
Contextual activation for agent-based simulation
Fabien BADEIG1,2 Flavien BALBO1,2 Suzanne PINSON2

1INRETS - GRETIA team, 2University Paris-Dauphine - LAMSADE,
avenue du Général Malleret-Joinville, Place du Maréchal de Lattre de Tassigny,

F-94114 Arcueil Cedex, France F-75775 Paris 16 Cedex, France
Email: fabien.badeig@inrets.fr Email: {balbo—pinson}@lamsade.dauphine.fr

Abstract—When designing agent-based simulation, the
choice of a coordination model is a key issue, since one
of the difficulties is to link the activation of the agents
with their context efficiently. Current solutions sepa-
rate the activation phase from the action phase of the
agents, and each action phase is based on local agent
context analysis which is time-expensive. Moreover, be-
cause the link between the context and the action is an
internal part of the agent, it is more difficult to modify
the way the agent reacts to the context without altering
the way the agent is implemented. Our proposal, called
EASS (Environment as Active Support for Simulation),
is a new approach for agent activation, where the con-
text is analysed inside the environment and conditions
the activation of the agents. The main result of contex-
tual activation is to simplify the achievement of complex
simulations and to decrease run-time. The EASS model
has been implemented within the kernel of MadKit, a
multi-agent platform, and the first results are given.

Keywords—agent-based simulation, environment, con-
textual activation

Introduction

The general purpose of simulations is to model a com-
plex reality [7] to reproduce, understand and evaluate
it. The quality of a simulator is basically assessed using
two criteria: how close it is to reality and how easy it
is to interpret. The agent paradigm thus facilitates the
modeling of independent entities interacting in an or-
ganized framework. This approach offers several inter-
esting properties [8]: it supports structure preserving
modeling of the simulated reality, simulation of proac-
tive behavior, parallel computations, and dynamic sim-
ulation scenarios [4]. However, few models are based
on the multi-agent paradigm because one of the dif-
ficulties in both the design and the understanding of
MASs comes from the lack of central controls and the
ensuing conflicting, uncertain, incomplete and delayed
knowledge on the part of the agents.

One of the main problems in the design of a multi-
agent simulation is the choice of a scheduling policy and
more precisely the role of the simulator in the agent
activation process. If the agents schedule their own be-
haviors, then the simulator has to synchronize them.
This is well-adapted to simulations where agents do
not have the same internal time models (discrete versus
linear), or have different units of time (seconds versus
years) [6], and a global virtual time has to be defined in
order to enable coordination between agents. This con-
straint implies synchronization mechanisms that have
to be considered during the modeling phase, and which
limit the proactiveness of the agents. If the scheduler of
the simulator manages agent activation, then the con-

flicts between agents have to be solved. Usually, the
simulator applies one of the following scheduling poli-
cies: simple activation, double buffer and event-based
[10]. In this paper, a new agent activation process
where an agent is activated according to a context that
it has chosen is proposed. Our proposal, called EASS
(Environment as Active Support for Simulation), be-
longs to the last category of simulator and takes into
account the different scheduling policies. The activa-
tion context of an agent can depend on a time cycle
(simple activation) or on a specific event (event-based
simulation). To take into account the double buffer
approach, the model has to integrate a action conflict
problem-solving engine.

The remainder of the paper is organized as follows.
The next section shows the advantage of placing a
medium, the environment, at the center of multi-agent
simulation. This is followed by the presentation of an
example that will be used throughout this paper to il-
lustrate our proposal. The components of EASS, i.e.
the simulation environment, the simulation agents and
the simulation control, are then described and perfor-
mance is assessed empirically. The papers concludes
with general remarks and suggestions for future re-
search.

Towards a contextual activation

In agent-based simulation platforms, the activation
phase of the agents is separated from the action phase
of the agents, and each action phase is based on a local
agent context analysis. When there is a global schedul-
ing policy, the standard process is to activate each agent
at each time cycle, so that it computes its context lo-
cally in order to choose an action that it will perform.
For example, in Cormas [3] or Mason [9], for each
agent the scheduler activates the same method that the
multi-agent designer has to overload. In the TurtleKit
simulation tool of Madkit [5] largely inspired by Logo-
based multi-agent platforms such as the StarLogo sys-
tem (http://education.mit.edu/starlogo/) or NetLogo
(http://ccl.northwestern.edu/netlogo/), an agent has
an automaton that is applied by the scheduler. Each
state of this automaton corresponds to an action.

Context computation involves retrieving and analysing
the data. The problem is that computing the context
locally increases the complexity of the agent simulation
design. Consequently the simulation designer has only
two ways of changing the parameters of the simulation.
The first is to modify the global scheduler, for instance
in Cormas the “prepare and schedule” interface is used

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)



to give the parameters of the scheduler. The second is
to modify the behavior of the agents, i.e. their reaction
to their local context, which often implies a modifica-
tion of the way the agent is implemented. Our objective
is to explicitly link each agent activation to a specific
context. The reification of the link between context
and activation of the agent is called contextual activa-
tion and is managed by the environment.

This principle is similar to the contextual interaction
proposed by the EASI (Environment as Active Support
of Interaction) model [1]. In EASI, the environment is a
medium enabling interactions to be shared. EASI mod-
eling is a direct application of the Property-Based Coor-
dination principle [13] (PBC) for interaction. The PBC
is defined as a coordination principle for multi-agent
systems in which every entity composing the system, in-
cluding the agents, exhibits observable properties, and
an agent uses the observable properties to manage the
interactions, perceptions and actions inside the system.
Our proposal is to apply the PBC principle for the ac-
tivation process of the agents. The objective is that
the agents dynamically choose their activation context
(the local scheduling policy) and leave the management
of the simulation system (the global scheduling policy)
to the environment. Moreover, the environment is the
temporal reference of the MAS, the agents managing
their own internal time scale.

The result is an improvement of the control of the
simulation. The environment ensures a centralized con-
trol in which the agents involved can dynamically mod-
ify their link to the simulation. By centralized con-
trol, we mean a global scheduling policy in which each
agent modifies its own scheduling policy according to
its state. By link, we mean the choice of the elementary
action that the agent has to perform.

Illustrative example

This paper presents an agent-based simulation of
robots, inspired by the application ”Packet World” [12].
The objective of the robot agents is to cooperate in or-
der to shift packets. The robot agents and the packets
are situated on a grid, i.e. a two-dimensional space en-
vironment. A robot agent can move randomly or in a
given direction, and it possesses only one skill. It can
either carry or raise a packet, but the two skills are re-
quired to shift a packet. Each robot agent has a field of
vision and the context of a robot agent is related to its
field. A robot agent is close to a packet if the distance
between the packet and the robot agent is equal to 1.
A robot agent is unavailable if it has found a packet.

A robot agent reacts according to three contexts.
The first is the context packet seeking where the robot
agent randomly moves on the grid. The second is the
context packet discovery where the robot agent has
found a packet in its field of vision. Then, if there
is no available robot agent with the same skill close to
the packet, the robot agent moves towards the packet.
The third is the context packet proximity where a robot
agent waits for the arrival of another robot agent with
the complementary skill to shift the packet.

A robot agent can interact to establish a contract
with another robot agent to shift a packet. A robot
agent which is committed to another robot agent by a
contract is unavailable. The robot agents have a field
of perception which depends on the distance between
the robot agent and message. This property limits the
circle of messages that can be received by the robot
agent. A robot agent has a specific behavior for in-
teraction according to two contexts. The first is the
context contact, where a robot agent close to a packet
tries to contact another available robot agent with the
complementary skill to shift a packet and waits for it
to arrive. The second is the context contact reiteration,
where it reiterates the contact-making operation if no
robot agent has answered.

Simulation system environment

This section focuses on the modeling of the environ-
ment. The environment ensures the global scheduling
policy and is the temporal reference of the MAS. In or-
der to apply the PBC, the environment must contain
the descriptions of the components of the MAS.

Formal description

The environment is a set of m entities, Ω =
{ω1, ω2, . . . , ωm}, and a set of k filters, F =
{f1, f2, . . . , fk}. An entity ωl is the description of a
component of the MAS (agent, object, percept) us-
ing observable properties. In the example, the set of
entities Ω corresponds to the set of robot agent de-
scriptions A, the set of message descriptions IO and
the set of packet descriptions O. A filter fj is the
description of constraints on the observable proper-
ties of the entities. P is the set of observable prop-
erties, noted P = {pi | i ∈ I}. I is a finite set
without assumptions on the data type (string, integer,
etc). An observable property pi is a function which
gives the value associated with an entity ωl, where
∀pi ∈ P, pi : Ω → di ∪ {unkown, null}. di, the domain
description of the function pi, is a finite set of qualita-
tive or quantitative data. The value unknown is used
when an agent does not want to give information about
this property, and the value null is used when the prop-
erty does not exist for the agent. The value of a prop-
erty can be modified dynamically at run-time, except if
it is null. A null value expresses the absence of a prop-
erty, and this cannot be changed at run-time. Figure 1
shows a simple instantiation of our environment mod-
eling. Here there are four entities, Ω = {ω1, ω2, ω3, ω4}
that are respectively the descriptions of packet 1, robot
agents A and B and message MsgB1. The set of ob-
servable properties represented in figure 1 is not com-
plete. For A, the set of observable properties is PA =
{id, skill, available, position, vision, perception, idp}; for
IO, this set is PIO = {id, sender, receiver, type, idp};
and for O, this set is PO = {id, position}. For exam-
ple, the description domain davailable of the property
available is {true, false}. With this property, an agent
announces if it is processing a packet as in the case of
the entity ω3 where the value available(ω3) is false.



ENVIRONMENT

MAS components

robot B

robot A

filter 3

filter 2

filter 1

F : set of filters

matching

Ω : set of entities

packet 1<position,(10,5)>,<skill, ”carry”>

<position,(4,4)>,<skill, ”raise”>

Msg B1

letter box

description relation
put message
put/retract filter

ω1 : <id,1>, <position,(4,5)>

ω2 : <id,2>, <available,unknown>

ω3 : <id,3>, <available, f alse>

ω4 : <id,4>, <sender,3> ,
<idp,1>

Fig. 1. Overview of the environement

Here, the entity ω1 does not have this property in its
description, so the value available(ω1) is null. In ad-
dition, the entity ω2 does not wish to give its available
state, so the value available(ω2) is unknown.

In the EASS model, two categories of filter exist with
different uses. The filters that link the context to in-
teractions are interaction filters, and the filters that
manage the simulation process are simulation filters.
The second category includes the activation filters that
link the context to the activation of agents. In order to
keep a homogeneous model for interaction and activa-
tion management, the definition of a filter is built using
the Symbolic Data Analysis (SDA) theory [2] (for more
details see [11]).

In SDA, a symbolic object is a coherent descrip-
tion of entities. An assertion is a special case of a
symbolic object and is written ∀ωl ∈ Ω, as(ωl) =
∧i=1,...,q[pi(ωl)Rivi] where Ri is a comparison operator
and vi is either a variable, or the value unknown or a
value belonging to di. The value of an assertion for any
particular entity ω ∈ Ω is true if that assertion holds for
that entity, or false if not. An example of an assertion
is as(ω) = [skill(ω) = ”carry”]∧ [available(ω) = true];
this assertion is the description of the available entities
which have the skill carry.

A filter f is a symbolic object. For agent a and
context C ⊂ Ω, an activation filter is f(a,C) =
∧i∈Ia [pi(a)Rivi] ∧c∈C (∧i∈Ic [pi(c)Rivi]). Ia ⊂ I (re-
spectively Ic) are the indices ranging over P that are
used in f for selecting the agent (respectively the con-
text). Ri and di are respectively the comparison oper-
ators and the values of the descriptions that define the
conditions to be held by a and C. An activation filter
is triggered when the conditions on the description of
agent a and context C are verified. For agent a, the
interaction object io ∈ IO and the context C ⊂ Ω, an
interaction filter is f(a, io, C) = ∧i∈Ia [pi(a)Rivi]∧i∈Iio

[pi(io)Rivi] ∧c∈C (∧i∈Ic [pi(c)Rivi]). Iio ⊂ I are the in-
dices ranging over P that are used in f for selecting
the interaction object. This filter is the conjunction of
at least two conditions, the first being related to the
receptor a (first argument) and the second being re-
lated to the interaction object io (second argument).
The third argument that describes the context is op-

tional. This definition means that the same interac-
tion object io can be perceived according to different
contexts, or on the contrary that several interaction
objects io can be perceived in the same context. Con-
trary to the activation filter, the trigger of an interac-
tion filter depends on an interaction object io (here,
io is a message). However, in the activation case, if
the agent activation is conditioned by an interaction
object io, then the conditions of the io description are
added to the context C description of the filter. In our
example, the interaction filter that enables the recep-
tion of a request message is: frequest1(a,m, {a1}) =
[available(a) = true] ∧ [sender(m) =?x1] ∧ [id(a1) =
?x1] ∧ [skill(a) =?x2] ∧ [skill(a1) 6=?x2] ∧ [type(m) =
request] ∧ [position(a) =?x3] ∧ [position(a1) =?x4] ∧
[perception(a) >= pcc(?x3, ?x4)] where pcc is a func-
tion which returns the value of the shortest path be-
tween two points. This filter ensures that an agent a
receives a request message m if a is available with the
skill which completes the skill of the sender agent a1

and if the distance between a and a1 is less than the
perception field of the agent a, i.e. a can perceive the
message.

One of the main advantages of using the same formal
definition for all filters is that interaction and activation
modeling is homogeneous, thus giving a simple way to
describe the simulation process, as is shown in the next
section which discusses filter-activated actions.

Environment specifications

The set of filters F contains the interaction and sim-
ulation filters that are inside the environment. When a
filter is triggered, this activates an action for an agent
to perform. This action depends on the filter category.
In the case of interactions, this means that an agent can
perceive an interaction object. This is ensured by the
action receive that each agent must implement to re-
ceive interaction objects. It adds the interaction object
with the information about its context to the ”mes-
sage box” of the agent. The objective of the activa-
tion filter is to trigger the appropriate reaction of the
agent according to its context, which is why an action
act is associated with each filter. This action is imple-
mented by all the simulation agents and its parameters
are the context and a label corresponding to the action
associated to this context (see paragraph on Simulation
Agents).

In addition, in the EASS model the environment en-
sures the simulation validation process including the
time management. Consequently, the environment is
the temporal reference for the simulation agents and
each agent has its internal time. The environment
time is discrete and is the global time of the simula-
tion. At a given time cycle, the simulator ensures that
the agents which are ready to act are activated; this is
done only once per time cycle. This control is guaran-
teed by the environment thanks to the comparison of
the global time with the internal time of the agent in
each activation filter. Therefore, the internal time of
agents must be observable, which implies the addition



of the observable property time to the description of
the agent. When the value of the observable property
time is greater than the time of the environment then
the agent is not activated. This control implies that
the internal time of an agent is updated automatically
when it is activated.

The activation of the agents depends on the filters
inside the environment. In order to ensure a default
activation, the filter fdefault is systematically added to
the environment and its triggering depends on the com-
parison between the global time (tE) and the internal
time of the agent. This filter is written fdefault(a, ∅) =
[time(a) < tE ] where a ∈ A.

In order to update the environment time, the filter
ftime compares the internal time of the agents with
the global time (tE) and is written ftime(null, A) =
∧a∈A[time(a) >= tE ]. It is triggered when the internal
time of all the agents is greater than or equal to the
global time. This triggering process updates the global
time t to t + 1. This filter is a simulation filter.

This modeling offers two advantages: (1) an agent
can choose to be inactive for a period in the simulation,
thus enabling a gain in run-time; (2) the same agent
cannot be activated more than once in the same time
cycle.

Simulation agents

The activity of an agent is modeled using an automa-
ton, called the behavior automaton (Figure 3). Each
state of the automaton is a reference to a behavior
which is a coherent sequence of actions. If the behavior
is linked to one action, it is elementary, whereas if it
is associated with several actions, it is complex. The
transition from one state to another corresponds to the
context. The context is perceived via the filters for the
contextual activation and can also be identified through
local processing which consists in recovering a partial
state of the environment. Our model manages these
two processes in the same simulation. Each agent has
its own scheduler which manages the behavior automa-
ton which specifies the next action to be performed.
The activation filters use only one generic action act
for the agent activation, and this action corresponds to
the call of the agent scheduler. In order for the right
behavior to be activated, a label is associated with each
behavior of the agent and is a parameter of the action
act. The definition of a label is a couple (id, context)
where id is the identifier of the label and context is
the set of information related to the context. Thus the
agent knows which behavior has to be carried out as
well as information related to the activation context.

To build the behavior automaton of each agent, the
designer first has to identify the activation contexts of
each behavior, and then build the corresponding activa-
tion filters for each context. Each agent has a set of ac-
tivation filters. A filter becomes active when the agent
adds it to the environment, and is desactivated when
the agent retracts it. The agent dynamically chooses
the activation filters that it adds to the environment;
each additional activation filter triggers a particular ac-

activation

action

agent

f4f3f2f1

behavior1 behavior2

action3action2action1

(beh1,cont1) (beh1,cont2) (beh2,cont2)

Agent

act act act
(beh2,cont3)

act
(beh2,cont4)

act

Fig. 2. Relation between agent behaviors and activation filters

tivation context for the agent. In this way of modeling
the activation process, we put context analysis into the
environment. The same behavior can be activated from
various filters and thus in various contexts. Conversely,
the same filter can be used for several behaviors, en-
abling an agent to modify its reaction to the same con-
text. This approach facilitates the implementation of
various scenarios. Figure 2 depicts the relation between
the agent behaviors and its activation filters.

When trying to take the consequence of the execu-
tion of a complex behavior by an agent into account,
the difficulty depends on whether or not it is possible
to interrupt it. If a complex behavior can be inter-
rupted, the link between the agent and its environment
is not modified because it is the standard execution of
the simulator, and the agent is in charge of the correct
execution of its behavior. If a complex behavior can-
not be interrupted, the agent uses its observable prop-
erty time to simulate an appointment. Thus, if time is
equal to the sum of current time and duration of the
complex behavior, then no filter (contextual activation
or fdefault) can be triggered. Therefore it is necessary
to add a new filter ffree that activates the agent to keep
the execution of the complex behavior at each time cy-
cle. In order to take this characteristics into account
in the agent model, we have added an observable prop-
erty complex to the agent description. The filter is
ffree(a) = [complex(a) = true]∧ [time(a) >= tE ] with
a ∈ A.

Simulation control

As in the interaction model EASI [11], the filters
belong to the set F . However, as described above,
there are more than one kind of filter in the EASS
model. Some of these filters are necessary for inter-
action, others for activation. To design a simulation
using EASS, the designer has to schedule when each
filter will be evaluated. From our point of view there
are two scheduling levels: the global scheduling level
which controls the execution of the simulation, and the
local scheduling level which controls the behavior of an
agent.

At the global scheduling level, the problem is that
the agents must be activated under the same simula-
tion state. Our proposal is to control execution of the
simulation by an execution automaton where a state
is a package of filters. A package groups filters that
can be triggered at the same cycle of the simulation.
By default, the execution automaton is composed of



move
randomly

contactcoalition

move in
a direction

waiting

requestaccept

request

accept

packet shifting

packet
proximity

packet
discovery

activation
module

interaction
module

technical
module

(state (value, 1)) (state (value, 2))

(state (value, 3))

Simulation process

activation
module

interaction
module

technical
module

packet
seeking

f1

fde f ault

f3

freceipt1
freceipt2

faccept

packet
proximity

f2

f2

freceipt1

freceipt2
faccept

fde f ault

f3
f2

f1

(state (value, 1))

(state (value, 2))

(state (value, 2))

(state (value, 3))

(state (value, 3))

(state (value, 1))

fstate1

fstate2

fstate3behavior automaton of a robot agent

Execution automaton

ENVIRONMENT

Fig. 3. Agent behavior automaton and simulation process

two states: one state is related to the ”technical” man-
agement of the simulation, the other to the activation
of the agents. For example, ftime is triggered when the
simulation is in the ”technical” state. The advantage of
grouping the interaction filters in a specific state of the
automaton is that the model of activation and interac-
tion is homogeneous with its automaton which defines
the order of filter execution. The transitions between
states of the execution automaton are triggered by the
value of a variable state. The value of this variable is
managed by a filter fstate that is designed according to
the needs of the designer.

At the local scheduling level, the problem is that sev-
eral filters could be triggered in the same time cycle for
the same agent. Our proposal is to control the behavior
of an agent by a priority level given to each filter. Let
priority be an application that gives the importance of
a filter, where priority : F → N. The filter with the
highest priority is evaluated before a filter with a lower
priority in the same filter package. For an agent, the
trigger of the activation filter with the highest priority
desactivates the others, using the update of the value
given by the property time. If an agent has no activa-
tion filter that has been triggered at the current time
cycle, then the filter fdefault is used. This filter belongs
to the activation state and has the lowest priority. It is
thus triggered by default for an agent only if its internal
time has not been updated.

We have two levels of simulation control: (1) control
of the simulation process using the execution automa-
ton; (2) control of the activation of the agents using the
priorities of the filters. These two levels of control de-
fine a new way to control the behavior of a simulation
system. For our example, figure 3 depicts the relation
between the behavior automaton and the execution au-
tomaton.

Results with the example ”Packet World”

The simulation shows in figure 3 was assessed us-
ing six scenarios as shown below. Figure 3 gives the
behavior automaton of robot agents. A filter is as-
sociated with each activation context, but the behav-

ior triggered by a filter may change according to the
scenario. For example, using the filter f2 related to
the context packet proximity, the associated behav-
ior is the waiting behavior for the scenarios without
any communication (S1, S2) and the contact behav-
ior for the scenarios with communication (S3, S4, S5,
S6). The filter fdefault is related to the behavior ran-
domly move, and corresponds to the context packet
seeking. The filter f1 is related to the context packet
discovery and enables a robot to move towards the
closest detected packet if no available robot with the
same skill is close to the packet. This filter is written
f1(a, e ∈ O) = [position(e) =?x1]∧[position(a) =?x2]∧
[vision(a) >= pcc(?x1, ?x2)] ∧px∈O ([position(px) =
?x3] ∧ [pcc(?x1, ?x2) <= pcc(?x3, ?x2)]) ∧a1x∈E(A1)

([position(a1x) =?x4] ∧ [pcc(?x4, ?x1) 6= 1]) ∧
[time(a) < tE ] where E(A1) is the set of entities ω ∈ A
which satisfy [skill(a) = skill(ω)] ∧ [idpacket(ω) =
id(e)]. This filter activates an agent a which detects
a packet e in its field of vision and this packet is
the closest one of the agent a. The filter f2 related
to the context packet proximity is written f2(a, e) =
[idp(a) = id(e)] ∧ [position(a) =?x1] ∧ [position(e) =
?x2] ∧ [pcc(?x1, ?x2) = 1] ∧ [time(a) < tE ]. This filter
is triggered when the distance between an agent a and
a packet e is equal to 1. The filter f3 is related to the
context packet shifting and triggers the moment when
the two agents shift the packet.

The interactions are ensured by the filters freceipt1,
freceipt2 and faccept. The filter freceipt2 is a specializa-
tion of freceipt1 where the receiver is the agent nearest
to the sender. The filter faccept is triggered when an
agent adds an accept message inside the environment
in response to a request message. With freceipt2 and
faccept, our interaction protocol is similar to a Contract
Net Protocol; the filter freceipt2 is used to find the best
receiver and the filter faccept closes the ”negotiation”.

For the evaluation of the model, we consider six sce-
narios:
S1: {f1} + Local Agent Context Analysis (LACA),
S2: {f1, f2, f3},
S3: {f1} + LACA + {freceipt1, faccept},
S4: {f1, f2, f3, f4, f5} + {freceipt1, faccept},
S5: {f1} + LACA + {freceipt2, faccept},
S6: {f1, f2, f3, f4, f5} + {freceipt2, faccept}
S1 and S2 show the difference between a scenario with
an activation phase and a local context analysis (S1),
and a contextual activation inside the environment
(S2). The scenarios S3 and S5 are the extensions of
scenario S1 with communication. S4 and S6 illustrate
the unified modeling of the contextual activation and
the interactions. We have chosen two different inter-
action policies in order to show the facility with which
one can generate different simulations without modify-
ing the architecture of the agents.

We have run various simulations according to the
number of robot agents, the number of packets and the
value of the field of vision on a grid (150 × 150) and
have evaluated our model in terms of run-time.

On average, S2 is faster than S1. A larger field of vi-



800

1300

1800

2300

2800

3300

3800

4300

field of vision

S1: 5 robots
"carry" / 5 robots
"raise" / 5
packets 
S2: 5 robots
"carry" / 5 robots
"raise" / 5
packets

S1: 15 robots
"carry" / 15
robots "raise" /
15 packets
S2: 15 agents
"carry" / 15
agents "raise" /
15 packets

S1: 20 robots
"carry" / 20
robots "raise" /
20 packets
S2: 20 robots
"carry" / 20
robots "raise" /
20 packets

5 10 15 20 25 30

run-time

Fig. 4. Execution time with strategies S1 and S2

1200

1700

2200

2700

3200

3700
S1

S2

S3

S4

S5

S6

15 robots "carry", 15 
robots "raise", 15 packets

 5 robots "carry", 5 robots 
"raise", 5 packets

20 robots "carry", 20 
robots "raise", 20 packets

run-time

Fig. 5. Run-time with a field of vision = 15

sion improves the efficiency of the robot agents for S2.
For S1, the same improvement barely offsets the cost of
the local context analysis which increases linearly ac-
cording to the size of the field of vision (figure 4). In
addition, the difference in run-time between the sce-
narios with or without contextual activation is smaller
than with the scenarios with communication (figure 5).
When a coalition is formed the robot agent checks its
internal state and moves directly towards the related
packet without local context analysis. This is a direct
call of one behavior, and the cost is close to that of
behavior activation by a filter.

Conclusion

This paper has presented a new contextual activation
processing for agent-based simulation. Our proposal
is based on the Property-Based Coordination principle
which argues that the components of a multi-agent sys-
tem have to be observable through a set of properties.
The main objective is to make it easier and more effi-
cient to share their context. As far as simulation, there
are theoretical and practical advantages. From a the-
oretical viewpoint, the same unifying framework pro-
posed for interaction and activation simplifies the de-
velopment of complex multi-agent simulations. From a
practical viewpoint, because the environment processes
some of the tasks usually performed by the agents, the
design of the agents is made easier, thus improving the

run-time of the simulation. Moreover, our model pro-
poses a new way to parameterize the model through
the dynamic management of the filters, i.e. the link
between the simulation process and the agent behavior.
All changes are made without modifying the way the
agents are implemented. Not only is the interpretation
of the result facilitated but, in addition, formalization
using concepts from Symbolic Data Analysis gives pow-
erful tools to design and analyze the results of the simu-
lation. Our proposal has been implemented and tested,
the first results are encouraging. This evaluation needs
to be improved using a more complex example includ-
ing both cognitive and reactive agents, like the crisis
management.

References

[1] F. Balbo. A new interaction model for agent-based simula-
tion. In 18th European Simulation Multiconference, 2004.

[2] L. Billard and E. Diday. Symbolic Data Analysis: Concep-
tual Statistics and Data Mining (Wiley Series in Computa-
tional Statistics). John Wiley & Sons, 2007.

[3] F. Bousquet, I. Bakam, H. Proton, and C. Le Page. Cor-
mas: Common-pool resources and multi-agent systems. In
IEA/AIE, pages 826–837, 1998.

[4] P. Davidsson. Multi-agent-based simulation: Beyond social
simulation. In MABS, pages 97–107, 2000.

[5] J. Ferber and O. Gutknecht. Madkit: A generic multi-agent
platform. In 4th International Conference on Autonomous
Agents, pages 78–79, 2000.

[6] E. Fianyo, J-P. Treuil, E. Perrier, and Y. Demazeau. Multi-
agent architecture integrating heterogeneous models of dy-
namical processes: The representation of time. In MABS,
pages 226–236, 1998.

[7] D. Hill. Object-Oriented Analysis and Simulation. Addison-
Wesley, 1996.

[8] N. Jennings and M. Wooldridge. Applications of intelligent
agents. In Agent Technology: Foundations, Applications
and Markets, pages 3–28, 1998.

[9] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan. Ma-
son: A new multi-agent simulation toolkit. In SwarmFest
Workshop, 2004.

[10] F. Michel, G. Beurier, and J. Ferber. The turtlekit simu-
lation platform: Application to multi-level emergence. In
Agent Based Simulation, 2003.

[11] J. Saunier, F. Balbo, and F. Badeig. Environment as active
support of interaction. In E4MAS, pages 61–78, 2006.

[12] D. Weyns, A. Helleboogh, and T. Holvoet. The packet-
world: A test bed for investigating situated multiagent sys-
tems, 2005. Whitestein Series in Software Agent Technology.

[13] M. Zargayouna, J. Saunier, and F. Balbo. Property based
coordination. In Artificial Intelligence: Methodology, Sys-
tems, Applications, pages 3–12, 2006.

Author biographies

Fabien BADEIG is a Ph.D. student at the National Insti-
tute for Transport and Safety Research (INRETS) and at the
LAMSADE laboratory of the University of Paris-Dauphine. His
research concerns agent-based simulation applied to dynamic
contexts such as crisis management in transport.

Flavien BALBO is Assistant Professor in Computer Science at
the University of Paris-Dauphine. He received an M.S. in Applied
Mathematics and a Ph.D. in Computer Science from the Univer-
sity of Paris-Dauphine. He is an associate researcher at INRETS.
His primary research focuses on Real-Time Decision-Making Sys-
tems. His other research interests include Multi-Agent Systems
and, in particular, interaction.

Suzanne PINSON is Professor of Computer Science at the Uni-
versity of Paris-Dauphine. She is Head of the Research Group
on Artificial Intelligence and Decision Processes at the CNRS-
LAMSADE laboratory. She received a M.S. and a Ph.D. in Com-
puter Science from the University of Paris 6 as well as an M.S. in
Computer Science and Operational Research from Northwestern
University, Evanston, Il. Her research areas include Distributed
Decision-Making and Multi-Agent Systems, more precisely, coor-
dination and cooperation issues.


