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ABSTRACT 

A novel approach symbolizing the principles of chaos 
and its application to evolutionary heuristics is 
discussed.  The concept of local convergence and its 
symbolism to chaotic attractors is discussed. A novel 
approach of having a population driven evolutionary 
heuristic is then proposed combining the principle of 
chaotic attractors and edges.  
 
INTRODUCTION 

The creation of evolutionary systems has largely been in 
response to the explosion of complex tasks and 
applications. In an engineering sense, many problems 
now exist which require the use of advanced algorithms 
to find optimal and concise results. Problems in 
transportation, logistics, production and task scheduling, 
telecommunications and financial planning, have such 
large search spaces that it become computationally 
impossible to address all the search points within the 
search space (Onwubolu 2002). Scheduling problems 
requiring multiple machines such as the job shop family 
cannot be solved exactly with any known mean for over 
thirty sized problems (Yamada 2003). For the traveling 
salesman problem, some solutions would not be 
acquired in the lifespan of a human being. The theory of 
optimization evolved in order to solve these complex 
problems. 
 
The theory of optimization encompasses the quantitative 
study of optima and the methods of finding them 
(Onwubolu 2002). In order to optimize a function the 
critical point to address is the optimal point which is the 
goal and the means of reaching the optimum. 
Traditionally, the main objective has been the 
convergence criteria; the finding of the optimal, 
regardless of the means. New research has delved into 
recognizing the provisionary improvements that drive 
the process of optimization towards the optimal.  
 
In order to optimize, scientists observed naturally 
occurring optimization and phenomena and tried to 
mimic their attribute into artificial systems. New and 
emerging optimization techniques are usually classified 
into three distinct classes; natural phenomena, physical 
phenomena and mathematical-computational 
phenomena. Goldberg (1989) devised genetic 

algorithms (GA) through the observation of evolution. 
Glover (1989) created tabu search (TS) and scatter 
search (SS) with the hallmark of memory retention 
capabilities. Dorigo (1992) came up with the ant colony 
(ACS) approach after the observation of natural ants and 
their work in foraging for food in a natural setting. 
Simulated annealing (SA) mimics the heating and 
cooling of metals in order to optimize (Van Laarhoven 
and Aarts 1987). Differential evolution (DE) by Price 
(1999) and its discrete variant (Onwubolu and Davendra 
2006) uses vector differentials to find optimal values in 
a search space.  
 
This paper proposes a new generic evolutionary 
optimization technique for finding global minimal 
solutions.  This approach looks at three critical issues in 
its operation. The first issue is the critical importance on 
initial conditions to the successful propagation of the 
population. The second is population dynamics which is 
included in the solutions, with regards to its interaction 
and behavior in the solution space. The population 
dynamics give rise to the third issue which is the 
attraction of variables within the population and its 
behavior which can be termed chaotic and random.  
 
CHAOS IN EVOLUTIONARY ALGORITHMS 

The emergence of chaotic systems was initially 
described by Lorenz (1993) and by Henon (1976). The 
two famous chaotic attractor bearing their names are the 
cornerstone of chaos theory in modern literature.  
 
The emergence of chaotic nature has been described in 
EAs in multiple literatures, but in the terms of local 
optima convergence. Premature convergence towards 
local minima instead of a global minima and the 
subsequent “freeze” on evolution was described with 
the application of enhanced GA with evolved agents 
(Optimization and Automaton Group 2004). 
 
Richter (2002) and Zelinka (2005, 2006) discuss the 
possibility of local control of chaos system using 
evolutionary algorithms. Chen and Huang (2005) 
outline how chaos can be introduced in an evolutionary 
system and its behavior observed.  Extensive work has 
been done to manipulate the conversion schema of DE 
to introduce and describe chaos (Zhenyu et al. 2006).  
Zelinka (2006) investigated real time control of chaotic 
systems using evolutionary heuristics. Till date only 
chaos in systems is observed, however this research 
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aims to establish a heuristic based on the principle of 
chaos attractor and population dynamics.  
 
CHAOTIC OPTIMIZATION 

Chaos states disorder and irregularities within a system. 
In order to enforce non-chaotic behavior, it is 
imperative to design a control of chaos. Two 
possibilities exist in order to accomplish a system that 
does not converge to an attractor or diverge to an edge 
as given in Figure 1. 
 

 
Figure 1: Conceptual diagram of attraction and edge 

 
The first possibility is to detect whenever a chaotic 
system is about to arise and design a feedback system in 
order to bypass the chaotic region 
 
In order to find the global minima, the population needs 
not converge, but stay robust. Robustness is critical in 
order to map the solution space. Even when the 
objective function has converged, the ordering of the 
individual solutions is diverse. Therefore the approach 
proposed is to keep the solutions diverse throughout the 
evolution, by generating a distance between the 
solutions spread instead of the objective function of the 
solution. Inorder to do this, intelligence has to be 
incorporated within the solutions. The overriding 
approach is to incorporate population dynamics within 
the solutions in order to organize a feasible propagation 
approach. 
 
The processes required to have a controlled propagation 
is described in the following sections. The methodology 
introduces the approach in terms of discrete 
optimization, specifically permutation based as a means 
to describe the different processes. 
 
Initial Population 
 
Chaos theory stipulates that the emergence of chaotic 
behavior is invariably linked to initial conditions of the 
system. When observing all EA’s, it becomes clear that 
little attention is paid to the initial conditions like 
population. The overriding approach is to have a 
population created using random generation, which the 
search heuristic will guide towards the global minima. 
 
The fallibility of this approach is that a lot of emphasis 
is given to the random generator. Propagation will only 

occur, if a “good” starting point is achieved. If the initial 
population is very far away from the global minima, 
then a large number of generations would be required in 
order to find the correct route.  
 
The first issue to be addressed in this research is the 
creation of the initial population. Using chaos theory as 
a guide, the initial conditions has to be such which can 
be mapped and its structure identified.  
 
To archive this purpose, the population P is divided into 
four sub-populations (SP). The size of the population Pn 
which will be user defined is dived into four segments: 
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where k represents the size of each SP. The population 
can now be represented as a collection of four SP’s. 
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Two SP’s are created using a structured approach and 
the other two using random generation.  
 
Structured Approach 
As outlined previously, a structured approach is 
essential in order to have a control over the solution 
spread. Problems like traveling salesman problem (TSP) 
and quadratic assignment problem (QAP) amongst 
others have an in built structure and the solution also 
has to exhibit some structure, in order to find good 
solutions quickly.  
 
Two SP are identified as having a structured population. 
One has a forward approach, while the other has a 
backward approach. 
 
The forward approach takes the value from the lower 
order to the higher order. The SP is given as: 
 

! 

SP
1

= "
1
,"

2
,...,"

k
{ }  k = P

n

4

# 
$ # 

% 
& % 
                      (3) 

where each solution 
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"  is represented as: 
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The user defined variable n represents the solution size. 
 
The first solution is a direct ascend from the lower 
bound 
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x
lo to the upper bound 
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x
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In order to obtain a structured solution, the first solution 
is segmented and recombined in different orders to 
produce different combinations. The first segmentation 
occurs at n/2, and the two half’s are swapped to produce 
the second solution. The second fragmentation occurs 
by the factor 3; n/3. The general representation is given 
as: 
           

! 
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where z is the total number of permutations possible. 
 



 

 

The second approach is the backward approach. In the 
backward approach the solutions are aligned with high 

! 

x
hi to low 

! 

x
lo order.  
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Random Approach 
It is very critical to observe that a random approach is 
only as good as the random generator used. A very good 
random generator is required to produce solutions which 
have a good spread. A random population is very easy 
to create. Simply generate a value between the lower 

! 

x
lo and higher 

! 

x
hi bounds: 
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This value is checked against the values already in the 
solution and added to the solution if it is unique. 
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The two SP’s are created using the random generation 
where each solution is unique.  
 
POPULATION DYNAMICS 

Chaos theory is based on two principles. The first 
principle is that simple systems will exhibit complex 
behavior which cannot be explained using conventional 
theory. The second principle is that complex systems 
will exhibit behavior which will seem random and 
unstructured, but it has an underlying order.   
 
The application of this theory to EA is that EA by 
comparison with dynamic systems are simple systems, 
which exhibit complex behavior. So in order to 
understand complex behavior it is essential to have in 
built intelligence within the population. 
 
Most systems have no intelligence within the 
population. GA, DE and Mematic Algorithm (MA) have 
no group dynamics where as SS, Particle Swamp 
Optimization (PSO) and ACS due to their memory 
adaptive programming (MAP) has some level of group 
dynamics. The core issue that is used with group 
dynamics is the issue of memory adaptive 
programming. Most emerging EA’s like SS and PSO 
have inbuilt MAP, which is used to find good search 
space. SS has a singular reference set which it creates 
from the main population, which has intensified and 
diversified solutions. Using this approach, solution 
space is mapped to find better routes.  
 
This proposed approach takes this application to the 
next level. SS uses a singular reference set to invoke 
MAP, where as this approach proposes four distinct 
SP’s. The advantage is that small groups will have 
greater competition, in lieu of large groups. Also small 
grouping are easier to manage.  
 
Operational Variables 
 

The proposed algorithm proposes five distinct 
operational variables to order to invoke and expedite 
evolved agents, to enforce cooperative evolution and 
compute feasibility of solution.  
 
Lifespan: Number o generation completed by solution 
 
Propagate: Nmber of valid solutions created by a 
singular solution.  
 
Successful propagate 

! 

" : Frequency with which the 
solution will be combined with another solution
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Rank: The rank gives the standing of the solution in the 
SP. Rank is solely determined by the objective function. 
 
Action: Three actions are defined; dormant, active and 
expired. Action is based on the performance of the 
solution in the SP. “Dormant” refers to an inactive 
solution, “Active” refers to a vaible solution and 
“Expired” refers to an inactive solution.  
 
Individual Variables 
 
In addition to operational variables which keep track of 
the feasibility of the solution within the population, 
individual characteristics of the solutions have to be 
mapped. 
 
A new class of individual variables is defined in this 
proposal in order to map and keep track of individual 
variables. Each solution is computed in accordance to 
the difference between adjacent values. The variance 
factor 

! 

"  defined here is given as: 
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The 

! 

"  gives the ordering of the values within the 
solution. The higher the factor the larger the spread of 
the values, and the more diverse the solutions.  

            

! 

" #1.0    for condensed solutions

" $1.0    for expanded solutions
         (12) 

 
The second individual variable defined is the spread 
factor

! 

" . The 

! 

"  gives an overall identification as to the 
difference between individual solutions; however the 
hierarchy between adjacent values in a solution is not 
indicated.  The spread factor s defined as: 
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The conclusions drawn from the 
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"  is given as: 
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The spread factor is critical in order to manage the 
propagation of the SP. 
 
Group Variables 
 
EAs are characterized by their population based 
approach, where “many are better than one” approach is 
used. Also a group of solutions offers in addition to a 
larger search space, a better probability of finding a 
global minimal solution. However as stated earlier, the 
emergence of unpredictable behavior hinders the 
propagation of the population. To study group behavior, 
it is essential to understand group characteristics. The 
three critical factors of group variables which are 
required are: 
 
Average: The average value is the cumulative average 
of the SP in terms of the objective function. The 
formulation for the average value is given as: 
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Range: The range of the SP is given as the difference 
between the highest objective function and the lowest 
objective function given as: 
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Deviation:  The spread of the solution in the solution 
space which is given as: 
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The deviation is the most important feature since it is 
used to control the solution space in order to avoid the 
chaos edges. Deviation controls the solution spread as it 
defines the range a solution occupies. According to the 
deviation of the SP, new solutions are incorporated in 
the SP, and old solutions discarded. This process is 
further discussed in the following section.  
 
POPULATION PROPAGATION 
 
The key issue in all optimization techniques in the issue 
of propagation of the population from one generation to 
the next. The primary issue in this approach is not the 
propagation, but the avoidance of chaotic features in the 
population as it’s propagates from one generation to the 
next.  
 
Two chaotic features are identified in EA’s; chaotic 
attractors and chaotic edges. The attractors pull together 
the solutions around a common value, whereas the 
edges tend to pull solutions away from the minima and 

into infeasible paths. A schematic of the chaos features 
is given in Figure 2.  
 

 
                      Figure 2: Chaos Features.  
 
In order to drive the population and avoid chaos, it is 
essential to have population control. 
 
When the population is generated, all the solutions are 
mapped and evaluated. The solutions are assigned 
according to their rank in the SP. By evaluating the 
group variables, it then becomes possible to compare 
each SP with each other in order to see if the problem is 
structured or random based on their average values. The 
problem classification 
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"  is set as structured 
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"  if the 
problem is classified as structured or set as random 

! 

"  if 
classified as random. 
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If a true classification is not achieved in the initial 
population, then the population is allowed to iterate 
taking the average of the two approaches. 
 
CHAOS VARIABLES 
 
Whenever propagation occurs, two phenomena that are 
created are either attractors or edges. These are regions 
where unpredictable behavior occurs, and regions which 
should be avoided. In order for the propagation to occur 
two chaos control variables are now defined. 
 
Chaos Attractor
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C
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The distance that each segment of solution has to differ 
from each other. The 

! 

C
A

 is given as: 
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Attractors form when solutions tend to converge 
towards a particular solution. Attraction can be 
classified in two ways, either through the use of 
objective functions or the ordering of solutions. The 
contemporary approach is to evaluate solutions in 
regards to their objective functions; however, two 
solutions may have the same objective functions, but 
different spread.  
 



 

 

The SP is segmented into four regions, each region 
having a distinct spread, differing from its neighbor by 
at least one
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This approach looks at the variance of the solutions in 
order to check for stagnation. This enforces separation 
of the solutions; enforcing non-convergence of the SP. 

! 

C
A

is the distance between two segments in the region 
spread. 
 
During the propagation of the population, the minimum 
spread is to be maintained. As outlined 
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 is an 
element of 
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This enforces that no attractor forms, by isolating 
solution away from each other. 
 
Chaos Edge 
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Whereas the Chaos Attractor 

! 

C
A

 deals with individual 
solutions variables, the Chaos Edge deals with the entire 
SP variables. The Chaos Edge 

! 

C
E

 implies that the 
population be kept robust, in order to keep away from 
the chaotic edges. A tight grouping has to be initiated 
for the algorithm, since multiple intensified variables 
will lead to attraction, and highly diversified variables 
will lead to unguided behavior at the edges.  
 
The solutions in the population cannot differ by more 
than the specified 

! 

C
E  at any point during the 

generations. The deviation of the entire SP has to be set 
at a threshold point where the SP will not become too 
diverse. This is a better approach than simply specifying 
the range between intensified and diversified solutions, 
since now the entire SP is taken into consideration when 
the computations is conducted.   
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As with all operational variables, 

! 

C
A

and 

! 

C
E

 have to 
be tuned in order to have optimal operation of the 
algorithm. The initial population however gives a good 
indication of how the variables are to be tuned.  
 
CROSSOVER APPROACH 
 
The solutions are combined using a two point crossover 
with respect to the variance factor 

! 

"  and the spread 
factor

! 

" . In order to propagate two conditions are vital. 
Firstly MAP structures have to be utilized. This requires 
the merging of intensified solution and diversified 
solutions. Secondly for rapid progression, the best 
solutions have to be exploited. 
 
The solutions are mated according to their individual 
variables. A hig varience 

! 

"  solution is mated with a  

low one and vice versa. As each crossover occurs, the 
resulting solution is evaluated with respect to its 
objective function, and a counter is set as to how 
successful different mating strategies are. Generally 
opposing 

! 

"  and 

! 

"  will give ideal results since a greater 
space will be evaluated in order to find solutions.  
 
SOLUTION VALIDITY 
 
Once a solution is generated, it is evaluated and checked 
against the other solutions in the SP. If it improves upon 
the best, it is then included in the SP. If it improves 
upon the first cluster of high performing solutions, it 
then replaces the worst solution within its cluster.  
 
The most critical issue is that the population integrity 
has to be maintained. In order to avoid chaos attraction, 

! 

C
A

 has to be maintained between the solutions. Once a 
solution is added to the SP, the 

! 

C
A

 between the inserted 
cluster and the next cluster is checked. 
 
The edge boundary 

! 

C
E

 is also checked in order to 
avoid chaos edges. If the boundary is within tolerable 
limits then the solution is allowed to remain in the 
population.   
 
DYNAMIC REPLACEMENT 
 
Survival in the population is performance based. The 
first ten iteration of the population are free iterations, 
since no penalty functions are operational. After ten 
iterations, the performance is checked in terms of the 
lifespan, offspring and propagate factor. If the 
propagate factor 

! 

"  is high, then the solution is non-
performing, since the number of offspring’s will be low. 
This solution is then tagged as dormant. If upon another 
set number of iterations, the solution does not improve, 
it is then tagged as expired. 
 
As other solutions are created then solutions to be 
removed are the expired and dormant solutions, unless 
their rank is within the top five of the SP.  
 
GENERATION 
 
The solution iterates for a set number of generations, set 
in the range of: 

          

! 

100 "G
max

" 300                     (23) 
However this value is user dependent.  Upon the 
completion of the iterations, the top ranked solutions 
within each cluster is printed and the best within them is 
taken as the minima produced in the iteration.  
 
CONCLUSION 
 
The proposed heuristic of chaotic optimization 
addresses the issue of local optima convergence and 
stagnation. Premature convergence is shown as an 
attribute of Chaos theory, and its underlying principles. 



 

 

The evolution of attractors and edges within the 
populations are indications of chaotic behavior.  
 
By using standard spread techniques and applying 
selective crossover techniques, it is possible to keep the 
evolution progressing towards global minima. Anti-
convergence criteria (

! 

C
A

) along with anti-divergence 
criteria (

! 

C
E

) are introduced to enforce strict 
distribution of the population.  
 
The end result is a population which is multi-functional 
based, where for propagation to occur multiple 
conditions, like average spread, variance and rank have 
to be satisfied, instead of the generic approach of 
objective function evaluation. By using multiple 
functions, it then becomes possible to introduce 
intelligence within the population, and expedite 
population dynamics.  
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