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ABSTRACT 

This contribution deals with optimization of the control 
of chaos by means of evolutionary algorithms. The 
main aim of this work is to show that evolutionary 
algorithms are capable of optimization of chaos control 
and to show several methods of constructing the 
complex targeting cost function leading to satisfactory 
results. As a model of deterministic chaotic system the 
two dimensional Henon map was used. The 
optimizations were realized in several ways, each one 
for another cost function or another desired periodic 
orbit. The evolutionary algorithm Self-Organizing 
Migrating Algorithm (SOMA)  was used in four 
versions. For each version, simulations were repeated 
several times to show and check robustness of used 
method and cost function. At the end of this work the 
results of optimized chaos control for each designed 
targeting cost function are compared. 
 
INTRODUCTION 

These days evolutionary algorithms (EA) are known as 
powerful tools for almost any difficult and complex 
optimization problem. But the quality of optimization 
process results mostly depends on proper design of used 
cost function, especially when the EAs are used for 
optimization of chaos control. It is well known that 
deterministic chaos in general and also any technique to 
control of chaos are sensitive to parameter setting, 
initial conditions and in the case of optimization they 
are also extremely sensitive to the construction of used 
cost function. 
In this work the Pyragas’s delayed feedback control 
technique (Just 1999, Pyragas 1992) was used. Unlike 
the original OGY control method (Ott, et al. 1990) it 
can be simply considered as targeting and stabilizing 
algorithm together in one package (Kwon 1999). 
Another big advantage of Pyragas method is the amount 
of accessible control parameters. This is very 
advantageous for successful use of optimization of 

parameters setting by means of EA, leading to 
improvement of system behavior and better and faster 
stabilization to the desired periodic orbits. Some 
research in this field has been recently done using the 
evolutionary algorithms for optimization of local 
control of chaos (Richter and Reinschke, 2000). 
This contribution deals with an investigation on the 
design of the targeting cost function securing the 
improvement of system behavior and faster stabilization 
to desired periodic orbits. The control law is based on 
Pyragas method: Extended delay feedback control – 
ETDAS (Pyragas 1995). This contribution is 
continuation of previous experiments with application 
of EA to chaos control (Zelinka 2005a, Zelinka 2005b, 
Senkerik 2006a, Senkerik 2006b). 
 
PROBLEM DESIGN 

Problem selection and case studies 

The chosen example of chaotic system was two 
dimensional Henon map in form (1).  
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This work primarily consists of two case studies. Both 
of them are focused on estimation of three accessible 
control parameters for EDTAS method to stabilize 
desired UPO (unstable periodic orbit) and comparison 
of results for used cost function. Desired UPOs are 
following: p-1 (a fixed point) in the first case and p-2 in 
the second case. All simulations were 50 times repeated 
for each EA version. The control method – ETDAS in 
the discrete form suitable for two dimensional Henon 
map has form (2). 
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Where K and R are adjustable constants, F is the 
perturbation, S is given by a delay equation utilizing 
previous states of the system and m is the period of m-
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periodic orbit to be stabilized. The perturbation nF  in 
equations (2) may have arbitrarily large value, which 
can cause diverging of the system outside the interval {-
1.5, 1.5}.  Therefore, nF  should have a value 
between maxF− , maxF  and EA should find an appropriate 
value of this limitation to avoid diverging of system. 
 
The cost function 

In this work several types of cost function (CF) were 
developed and tested for stabilization of p-1 orbit (fixed 
point) and p-2 orbit. The CF has been calculated in 
general from the distance between desired state and 
actual system output. The minimal value of this cost 
function revealing the best solution is zero. The aim of 
all the simulations was to find the best solution that 
returns the cost function value as close as possible to 
zero. The idea was to minimize the area created by the 
difference between the required state (stabilized fixed 
point) and the real system output on the whole 
simulation interval – τ, thus this proposal of CF should 
secure fast targeting into the close neighborhood of p-1 
orbit and its stabilization. The CF1 is given by (3). 
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 Where:  TS - target state, AS - actual state 
 
Another cost function (CF2) had to be used for 
stabilizing of higher periodic orbit. It was synthesized 
from the simple CF1 (3) and other terms were added. In 
this case it is not possible to use the simple rule of 
minimizing the area created by the difference between 
the required and actual state on the whole simulation 
interval – τ, due to the many serious reasons, for 
example: degrading of the possible best solution by 
phase shift of periodic orbit. This CF is in general based 
on searching for desired stabilized periodic orbit and 
thereafter calculation of the difference between desired 
and found actual periodic orbit on the short time 
interval - τs (approx. 20 - 50 iterations) from the point, 
where the first min. value of difference between desired 
and actual system output is found. Such a design of CF 
should secure the successful stabilization of higher 
periodic orbit anywise phase shifted. This CF can also 
be used for p-1 orbit. The CF2 has form (4). 
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Where: τ1 - the first min. value of difference between 
TS and AS  
τ2 – the end of optimizing interval (τ1+ τs) 
penalization1= 0 if τ - τ2 ≥ τs; 
penalization1= 10*(τ - τ2) if τ - τ2 < τs (i.e. late 
stabilization) 

Design of targeting CF 

To decrease the average iterations needed for 
stabilization (IStab value) it was necessary to modify 
the definition of CF. The CF1 is not suitable for adding 
any term of penalization for slowly stabilizing solutions, 
thus the CF2 was modified to use for both p-1 and p-2 
orbit. The CF value is multiplied by number of 
iterations (NI) of the first found minimal value of 
difference between desired and actual system output 
(i.e. the beginning of fully stabilized UPO). To avoid 
any problem with CF returning value 0 and to put the 
penalization to similar level as the not-penalized CF 
value, the small constant (SC) is added to CF value 
before penalization (multiplying by NI). The modified 
CF2 has form (5). 
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Where:  
SC = 10-16 for p-1 orbit; SC = 10-8 for p-2 orbit 

 
This proposal of CF was successfully tested in previous 
experiments. To avoid any problems with defining the 
value of SC in advance (especially for stabilization of 
higher periodic orbit) the design of new targeting CF 
had to be changed. The first version of final design of 
targeting CF (CFTARG1) has form (6).The SC value (7) is 
here counted with the aid of power of not-penalized 
basic part of CF. 
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Where: 
SC = 10EXPCF 
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In the second version of final design (CFTARG2), there is 
only slight change in comparison with previous design. 
Here the number of steps for stabilization (NI) 
multiplies only the small constant (SC) which is counted 
in the same way as in the previous case (7) The second 
version of final design of targeting CF (CFTARG2) has 
form (8) 
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These two targeting CFs (6) and (8) are tested and 
compared in this work. The difference between them 
can be clearly seen on Fig. 1, which shows the 
dependence of CFTARG1 (6) and CFTARG2 (8) values on 
the adjustable parameter K and maxF .  
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Fig. 1. Dependence of CF value on parameters K and 

maxF for p-2 orbit, xinitial = 0.7, CFTARG1 (upper,  
R = 0.2928), CFTARG2 (lower, R = 0.4636) 

 
Optimization algorithms  

 
For the experiments described here, stochastic 
optimization algorithm SOMA (Zelinka, 2004), has 
been used. It was chosen because it has been proven 
that this algorithm has the ability to converge towards 
the global optimum. 
 
EXPERIMENTAL RESULTS 

 
Four versions of SOMA were used for all simulations. 
See Table 1for relation between each version and index 
mark in Figures. Parameters for optimizing algorithm 
were set up the way in order to reach the same value of 
maximal CF evaluations for all used versions. Each 
version of SOMA has been applied 50 times in order to 
find the actual optimum. The primary aim of this 
contribution is not to show which version is better or 
worse but to show that the EA can in reality be used for 
deterministic chaos control when the cost function is 
properly defined and how the results can be influenced 
by even slight changes in the design of CF. All results 
are shown only for variable x of two dimensional Henon 
map because of its form (1), where the variable y has 
the same values as variable x but it is only phase shifted.  

The ranges of all estimated parameters were these: 
 -2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.5 and 0 ≤ R ≤ 1 

 
Table 1: Used versions of SOMA 

 
Index Algorithm / Version 

1 SOMA AllToOne  
2 SOMA AllToRandom 
3 SOMA AllToAll 
4 SOMA AllToAllAdaptive 

 
The best solution for each version of SOMA are shown 
in Tables together with other optimization results like 
Iterations required for stabilization (IStab) Average 
IStab value for 50 repeated simulations (Avg. IStab). 
Comparison of SOMA versions from the point of IStab, 
and estimated parameters K, maxF , R is in Figures. These 
diagrams show the variance of observed parameter and 
the small rectangular mark represents average value. 
 
Control of chaos, p-1 orbit, CFTARG1 

This case is focused on the stabilization of p-1 orbit. 
Unperturbed Henon map has this p-1 orbit: xF = 0.8 
Each SOMA version gave almost the same result of CF 
value for the best solution. See Fig. 2 for the best 
individual solution with the lowest CF value (SOMA 
ATO) and Fig. 3 for comparison of all used versions. 
Based on obtained results, it may be stated that the 
control parameters estimated in the optimizations 
ensured fast reaching of a desired state, on average, 
about 50 iterations are required. 
 

Table 2: Results for p-1 orbit, CFTARG1 
 

EA 1 2 3 4 
K -0.8543 -0.8367 -0.8564 -0.8543 

Fmax 0.1863 0.4293 0.3899 0.1863 
R 0.2098 0.2010 0.2099 0.20978 

CF Val. 3.9.10-15 4.0.10-15 4.2.10-15 3.9.10-15 
IStab 

Best sol. 39 40 42 39 

Avg. 
IStab 50 51 49 49 
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Fig. 2. Best individual solution: p-1 orbit, CFTARG1 
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Fig. 3. Comparison of  SOMA versions, p-1, CFTARG1  
 
Control of chaos, p-1 orbit, CFTARG2 

The best results of each SOMA version are shown in 
Table 3. The best solution and comparison of SOMA 
versions are depicted in Fig. 4 and Fig. 5. As can be 
seen from Table 3, three SOMA versions give similar 
results of the best solution; SOMA ATA has found the 
lowest CF value. From the comparison with previous 
case (See Table 2) follows, that the average IStab value 
is smaller. But on the other hand this CF give two best 
solutions (SOMA ATO and ATAA), where the final CF 
value is not divisible by the NI value (or IStab) without 
remainder Thus this design of CF secures very fast 
reaching of desired state but with slightly lower quality 
of stabilization (basic part of CF>0) For stabilization, 
on average, about 38 iterations are needed 

 
Table 3: Results for p-1 orbit, CFTARG2 

 
EA 1 2 3 4 
K -0.7525 -0.8640 -0.8498 -0.7619 

Fmax 0.4155 0.2692 0.1462 0.1861 
R 0.1316 0.2313 0.2055 0.1343 

CF Val. 4.07.10-15 4.2.10-15 3.8.10-15 3.97.10-15

IStab 
Best sol. 34 42 38 33 

Avg. 
IStab 38 39 39 38 
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Fig. 4. Best individual solution: p-1 orbit, CFTARG2 
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Fig. 5. Comparison of  SOMA versions, p-1, CFTARG2  
 
Control of chaos, p-2 orbit, CFTARG1 

This case is focused on the stabilization of 2p-orbit. 
Unperturbed Henon map has this p-2 orbit: x1 = -0.56,  
x2 = 1.26. 
In comparison with p-1orbit the EDTAS control method 
is not able to reach “exact” stabilization of p-2 orbit. 
Thus the not penalized and multiplied basic CF value is 
always greater than zero. From Table 4 it follows that 
all versions of SOMA have found relatively similar 
results for the best solution, from the point of view of 
CF value. See Fig. 6 for the best individual solution 
with the lowest CF value (SOMA ATR) and Fig. 7 for 
comparison of SOMA versions. For successful 
stabilization of p-2 orbit, on average, about 84 iterations 
are needed 

 
Table 4: Results for p-2 orbit, CFTARG1 

 
EA 1 2 3 4 
K 0.4074 0.4056 0.3646 0.3873 

Fmax 0.1990 0.1762 0.1474 0.1764 
R 0.2768 0.2928 0.2079 0.2666 

CF Val. 2.57.10-5 3.12.10-6 9.01.10-6 1.46.10-5

IStab 
Best sol. 123 129 130 127 

Avg. 
IStab 92 80 83 80 
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Fig. 6. Best individual solution: p-2 orbit, CFTARG1 
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Fig. 7. Comparison of  SOMA versions, p-2, CFTARG1  
 
Control of chaos, p-2 orbit, CFTARG2 

See Table 5 for the results of this optimization. The best 
individual solution with the lowest CF value (SOMA 
ATR) is depicted on Fig. 8. and comparison of SOMA 
versions on Fig. 9. In spite of the promising results in 
case of p-1 orbit, smaller final CF values for the best 
solutions and less nonlinear CF surface (see Fig. 1) it 
seems that this optimization by means of CFTARG2 gives 
worse results than previous optimization from the point 
of view of average IStab value. For successful 
stabilization of p-2 orbit in this case, on average, about 
93 iterations are needed 
 
 

Table 5: Results for p-2 orbit, CFTARG2 
 

EA 1 2 3 4 
K 0.4981 0.3535 0.5660 0.3965 

Fmax 0.1414 0.1350 0.1689 0.1799 
R 0.3867 0.1728 0.4636 0.2919 

CF Val. 1.53.10-5 2.21.10-6 1.47.10-8 1.53.10-7

IStab 
Best sol. 131 124 130 127 

Avg. 
IStab 85 89 101 97 
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Fig. 8. Best individual solution: p-2 orbit, CFTARG2 

 

1 2 3 4
SOMA Version

0
0.1
0.2
0.3
0.4
0.5

xamF

1 2 3 4
SOMA Version

0
0.1
0.2
0.3
0.4
0.5

R

1 2 3 4
SOMA Version

0
20
40
60
80
100
120

batSI

1 2 3 4
SOMA Version

-1.5
-1

-0.5
0

0.5

K

 
Fig. 9. Comparison of  SOMA versions, p-2, CFTARG2  
 
COMPARISON OF RESULTS 

The comparison of results for CFTARG1 (6), and CFTARG2 
(8) with initial conditions uniformly distributed in the 
region of 0 < xinitial  < 1 was done for these two cases: 
p-1 orbit and p-2 orbit. In the first case (Fig. 10) the 
control algorithm was set up as follows: For CFTARG1 as 
the solution given by SOMA ATR (Table 2.) and for 
CFTARG2 as the solution given by SOMA ATO (Table 
3.). 
In the second case (Fig. 11) the control algorithm was 
set up as follows: For CFTARG1 as the best solution given 
by SOMA ATR (Table 4.) and for CFTARG2 as the best 
solution given by SOMA ATR (Table 5.). 
As can be seen from Figures 10 and 11 both targeting 
CFs steers the system very quickly to desired state. In 
case of p-1 orbit, the results are very similar, but 
paradoxically in case of p-2 orbit the solution obtained 
by CFTARG2 gives better results for this comparison, 
although this CF gives the worse results of Avg.Istab 
value for 50 repeated optimizations (See Table 4 and 5). 
 

 
Fig. 10. Comparison of the best solutions, p-1orbit, 
CFTARG1 (upper) and CFTARG2 (lower) 
 



 

 

 
Fig. 11. Comparison of the best solutions, p-2 orbit, 
CFTARG1 (upper) and CFTARG2 (lower) 
 

CONCLUSION 

Based on obtained results, it may be claimed that all 
simulations give satisfactory results and thus EAs are 
capable of solving this class of difficult problems and 
the quality of results does not depend only on the 
problem being solved but also on the proper definition 
of the CF. In this contribution two different CFs were 
introduced and tested in the task of fast targeting and 
stabilization of desired periodic orbits. As can be seen 
from the optimization results presented here, they are 
extremely sensitive to the construction of used CF. Any 
small change in the design of CF can cause radical 
improvement of system behavior, but on the other hand 
can cause worsening of any other observed parameter, 
as in the case of CFTARG2 for p-2 orbit.  

There is no problem for the future research in 
defining much more complex CF comprising any 
criterion. Furthermore, parameter settings for EA were 
based on heuristic approach; therefore there is also 
possibility to bench them for the future research. 
According to all results shown here it is planned that the 
main activities will be focused on testing more complex 
cost functions together with searching for better settings 
of EA and certainly on testing of evolutionary 
deterministic chaos control in continuous-time and 
high-order systems. 
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