion, our implementation of MultiLags exploits static ar-
eas only, because the complexity of the other techniques
is too large.

IMPLEMENTING MULTILAGS
This section describes an implementation of MultiLags

for DV Es exploiting static areas of interest.
The communications among players belonging to the

same area are implemented through a set of multicast
groups, one for each area. Each player subscribes the
multicast group G corresponding to a region R, when it
enters R. While it moves within R, it exploits G to ex-
change event notifications with other players in R.

To delay a local event E of ∆, i.e. the value of the lo-
cal lag, each player associates a timestamp with any event
E and stores E in a data structure, in order to render E

only after the local-lag has expired, when E will be in-
serted into the first rendered frame. Each player periodi-
cally executes the rendering of the scene. The frequency
of rendering is determined by the frame rate of the host.
An upper bound of 25 frame per second may be defined
to constrain the frame rate, since an higher rate cannot be

perceived by human senses and it would waste compu-
tational resource only. This corresponds to introduce an
upper bound on the size of the data structure that records
the delayed events as well.

Each event with the corresponding timestamp is sent
to the multicast group as well. Furthermore, each player
associates its LNV with each heartbeat sent to the multi-
cast group. The pseudo code of the send procedure is the
following:

Let E be an event generated at wall-clock time T

msg.timestamp = T + ∆

msg.LNV = LNV ;
msg.ID = MYID ;
msg.event = E;
send (msg)

The pseudo code describing the operations executed on
a message reception is the following one

receive (msg);
T=msg.timestamp;
id=msg.ID;
store msg.LNV in a local structure at position id
MsgDrift=wall clock - T;
LNV:= f (LNV,MsgDrift) ;

The host extracts the identifier of the host H which sent
the message, the timestamp T and the LNV sent by the
host H . Then, it records the LNV of H and exploits
the drift between the timestamp of the message and the
wall-clock time of the reception to update its LNV . To
compute LNV different operators may be exploited. For
instance the average temporal drift may be computed.

Each host periodically executes a procedure, Update-
Responsiveness to refine the responsiveness value accord-
ing to its LNV and to those received from other players.
It is worth noticing that, while incrementing the value of
responsiveness is always safe, a decrement may result in
inconsistencies in the causal ordering of events.

Example 3: Let us suppose that a player generates an
event A at t1. A causes event B, which is generated at
time t2. If the value of responsiveness is decreased after
the occurrence of A, but before that of B, it is possible
that B is perceived by the user before than A, thus violat-
ing the causality.

Inconsistencies may be avoided by storing the times-
tamp T of the last event generated at each host. After
the application of the Update-Responsiveness procedure,
if any event gets a timestamp T1 lower that T , T1 is in-
cremented in order to obtain a value greater than T . The
value of the increment may be equal to the drift between
the old responsiveness value and the new one. Notice that
no inconsistencies can be generated by two causally or-
dered related events generated at two different hosts be-
cause the decrement of the response time is one order of
magnitude smaller than that of network latency.

Fig. 4 shows the pseudo code of Update-
Responsiveness. The interval of time between two con-
secutive executions of the procedure is denoted by π. The



if (Timer ≥ π) and (My entry time ≤ Wall Clock - π ) {
Hosts = { H : H entry time ≤ Wall Clock - π }
Hid = { id : id identifies H in Hosts }
if (Hid 6= 0){

Max ID = max { id ∈ Hid } ∪ My ID
if (My ID == Max ID)

{ LNV Others=
{LNV:LNV is Local Network View of host id,id ∈ Hid}

NetDrift := f(LNV, LNV Others)
if NetDrift ≥ Threshold a

{ Responsiveness = Responsiveness + Γ }
else if NetDrift < Threshold b

{ Responsiveness = Responsiveness - Γ }
send Responsiveness to any host in my region
Timer = 0;
reset data strucutes} }

Fig. 4. Responsiveness Update

value of the timer is set to 0 after each execution of the
procedure and the procedure is executed when this value
is greater that π. Note that a fully distributed procedure
may introduce inconsistencies in the computation of the
refined responsiveness value because different hosts can
compute different LNV , due to packet loss. For this rea-
son, our solution is based on the dynamic selection of a
host coordinating the computation of the refined respon-
siveness value for all hosts located in that area. Since each
host is uniquely identified, for instance by its IP address,
the host with the highest identifier may be dynamically
selected as the coordinator. According to a SPMD pro-
gramming paradigm, each host executes an instance of
Update-Responsiveness, but a single host, i.e. the coordi-
nator, computes the new responsiveness value. Then, the
updated value is broadcasted to any other host through
the multicast group. The coordinator is chosen among
the hosts which have already participated at one instance
of the execution of Update-Responsiveness. In this way,
hosts which have been in the region for a period of time
shorter than π are not selected because the value of their
LNV is not reliable, as they may have exploited an obso-
lete value to initialize their responsiveness. For the same
reason, the LNV of the hosts which have entered the re-
gion after the last execution of Update-Responsiveness
are considered unreliable and are not exploited to refine
responsiveness. The network state, i.e. NetDrift is
computed by combining the network views of the differ-
ent hosts by an operator, f , which must be defined ac-
cording to the consistency degree we want to obtain. By
considering the maximum value of the LNV we mini-
mize the number of inconsistencies, but this corresponds
to a low degree of responsiveness. Generally the choice
of the operator is a trade off among responsiveness and
consistency. If the resulting NetDrift is higher or lower
than two predefined threshold values, the responsiveness
id increased rs. decreased of a predefined value Γ. In any
case, un upper bound for this value is statically defined.

EXPERIMENTAL RESULTS
We have implemented MultiLags on 16 Athlon 2600+

hosts, connected by a Tricom Suoer Stack local network.
To simulate wide area network conditions, we have intro-

Fig. 5. Average Temporal Drifts in Different Regions

duced network delays generated according to an exponen-
tial distribution. This models both network congestion
and jitter. We have considered a DV E partitioned into
four rectangular regions, where a set of player moves. A
distinct average latency has been associated to each re-
gion. The values associated to the region from 0 to 3
are, respectively, 80,120,160,200 ms. The MultiLags al-
gorithm is executed every 5 seconds and, at each execu-
tion, the response time is incremented/decremented by 10
msec. The initial value of the response time is 100 msec.

In Fig. 5 we consider the average drift between the
message timestamp and the wall-clock at its reception.
The four curves show the drifts of the four regions. The
delay increases from the top curve, region 0, to the bottom



one, region 3. For each point of the x-axis corresponding
to time t of the application execution, the y-axis shows
the average temporal drift on the different hosts. We can
notice that most message are received in time in region
0, where the value of latency is low. In other regions, a
large number of messages are not received in time when
the application starts. The figure shows that MultiLags
is able to reduce the number of delays. As a matter of
fact, after 250 msec, each message is received, on aver-
age, ahead of its deadline. This proves the effectiveness
of our approach.

Fig. 6 shows the number of Severe Errors. A severe
error is signaled when the drift between the timestamp
and the wall clock at its reception is larger than 50 ms.
We notice that while about no errors are detected when
latency is low, their number increases with the latency.

Fig. 6. Severe Errors

CONCLUSIONS
In this paper we have presented MultiLags, a protocol

to implement perceptive consistency in DV Es. Our ap-
proach can dynamically modify the local-lag and asso-
ciate different values of the local-lag to distinct regions
of the DV E. We plan to refine our approach, by con-
sidering prefetching of responsiveness values by player
approaching a new region. Furthermore, we plan to ex-
periment our approach on a wide area network.
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