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ABSTRACT 

We model individual decision making in unfamiliar 
settings using constraint satisfaction networks. We 
investigate to what extent team communication might 
overcome the limits of partially informed and 
heterogeneous agents, allowing them to improve their 
choices in dyadic decision making settings (in terms of 
compatibility with the choices that they would 
undertake if fully informed). We show that 
communication has a non-monotonic effect: while 
initial increases in communication strength result in 
better performance, when one exceeds an optimal 
degree, performance declines up to a point in which 
independent agents perform better than agents 
communicating in teams. We show that this is largely 
due to the fact that too much communication confuses 
agents, blocking the process of sorting alternatives out. 
Similar considerations on non-monotonicity still holds if 
we substitute independent choice under communication 
with group choice based on voting. However, the latter 
rule, compared to the former one, shows lower 
performance for all communication strengths. 
 
INTRODUCTION 

In familiar settings, decision making is usually based on 
probabilities drawn from experienced frequencies and, 
in the connectionist tradition, choice has been typically 
modeled as a pattern matching activity in which criteria 
for selecting one alternative among others refer to the 
closeness of an initial stimulus to patterns stored in 
memory. 
Conversely, unfamiliar settings challenge intelligent 
agents since no previously encountered event is 
considerably similar to the one at point and no 
previously memorized pattern provides an effective 
solution. Focusing on this kind of issues, we build on 
Thagard (1989, 1992a, 1992b, 2000) and we propose a 
decision making model in which agents, in absence of 
conditional probabilities derived from direct 
observation, interpret novel settings ascribing causal 
links between observed events and explanatory 
hypotheses. In our model, the criteria for selecting one 

among many alternatives results from assessing the 
internal consistency of arguments (a.k.a. “explanatory 
coherence”), rather than from closeness to patterns 
formerly and deliberately stored in memory (Keil 2006). 
 In this paper we propose an extension for modeling 
decision makers in a team and we investigate the role of 
group communication on the decision making process. 
While other contributions have explored this topic using 
constraint satisfaction modeling, (Hopfield 1982, 
Marchiori and Warglien 2005), in this paper we suggest 
the use of such models to represent the process of 
inferential reasoning through causality rather than 
pattern matching, thus reproducing a different and 
broader class of cognitive phenomena. 
  
THE MODEL 

We model decision making in unfamiliar settings 
building on a peculiar class of connectionist networks, 
namely constraint satisfaction networks, originally 
proposed by Rumelhart et al. (1986). We refer to 
Thagard’s variation of this model, the ECHO model 
(1992b), in which connections are not initialized to store 
in memory a series of patterns but, on the contrary, 
result from the interplay of various causality 
assumptions between specific units of the network, 
along a line that dates back to Pierce’s abduction theory 
(Hartshorne et al. 1931-1958). 
Agents are denoted by their schemata, which represents 
how they make sense of the world on the basis of their 
available data and causal assumptions: in the decision 
making process, agents consider dyadic theories or 
interpretations of a setting – e.g.: a go/no go decision to 
enter in a new market – each composed by a series of 
hypotheses causally explaining bits of evidence. It is 
assumed that these competing theories have been 
elaborated on the basis of the agent’s logical reasoning, 
knowledge and access to evidence (the process by 
which the agent collects evidence and elicits 
hypothetical statements goes beyond the interest of this 
paper). 
Through an iterative algorithm of relaxation, the model 
displays a general assessment of the concurrent theories 
and selects the most coherent and convincing 
interpretation among the two. 
It is worth to stress the main difference of this model 
with respect to “standard” pattern matching models 
based on constraints satisfaction. According to the latter 
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models, a series of patterns Xi, for i=1, …, n, are stored 
into the network through a careful selection of the 
weights and the aim of the relaxation process is to 
assess the ability of the model to recognize the correct 
pattern Xi when the signal coming from the environment 
is noisy (the initial activation is Xi + E). Conversely, in 
the ECHO model, each weight is assigned on the basis 
of the existence of an explanatory relationship that links 
two different units of the network according to a rule 
that will be explained in the next Subsection, and, 
similarly to other constraint satisfaction models, such as 
Axelrod (1997), the aim of the relaxation process is to 
observe what solution the model displays. 
 
Structure of the model 

Agents.  
An agent is modeled as a constraint satisfaction network 
of n units representing either scraps of available 
evidence (a.k.a. evidence units) or hypotheses giving 
causal explanations for one or several evidences (a.k.a. 
units of hypothesis, explanatory units or explainers); 
moreover, special evidence units (units that are only 
connected with evidence units) are introduced in the 
model in order to clamp evidence units to positive 
activation values (see below for the details). 
Explanatory units are grouped into two competing sets 
(in the following: theories “A” and “B”), representing 
alternative interpretations of the problem setting. Thus, 
the network can be imagined as a three-layer graph, in 
which the top layer represents explanatory units 
belonging to theory A, the middle layer represents 
evidence units, while the bottom layer collects the 
explanatory units belonging to theory B. 
 
Units’ Activation. 
Units’ initial activation represents the agent’s original 
beliefs regarding the units, that is, the agent’s 
preliminary confidence on the environmental evidence 
and on the various theories’ features.  
Units’ activations, that may take values in the [-1, 1] 
interval, are updated overtime according to the 
relaxation rule (see below); the fixed point that is 
reached represents the final belief of the agent regarding 
the units of the model.  
This steady state may highlight that the agent favors one 
theory over the other if all explanatory units from one 
theory - say A - are positive while vice versa occurs for 
the units of the other theory - say B. If such a 
configuration does not occur, the model does not give a 
clear indication in terms of choice of one theory over 
the other, suggesting a case in which the agent does not 
judge the collected evidence and/or the supporting 
hypotheses conclusive. 
 
Connections. 
Connections or weights in each agent’s network wij are 
set in order to reflect the competitive or cooperative 
relationship that exists between two units of the network 
(see Thagard 1992b for the full rationale). For sake of 

simplicity, we restrict our analysis to simple direct 
causality, thus longer causal chains are not considered. 
Positive connections between units of evidence and 
explanatory units represent direct causal relations (e.g., 
event x is causally explained by hypothesis y) and their 
intensity is coded through positive weights, such that 
higher weights correspond to higher causal 
relationships. 
In order to introduce positive feedback between co-
hypotheses, positive connections are also introduced 
between explanatory units (from the same theory) that 
jointly explain the same set of evidence units. 
Finally, competitive relationships are modeled by 
introducing negative connections between explanatory 
units from opposing theories, that jointly explain the 
same set of units of evidence. 
 
Formal Procedure for Connections’ Initialization. 
Let  
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the vector of the activations of all the units of the 
network, where k and l represent the number of 
explanatory units belonging, respectively, to theory A 
and B, m is the number of evidence units (note that 
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i = 1,...,k + l ) be the vector of the 
activations of the special evidence units. 
Let W be a n x n null matrix. Define
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"  as the excitatory 
default value for assigning positive connections among 
units and 
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"  as the inhibition default value for assigning 
negative connections among units. Then, the weights 
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w
ij
 (for 
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i = 1,...,n,  j = 1,...,n ) are assigned according to 
the following steps: 
Step 1. Positive connection between an explanatory unit 
and a unit of evidence: for each unit of type e that is 
causally explained by one or more explanatory units of 
type a: 
i. let i corresponds to the position of the unit e in 

! 

s ; 
ii. compute the number r of explanatory units of 

type a that explain si; 
iii. for each one of the r explanatory units of type 

a that explain si: 
a. let j correspond to the position of the unit 

a in 
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s ; 
b. set 
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w
ij

= w
ji

=" / r ; 
iv. repeat step 1. for theory B. 
Step 2. Positive connections between explanatory units 
that belong to the same theory: for each couple of units 
of type a that are co-hypotheses (they jointly explain 
one or more units of evidence: 
i. let i correspond to the position of one unit of 

type a in 
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s  and j correspond to the position of 
the other unit in 
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s ; 

ii. set 
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iii. repeat step 2. for theory B. 



Step 3. Negative connections between explanatory units 
belonging to different theories: for each couple of units, 
one belonging to theory A and the other one belonging 
to theory B, that competitively explain one or more 
units of evidence: 
i. let i correspond to the position of the unit of 

type a in 

! 

s  and j correspond to the position of 
the unit of type b in 

! 

s ; 
ii. set p as the number of units of evidence that 

are jointly explained by si and sj; 
iii. set q as the overall number of co-hypotheses 

(of type a and b) that jointly explain the units 
of evidence at step ii; 

iv. set 
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w
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= "p /(q / 2) . 

Note that W is symmetric, 
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w
ii

= 0 for i = 1,...,n  and 
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w
ij

= 0 for 
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i = 1+ k + l,...,n  and

! 

j = 1+ k + l,...,n . 
 
Relaxation rule. 
Units’ activation values are updated through an 
algorithm that increases the degree of coherence of the 
network in the sense that it performs a gradient-descent 
path towards levels of activation of the units that better 
satisfy constraints (see McClelland and Rumelhart 
1989, Hertz et al. 1991 for a treatment of similar rules). 
At each iteration, units’ activation levels are 
synchronously updated according to the following rule 
(Thagard 1992b, 2000): 
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where sj(t) is the activation of unit j at time t, d is a 
decay parameter that, at each iteration, weakens the 
activation value of every unit. Min and max represent, 
the lower and upper boundaries of the units’ activation 
and are generally set, respectively, at -1 and 1.  
Finally, 
 
                     

! 

net
j
= w

ij
s
i
(t)

i

" + f
j
                         (2) 

 
is the net input to unit j, computed as the sum of the 
activation of all the units weighted by the connections 
wij linking each of these units with unit j. Note also that, 
in the case of evidence units, the net input also includes 
the value of the corresponding special evidence unit. It 
is worth to mention that the formal treatment of this 
model is still incomplete. In particular, there is no proof 
of convergence of the system to a stationary state, nor of 
coherence maximization, since through relaxation the 
system might settle on a local maximum. However, 
there is an considerable body of literature (Thagard 
1989, 1991, 1992a, 199b, Nowak and Thagard 1992a, 
1992b, Eliasmith and Thagard 1997) that has shown 
convergence towards fixed points in finite time. In the 
simulations reported in the next Section, we will employ 
a choice of parameters consistent with previous 

literature and we will study the issues of convergence 
and of multiplicity of local maxima (fixed points). 
 
Group interaction. 
A group is a set of p agents modeled as a “network of 
agents’ networks” (Hutchins 1995; Marchiori and 
Warglien 2005). Communication between two agents is 
modeled by linking each unit sj of one agent with the 
corresponding unit sj of the other agent. In this respect, 
communication is here intended as a parsimonious 
activity of beliefs exchange, in which only the 
activation of the units, and not the schemata is shared. 
In this group model, the vector of units is represented by 
the union of the p agents’ vector of units (s), while the 
weight matrix contains both the individual weight 
matrices (that are arranged as 

! 

n " n  blocks along the 
main diagonal) and the communication matrices (that 
are arranged as 

! 

n " n  blocks outside the main diagonal). 
The strength of communication is modeled through the 
communication intensity parameter 

! 

" # 0 ; note that for 

! 

" = 0  no communication occurs and the model reduces 
to a mere union of independent agents. Also, we assume 
the simplest form of communication: each agent 
communicates with everyone else with the same 
strength (each communication matrix has 

! 

"#  over the 
main diagonal and 0 elsewhere). This model is still a 
constraint satisfaction network and we apply the same 
relaxation rule for modeling individual decision making 
under team communication. 
 
THE SIMULATION MODEL 

Let us first describe the baseline model, that is, a model 
in which an agent has an accurate knowledge of all the 
relevant environmental evidence (ei), explanatory units 
(ai and bi), and causal connections (wij). We refer to this 
baseline model as the full information and knowledge 
(FIK) treatment. For tractability purposes, we restrict, in 
running all subsequent simulations, to the case in which 

! 

k = l = m = 4 . Table 1 shows the FIK treatment.  
 

Table 1: List of Explainers in the FIK Treatment 
 

unit of 
evidence 

explainers in 
theory A 

explainers in 
theory B 

e1 a1, a2, a3 b1 
e2 a3 b2, b3 
e3 a2, a3, a4 b3, b4 
e4 a3, a4 b4 
tot. nr. 9 6 

 
Figure 1 represents the schemata and shows the 
cooperative (solid lines) and the competitive (dashed 
lines) connections (cooperative links among explainers 
and actual weights wij, that are omitted for clarity). 
In the next Section we will use this treatment as a 
benchmark for comparing the performance of agents 
having an incomplete description of the schemata 
represented in Figure 1; this treatment will be referred 
as partial information and knowledge (PIK). 



These bounded agents are modeled using a table of 
explainers that represents a subset of the corresponding 
table in the FIK treatment. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1: The Schemata in the FIK Treatment 

 
Table 2 summarizes p=5 different partially informed 
agents. Note that agents have full knowledge over 
theory B, but only partial knowledge over theory A. The 
reason for this design will be given in the next Section.  
 

Table 2: List of Explainers in the PIK Treatment 
 

ev. u. explainers in theory A 
 agent 1 agent 2 agent 3 
e1 a1,a2,a3 a1, a2 – 
e2 – – – 
e3 a2, a4 a2, a3 a2, a3 
e4 – a4 – 
tot. nr. 5 5 2 
 agent 4 agent 5  
e1 a1, a2 a1, a2  
e2 a3 –  
e3 a2, a4 a2, a4  
e4 – a3, a4  
tot. nr. 5 6  

 
For each setting that we are going to analyze, we derive 
our results via Monte Carlo simulations with randomly 
generated initial activation values, from a uniform 
distribution in the interval [-1, 1]. Random initial values 
are employed as a way to study to what extend final 
outcomes are affected by initial beliefs of the agent: by 
randomly initializing the activation of the units we 
obtain an estimate of the numbers of fixed points and of 
the size of their basins of attraction. 
A final remark regarding the parameterization of the 
model: we have run all the instances of the model 
according to a choice of parameters (d=0.05, α=0.04, 
β=-0.06, sj=0.01 for j=1, …, n, fj=0.1 for j=k+l+1, …, 
n) that has been commonly employed in the previous 
literature on ECHO, and it has shown a remarkable 
capability of fitting data from various empirical 
domains. While some sensitivity analysis on these 
parameters have shown us that qualitative results do not 

change over a large parametric space, a deeper 
robustness analysis has not been performed, and, in the 
following, we report sensitivity analysis results only on 
communication intensity. 
 
RESULTS 

 
Full Information and Knowledge Treatment 
 
Figure 2 shows the results of a simulation of 50 agents 
with random initial activation values under the FIK 
treatment. Axes measure the normalized Euclidean 
distance of the vector of activations from the two 
“ideal” vectors of activations represented by sA=(1, 1, 1, 
1, -1, -1, -1, -1, 1, 1, 1, 1) and sB=(-1, -1, -1, -1, 1, 1, 1, 
1, 1, 1, 1, 1). Each line represents the path that one 
agent follows during the relaxation process while the 
dots represent the fixed-points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Paths of Convergence of 50 Randomly 
Initialized Agents, FIK Treatment 

 
Statistics from 10000 random trials are collected in 
Table 4.  
 
Table 4: Number of Fixed Points and Size (=Frequency) 

of the Basins of Attractions in the FIK Treatment 
 

Fixed 
Points Th. A Th. B Inconclusive 

outcome 
2 67% 33% 0 

 
The relaxation rule converges in less than 500 iterations 
into one of the following two fixed points: 
s1=(0.4296, 0.6149, 0.7470, 0.6017, -0.3441, -0.3278, 
-0.4221, -0.3054, 0.6877, 0.6967, 0.6907, 0.6965); 
s2=( -0.2989, -0.5105, -0.4857, -0.4113, 0.5689, 0.4767, 
0.6331, 0.6499, 0.6784, 0.6727, 0.6813, 0.6837); 
corresponding, respectively, to selecting theory A and 
theory B. Overall, the simulation tells us that in the 
baseline problem the final outcome is affected by initial 
activations, and that theory A has a larger basin of 
attraction than theory B (with an observed frequency of 
67% and 33% each). Note also that in this setting, the 
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model never relaxes toward an “inconclusive outcome”. 
We take these results as a reference point for evaluating 
performance of agents in all the PIK treatments. 
 
Partially Informed Agents 
 
Partially Informed Agents without Communication. 
Partially informed agents have been ad hoc designed in 
order to induce choices that are at some degree non-
consistent with the FIK case. Figure 3 reports the 
outcome of a simulation of 50 agents of type 1 with 
random initial activation values (results for agents 2-5 
are very similar and hence are omitted). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Paths of Convergence of 50 Randomly 
Initialized Agents, FIK Treatment, No Communication  

 
In this case, all trials converge to the fixed-point: 
s3=(-0.2447, -0.4658, -0.2447, -0.3893, 0.5284, 0.3413, 
0.5917, 0.6144, 0.6843, 0.7035, 0.6816, 0.7136); 
that corresponds to theory B. Similar results hold for 
agents 2-5. A simple metric for measuring the 
performance of partially informed agents is represented 
by the frequency in which the choice under PIK is equal 
to the one under FIK (given the same initial activation). 
Only 33% of times agents in PIK select the same theory 
selected in FIK. In the next Subsection, we will use this 
as a benchmark to evaluate if communication in teams 
can increase this level of performance. 
 
The Role of Communication. 
Figure 4 shows the results (for agent 1) from a 
simulation with 50 teams of 5 agents each, with random 
initial activation values and 

! 

" = 0.5 (results for agents 
2-5 are not shown because they are very similar). 
Statistics from 2000 random trials (with groups of 5 
agents) show that the relaxation process converges in 
less than 1500 iterations into one of the following three 
fixed points (again, we only report agent 1 fixed-points, 
results for agent 2-5 are qualitatively indistinguishable): 
s4=(0.6626, 0.7741, 0.6745, 0.7053, -0.5896, -0.3934,  
-0.6300,  -0.5356, 0.7683, 0.735, 0.7704, 0.7338); 
s5=(0.6483, 0.5915, 0.5704, 0.2623, -0.5443, 0.6014, 
0.6112, 0.6233, 0.7658, 0.7895, 0.8048, 0.7902); 
s6=(-0.6018, -0.7199, -0.6166, -0.6542, 0.7449, 0.6211, 
0.7641, 0.7682, 0.7683, 0.7922, 0.7670, 0.7950). 

According to team members’ initial activations, agents 
can choose theory A (s4), theory B (s6) or be unable to 
choose (s5) and basins of attraction have sizes, 
respectively, of about 19.36%,, 71.80% and 8.84%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Paths of Convergence of 50 Randomly 
Initialized Agents, PIK Treatment with Communication 
 
Despite the emergence of this inconclusive outcome, 
which signals that communication might sometimes 
confuse agents instead of helping decision making, 
performance under this communication setting is around 
45%, a value considerably higher than the performance 
with no communication (33%).  
Finally, sensitivity over communication strength are 
reported in Tables 4 and 5.  
 
Table 4: Number of Fixed Points, Size of the Basins of 

Attractions in the PIK Treatment, for various 
Communication Strength (Data Pooled over Agents 1-5) 
 

   δ  Fixed 
Points Th. A Th. B Inconclusive 

outcomes 
0 1 0 100% 0 

0.25 2 2.73% 97.27% 0 

0.5 3 19.36% 71.80% 8.84% 

0.75 12 14.19% 55.06% 30.75% 
1 41 6.88% 28.56% 64.56% 

 
Table 4 shows that increases in communication strength 
have a direct effect on the number and frequency of 
inconclusive outcomes. 
 

Table 5: Performance Measures (Frequency of 
Compatibility of One Agent’s Choice under PIK–FIK 

Treatments. Data Pooled over Agents 1-5) 
 

   δ  Ind. Choice Maj. Rule 

0 33% 19.19% 
0.25 33.98% 21.73% 

0.5 45.00% 38.94% 

0.75 35.90% 32.38% 
1 19.39% 18.38% 

 

s6 

s5 

s4 

 

s3 



Table 5 collects performance of individual decision 
making at various communication strength, highlighting 
a clear non-monotonic relationship between the two 
variables: while, at the beginning, increases in the 
communication strength result in improvements, when 
one exceeds an optimal threshold, performance declines 
until independent agents perform better than agents 
communicating in teams. Table 5 offers an alternative 
measure of performance, based on a group voting 
procedure (majority rule). In this case performance is 
always lower than the ones reported with the previous 
metric, suggesting that peer pressure or conformity to 
the majority might be less effective for implementing 
effective decision making in teams of interacting agents. 
 
CONCLUSIONS 

In this paper, we investigated the impact of imperfect 
information on decision making performance by 
individual agents in unfamiliar settings and we assessed 
to what extent communication might better outcomes. 
We showed a non-monotonic effect of communication. 
For low levels of communication, group interaction 
results in better individual performance. However, once 
the optimal degree is passed, performance declines up to 
a point in which individuals are better alone then in 
teams. We claim that this phenomenon is due to the 
confounding effects of too much communication, which 
makes agents unable to sort out alternatives. The 
introduction of a voting procedure based on the majority 
rule, highlights similar non-monotonical results, but 
with lower performance for all communication levels. 
 

ACKNOWLEDGMENTS 

The authors wish to thank Roberto Gabriele, James 
March, Ricardo Alberto Marques Pereira, Jay 
McClelland, Paul Thagard, Massimo Warglien, Enrico 
Zaninotto, three anonymous referees and the 
participants to a Cifrem seminar for helpful comments 
on a previous draft. Financial support from MIUR 
(projects FIRB03 and PRIN05) is gratefully 
acknowledged. The usual disclaimer applies. 
 
REFERENCES 

Axelrod, R. 1997. The Complexity of Cooperation. Agent-
based Models for Competition and Collaboration. 
Princeton, NJ, Princeton University Press. 

Eliasmith, C. and P. Thagard. 1997. Waves, particles, and 
explanatory coherence. British Journal for the 
Philosophy of Science, 48, 1-19. 

Keil, F.C. 2006. Explanation and Understanding. Annual 
Review of Psychology, 57. 227-254. 

Hartshorne C., Weiss P. and Burks A. Eds. 1931-1958. 
Collected Papers of Charles Sanders Peirce. 8 vols. 
Cambridge, MA, Harvard University Press. 

Hertz J.; A. Krogh; and R.G. Palmer. 1991. Introduction to the 
theory of neural computation. Santa Fe Institute 
studies in the sciences of complexity, Lecture Notes: 
Vol. 1, Redwood City, CA, Addison-Wesley 
Publishing Company. 

Hopfield, J.J. 1982. Neural networks and physical systems 
with emergent collective computational abilities. 
Proceedings of the National Academy of Sciences of 
the USA, 79, 8, 2554-2558. 

Hutchins, E. 1995. Cognition in the wild. Cambridge, MA, 
The MIT Press. 

Marchiori, D. and M. Warglien. 2005. Constructing shared 
interpretations in a team of intelligent agents: the 
effects of communication intensity and structure. In 
Agent-Based Simulation: From Modeling 
Methodologies to Real-World Applications. Post-
Proceedings of the 3rd International Workshop on 
Agent-Based Approaches in Economic and Social 
Complex Systems 2004, T. Terano (Ed.). Berlin, 
Germany, Springer Verlag. 

McClelland, J.L. and D.E. Rumelhart. 1989. Explorations in 
Parallel Distributed Processing. Cambridge, MA, 
The MIT Press. 

Nowak, G. and P. Thagard. 1992a. Copernicus, Ptolemy, and 
explanatory coherence. In Cognitive models of 
science, R. Giere (Ed.). Vol. 15, Minneapolis, MN, 
University of Minnesota Press, 274-309. 

Nowak, G. and P. Thagard. 1992b. Newton, Descartes, and 
explanatory coherence. In Philosophy of science, 
cognitive psychology and educational theory and 
practice, R. Duschl and H.R. Hamilton (Eds.). 
Albany, NY, SUNY Press, 69-115. 

Rumelhart, D.E.; P. Smolensky; J.L. McClelland; and G.E. 
Hinton. 1986. Schemata and sequential thought 
processes in PDP models. In Parallel distributed 
processing: Explorations in the microstructure of 
cognition, D.E. Rumelhart, J. L. McClelland, and the 
PDP Research Group (Eds.). Vol. 2. Cambridge, 
MA, MIT Press. 

Thagard, P. 1989. Explanatory coherence. Behavioral and 
Brain Sciences, 12, 435-467. 

Thagard, P. 1992a. Adversarial problem solving: Modelling an 
opponent using explanatory coherence. Cognitive 
Science, 16, 123-149. 

Thagard, P. 1992b. Conceptual revolutions. Princeton, NJ, 
Princeton University Press. 

Thagard, P. 2000. Coherence in thought and action. 
Cambridge, MA, The MIT Press. 

 
AUTHOR BIOGRAPHIES 

 
LAURA FRIGOTTO is Research Fellow 
at ROCK (Research on Organizations, 
Coordination and Knowledge, University 
of Trento) and Ph. D. Candidate in 
Economics and Management at Ca’ 

Foscari University of Venice. At present, she is Visiting 
Scholar at Stanford University. She is interested in 
organizational decision making. 
 

ALESSANDRO ROSSI holds a Ph. D. in 
Organization and Management (University 
of Udine) and is Assistant Professor of 
Business Economics and Management at 
the University of Trento. He is interested 

in behavioral and computational decision making. He is 
member of ROCK (http://rock.cs.unitn.it). 

 

 


